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Objective/Background: Sickle cell disease (SCD) is a monogenic disease with
a highly variable phenotype depending on the amount of fetal hemoglobin
(HbF), the main modulator. Variation of HbF levels among patients is genetically
requlated. HbF determines both the phenotype of the disease and the response
to treatment with the main drug used, hydroxyurea. The efforts of the
researchers have focused on discovering the genetic factors responsible for HbF
variation, mainly describing the haplotypes of the § cluster and single nucleotide
polymorphisms (SNPs) at three different loci: BCL11A, HBS1L-MYB, and the 8-
globin cluster. This study aimed to determine the possible correlation between
the number of SNPs and haplotypes with higher HbF levels in a cohort of patients
with SCD. A positive association could explain why certain haplotypes, such as
Senegal or Arab-Indian, show higher HbF levels and less severe disease.

Methods: To test this hypothesis, the characterization of haplotypes was
performed using the PCR-RFLP technique and genotyping of three SNPs
representative of the three loci with the greatest association with HbF variation:
Xmnl (rs7482144), BCL11A (rs4671393), and HBS1L-MYB (rs9376092).

Results: We found more SNPs in haplotypes related to higher HbF than those
with less HbF, although only the SNP Xmnl (rs7482144) showed a statistically
significant association.

Conclusion: We found a direct correlation between haplotypes and the number
of SNPs. Haplotypes with higher levels of HbF and less severe phenotypes
showed a higher number of SNPs. Thus, the Benin and Bantu haplotypes
traditionally associated with poor prognosis showed the fewest mutated SNPs.
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1 Introduction

Sickle cell disease (SCD) is characterized by complex
pathophysiology largely driven by vaso-occlusion and hemolytic
anemia. Patients with SCD may experience a wide range of
symptoms and complications, including acute chest syndrome,
infections, pulmonary hypertension, stroke, and painful
vaso-occlusive crises (1).

The disease is caused by a single nucleotide transversion at
codon 6 GAG > GTG (HBB: c.20A > T) (NM_000518.4) of
the B-globin (HBB) gene, thus leading to the production of the
most common hemoglobin variant worldwide, HbS, characterized
by the substitution of the amino acid Glu — Val at the B6(A3)
position (2). In addition, at least five different haplotypes have
been characterized in the B cluster, suggesting distinct geographical
origins of the same BS gene (Senegal, Benin, Bantu, Arab-Indian,
and Cameroon), with haplotype differences in fetal Hb (HbF)
levels (3, 4) having been documented as well. SCD (OMIM
603903) is one of the most common autosomal recessive disorders
worldwide, with more than 300,000 newborns affected each year,
with an expected increase to more than 400,000 by 2050 (5).
In Europe, the prevalence of SCD in the 27 member states is
estimated to be approximately 1 in 150, while the SCD registry in
Spain shows 1,142 registered cases. Early detection, prophylactic
treatments with penicillin, and vaccines have improved the
quality of life and increased the life expectancy of patients
with SCD, although the only curative treatment is allogeneic
transplantation from a human leucocyte antigens-compatible
donor (6).

Although all patients homozygous for the HbS allele have
the same genotype (BS/BS), the severity of the disease may
be highly variable among affected subjects, from patients with
severe clinical symptoms to cases with milder symptoms. The
phenotypic heterogeneity is due to both genetic and environmental
determinants. The main determinants are the presence of HbF (3,
7), a modulator of the clinical and hematological features of SCD
(1, 2).

Only one drug approved by the Food and Drug Administration
(FDA) and European Medicines Agency (EMA) induces the
production of HbF, hydroxyurea (HU); however, not all patients
manage to increase HbF levels and improve. Although most
patients treated with this drug respond adequately, between 10 and
20% of adults show a minimal response (8, 9).

This variability is probably due, among other causes, to
baseline HbF levels varying between the haplotypes of the
B cluster, heterogeneity among genes responsible for HU
metabolism, and quantitative trait locus that affect the expression
of y-globin (HBG) genes, including Xmnl of the PB-globin
locus on chromosome 11pl5, BCLIIA on chromosome 2pl5,
and the intergenic region HBSIL-MYB on chromosome 6q23.
The Xmnl variant (rs7482144) exerts a direct effect on the
expression of the HBG2 gene (10), while BCLIIA (rs4671393)
and HBSIL-MYB intergenic region (rs9376092) variants increase
HDbEF levels by decreasing the expression of the transcriptional
repressors of y-globin chain synthesis BCLI1A and MYB,
respectively (7).

The main objective of this work has been to assess whether
there is a direct correlation between SNPs Xmmnl (rs7482144)
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located in HBG2, rs4671393 located in BCL11A, and rs9376092
located in HBSIL-MYB and haplotypes and whether haplotypes
related to lower severity, having increased values of HbF, show
a greater number of these SNPs. To meet this objective, we
first analyzed the statistical association of the percentage of HbF
for each SNP and then the number and frequency of SNPs
in each haplotype.

2 Materials and methods

2.1 Sample collection

A total of 28 patients diagnosed with SCD (14 women and 14
men) without treatment with HU and older than 6 years (mean age
11 years) were studied. The samples were received from different
Spanish regions at the San Carlos Clinical Hospital in Madrid
between 2019 and 2020.

2.2 Hematological measurements

All patients underwent a hematometry study with reticulocyte
count (Coulter LH750 Analyzer; Beckman Coulter, Brea, CA,
USA) and red blood cell morphology. HbA, and HbF levels
were measured using high-performance liquid ion exchange
chromatography (HPLC-CE; VARIANT™; Bio-Rad Laboratories,
Hercules, CA, USA). Hemoglobins were studied through capillary
zone electrophoresis [Sebia Capillarys Flext (Sebia, Norcross, GA)]
and HPLC-CE using the short software for Bio-Rad B-thalassemia
(Bio-Rad, Hercules, CA) according to manufacturer’s instructions.

2.3 Molecular analysis and genotyping
SNPs

After genomic DNA isolation (Biorobot® EZ1; Qiagen GmbH,
Hilden, Germany), DNA was quantified on an Invitrogen Qubit
4 fluorometer (Thermo Scientific, Wilmington, DE, USA). The
association with a-thalassemia was ruled out by screening for
the most common o-thalassemia point mutations and deletions
worldwide (21 overall) through multiplex PCR followed by reverse
hybridization using the commercial Alpha-Globin StripAssay kit
(ViennaLab Diagnostic GmbH, Vienna, Austria) with a clinical
sensitivity > 90%.

The molecular characterization of HbS was performed with the
B-Globin StripAssay MED (ViennaLab Diagnostic GmbH, Vienna,
Austria) commercial kit, and its confirmation using automatic
Sanger sequencing of the B-globin gene following the previously
described protocol (11). The haplotypes of the B cluster were
obtained through amplification and digestion with restriction
enzymes (PCR-RFLP) according to the protocol described by
Rahimi et al. (12).

The genotyping of SNPs located in the Gy (rs7482144) and
BCL11A (rs4671393) genes and the HBS1L-MYB intergenic region
(rs9376092) was performed through automatic Sanger sequencing
using the primers shown in Table 1.
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TABLE 1 Primers used in SNP genotyping.

Sequence

10.3389/fmed.2025.1347026

TABLE 2 Hematological data.

Mean + SD Reference values

Gy -Xmnl (rs7482144) RBC (x 10°/mL) 3.1140.72 M: 4.52-5.90
F:4.10-5.10
F: 5 AACTGT TGC TTT ATA GGATTTT 3’
; , Hb (g/dL) 8.78 +1.27 M: 13.5-17.0
R: 5 AGG AGC TTA TTG ATA ACC TCA GAC 3
F: 11.6-15.0
BCL11A (rs4671393)
PCV (%) 25.87 £4.11 M: 38.3-48.6
F: 5 ATG GGA AGA GAC CCC AAA AC3 F: 36-45
R: 5" CCT TCT GCT TCC TGT TCA CC 3’ MCV (fL) 86.36 + 12.06 80-100.1
HBS1L-MYB (rs9376092) MCH (pg) 29.24+4.72 27-32
F: 5 GAT CAC CCA TCC ATT CAT CC 3’ MCHC (g/dL) 33.93 £ 1.40 33.4-35.5
R: 5 TCA CCT TCT GAT GTG AAG GACT 3’ RDW (%) 22.40 £ 4.06 < 15.00
F = forward primer (5'—3') and R = reverse primer (3'—5'). Reticulocytes (%) 9.13 £+ 3.60 0.5-2.5

2.4 Statistical analysis

In the descriptive study of the data, the qualitative variables
are shown alongside their frequency distribution. Quantitative
variables are summarized with their mean and standard deviation
(SD). Quantitative variables showing an asymmetric distribution
are summarized with median and interquartile range (IQR). In
comparing parameters between the study groups, the association is
assessed using the non-parametric Fisher test because the groups
have a small sample size. A significance value of 5% is accepted
for all tests. Data processing and analysis are performed using the
statistical software IBM SPSS Statistics v.2°.

2.5 Ethical and legal aspects

All hematological indices and clinical findings were performed
with the prior informed consent of the patients, and the study
was approved by the Ethics Committee of the San Carlos Clinical
Hospital, Madrid, Spain. All experiments were conducted in
accordance with the Declaration of Helsinki.

3 Results

3.1 Hematological data

The mean value of the hematological data is shown in Table 2.
The values obtained from the study of hemoglobins were: HbA2
(2.62 £ 0.52%), HbF (14.95 £ 9.13%), and HbS (81.86 £ 8.46%).

3.2 Molecular analysis and genotyping
SNPs

Haplotypes have been inferred based on the presence (+) or
absence (—) of cutting at polymorphic sites by specific restriction
enzymes (5'e-Hincll; 5’Gy-anI; GyIVSII-Hiclll; AyIVSII-HicllIl;
3'VB-Hincll; and B-Avall). In the study population, the African
haplotypes Benin (————++), Bantu (——+——+), Senegal
(—++—++) and Cameroon (——+++++) have been reported. The
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The number of red cells (RBCs), hemoglobin (Hb), and packet cell volume (PCV)
[25.87 4 4.11%] parameters are decreased compared with normal values. Red cell
distribution width (RDW) and reticulocyte count are increased. The rest of the magnitudes,
mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), and mean
corpuscular hemoglobin concentration (MCHC), show values within the reference range.

largest haplotype in the sample was Benin (70%), followed by Bantu
(15%), Senegal (11%), and Cameroon (4%). The haplotypes with
the highest HbF values were Benin: 16.59 £ 9.44% and Senegal:
14.52 & 4.76%, while the Bantu haplotype showed the lowest HbF
values: 5.94 £ 2.42%.

The frequency of the SNPs studied is shown in Table 3. The
most frequent were the wild-type homozygous state for Xmnl
(rs7482144) and HBS1L-MYB (rs9376092), with 88.9 and 77.8%,
respectively.

In all cases, the coexistence of alpha thalassemia as well as any
other hemoglobinopathy was ruled out.

3.3 Statistical analysis

The variation of HbF associated with the three SNPs in the
three possible genotypes (homozygous for the wild-type allele,
homozygous for the mutated allele, and heterozygous) is shown
in Figure 1. Only the SNPs HBSIL-MYB (rs9376092) showed
a statistically significant association in the study population
(p = 0.002).

The number and frequency of SNPs for each haplotype are
shown in Table 4. The distribution of SNPs in BCL11A and HBS1L-
MYB among the different haplotypes did not produce statistically
significant results. However, a statistically significant association
with the SNP Xmnl (rs7482144) (p < 0.05) was observed. The
distribution of HbF among SNPs in haplotypes is shown in
Figure 2.

4 Discussion

Sickle cell disease (SCD) has been studied for many years
owing to the unexpected phenotypic heterogeneity of a disease
caused by a single mutation. Several factors have been related
to an improvement in complications and severity of the disease.
The main and most studied ones are HbF levels, which are
also subject to high heterogeneity, although there are others,

frontiersin.org


https://doi.org/10.3389/fmed.2025.1347026
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/

Ropero et al.

TABLE 3 Frequency of SNP genotype in the study population.

Xmnl (rs7482144)

BCL11A (rs4671393)

10.3389/fmed.2025.1347026

HBS1L-MYB (rs9376092)

Frequency 24 (88.9%) 2 (7.4%) 1(3.7%) 11 (40.7%) 11 (40.7%) 5 (18.5%) 21 (77.8%) 6 (22.2%) 0 (0%)
For XmnI (rs7482144): C is the wild-type allele, and T is the mutated allele.
For BCL11A (rs4671393): G is the wild-type allele, and A is the mutated allele.
For HBS1L-MYB (rs9376092): C is the wild-type allele, and A is the mutated allele.
i
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FIGURE 1
For Xmnl (rs7482144), there is no statistically significant association (p = 0.98). For the wild-type CC genotype, the mean + SD of HbF is
[15.00 £ 9.60%]; in CT heterozygous, it is [15.28 £ 6.47%], while in homozygous for the mutated T allele, it is [13.00 + 0.00%]. The distribution of HbF
among the genotypes of the SNP Xmnl (rs7482144) shows that HbF values below 10% are only found in homozygous for the wild-type allele (CC
genotype), although HbF among these individuals has a very heterogeneous distribution. When the mutated T allele is present, both in heterozygous
and homozygous, HbF levels keep above 10%. For BCL11A (rs4671393), in homozygous for the wild-type G allele, the mean + SD of HbF is
[13.5 & 9.76%]; in GA heterozygous [14.24 + 8.77%] and in homozygous for the mutated A allele [20.09 + 8.36%]. The mean HbF values between the
SNP genotypes show no statistically significant association (p = 0.38). The highest values of HbF among the genotypes of the SNP BCL11A
(rs4671393) are reported when the mutated allele A is present, both in GA heterozygosity and in AA homozygosity, with these being much higher in
the latter case. In HBS1L-MYB (rs9376092), for the homozygous for the wild-type C allele, the mean + SD of HbF is [12.8 £+ 8.06%], and in the CA
heterozygous, it is [14.95 + 9.13%]. The correlation of HbF between the genotypes found of the SNP HBS1L-MYB (rs9376092) shows a statistically
significant association in the study population (p < 0.05). No homozygous individual has been found for the mutated allele. The distribution of HbF
between homozygous for the wild-type allele (CC genotype) and heterozygous (CA genotype) is different, being higher in the latter situation.

such as the simultaneous inheritance of «-thalassemia or
environmental factors.

For most of the time, SCD has been restricted mainly to sub-
Saharan Africa, where approximately 80% of such births occur
every year (5). However, it is currently found in most countries
owing, among other causes, to adoptions, economic, political, or
wartime migrations, thus becoming a global public health issue
(3, 13).

Most treatments aim to increase HbF levels to achieve a more
favorable phenotype, with HU being the main drug used. Although
these treatments are only palliative and the only curative treatment
is the transplantation of hematopoietic precursors, the vast majority
of patients cannot access the latter because of the shortage of
compatible donors, low incomes, and inadequate sanitation in
countries with the highest incidence, usually coinciding with
developing countries (1). Therefore, there is a growing interest in
glimpsing the genetic factors responsible for the increase in HbF
levels and their variability among patients and trying to genetically
or pharmacologically manipulate them to achieve a less severe
disease phenotype. In this regard, this study aimed to determine
whether haplotypes related to higher levels of HbF and, therefore, to
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a disease with fewer complications show a greater number of SNPs
previously described as positive modulators of HbF synthesis. The
presence of these SNPs could partially explain the heterogeneity of
HbF levels between haplotypes. HbF is a highly variable parameter
among individuals with SCD. In the study cohort, the values ranged
from 1.9 to 32%. Most of this variation (89%) is controlled by
genetic factors identified over the last few years, among which the
haplotypes of the f cluster and SNPs in the three quantitative trait
locus studied stand out (14).

In this study, the analysis of the haplotypes of the § cluster
showed four different patterns, identifying only African haplotypes,
the majority being Benin, which is the most frequent in nearby
countries such as Algeria or Tunisia (15). Thus, the patients studied
came from or had ancestry from countries in sub-Saharan Africa.
No cases have been identified for the Arab-Indian haplotype, which
is more restricted to the Saudi population.

Individuals with the Bantu haplotype showed the lowest
HDF levels, approximately 5%, while individuals with the highest
levels were Benin and Senegal, reaching approximately 15%. HbF
values in Bantu and Senegal haplotypes are consistent with levels
described in other populations, while HbF values in Benin vary

frontiersin.org


https://doi.org/10.3389/fmed.2025.1347026
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/

Ropero et al.

TABLE 4 Genotype frequency of SNPs in Bantu, Benin, and Senegal haplotypes.
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In the Bantu haplotype, the homozygous state for the wild-type allele of the three SNPs is the majority, comprising 37.5% of all possible genotypes reported; 12.5% corresponds to the heterozygous state and 0% to the homozygous state for the mutated allele; 12.5% of

alleles were mutated.

Therefore, the low levels of HbF of this haplotype can be due to its small number of SNPs, and the fact that none of them is homozygous for the mutated allele associated with increased HbF.

In the Benin haplotype, characterized by intermediate HbF values and severity, 73.3% have the wild-type genotype, 20% of the possible genotypes have at least one copy of the mutated allele of the SNPs, and the homozygous state for the mutated allele of the three SNPs

comprises 6.6% of all reported genotypes. Overall, 16.7% of the alleles were mutated.

For the Senegal haplotype, in which the homozygous state for the wild-type allele of the three SNPs comprises 33.3%, the heterozygous 44.4%, and the mutated homozygous state 22.22%, 44% of alleles for these SNPs were mutated.

*Number of mutated chromosomes.

10.3389/fmed.2025.1347026

widely among individuals (16). The mean HbF of the Cameroon
haplotype could not be calculated as it was only present in one
individual (1.85%).

In our study population, probably due to sample size,
the impact of P cluster haplotypes on HDF levels is not
statistically significant.

Although suggesting a trend toward higher levels when the
mutated allele is present, the distribution of HbF among the
three genotypes of the SNP Xmnl (rs7482144) did not show any
statistical significance since the mutated allele was identified only
in two heterozygous (7.4%) subjects and one (3.7%) homozygous
individual, with most individuals being homozygous for the wild-
type allele (88.9%). Recent studies indicate that other SNPs within
the B-globin cluster are more significantly associated with HbF
variation than the one used in this study (17).

Regarding the genotypes of the SNP BCLI11A (rs4671393)
located in intron 2 of the BCLIIA oncogene, greater variability
was reported than in the previous case. The mutated allele was
present in 11 heterozygous individuals (40.7%) and five (18.4%)
homozygous individuals. The high frequency of the mutated allele
in the sample may be because the individuals comprising it
were African or of African descent, where the frequency of the
mutated allele is much higher than in the rest of the populations.
This SNP is associated with higher levels of HbE and some
studies have described it as the most influential, with 13% of the
variability being attributed to it (17-19). In our study, genotypes
containing this mutated allele show higher mean HbF levels than
those homozygous for the wild-type allele. There is an increase
in HbF in homozygous individuals for the mutated allele, where
the mean HbF level is greater than 20%; however, owing to
the restricted sample size, no statistically significant association
could be established.

Of the SNP HBSIL-MYB (rs9376092), only two of the three
possible genotypes have been reported, and no homozygous
individuals for the mutated allele were reported. Despite this
obstacle, it is the only variable showing a statistically significant
association with HbF levels. This SNP is also associated with HbF
variation in patient cohorts from other populations and healthy
populations (20). It is located in block 2 of the HBSIL-MYB
intergenic region, where the strongest association with HbF levels
has been reported. Several studies have concluded that other SNPs
(rs9399137 and rs9402686) within this block could be more related
to this HbF variability (7).

There are other SNPs at cluster loci B-globin, BCLIIA, and
HBSI1L-MYB related to variation in HbF levels. They could be used
in future research to assess whether these are also found more
frequently in haplotypes with higher HbF levels.

The main hypothesis of the study was that haplotypes with
higher HbF levels have a higher number of mutated SNPs.

In the Bantu haplotype, no individuals with two copies of the
mutated allele for any of the three SNPs were found. Therefore,
the low levels of HbF of this haplotype could be due to the small
number of SNPs and the fact that none of them is homozygous
for the mutated allele associated with the increased HbF. In the
Benin haplotype, characterized by intermediate HbF values and
severity, the homozygous state for the mutated allele of the three
SNPs together constitutes 6.7% of all reported genotypes, while the
Senegal haplotype is the one with the highest relative frequency of
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The Bantu haplotype is characterized by showing the Xmnl (rs7482144) and HBS1L-MYB (rs9376092) polymorphisms in homozygosity for the
wild-type allele in 100% of cases, while the BCL11A polymorphism (rs4671393) is mostly (75%) in heterozygous individuals. HbF levels do not exceed
10%. In the Benin haplotype, the homozygous state for the wild-type allele is the majority in all three SNPs, accounting for 100%, 47.4%, and 68.4% of
Xmnl (rs7482144), BCL11A (rs4671393), and HBS1L-MYB (rs9376092), respectively. Only the homozygous status for the mutated allele of SNP BCL11A
(rs4671393) is reported. HbF levels are highly heterogeneous. The Senegal haplotype only shows homozygosity for the wild-type allele of SNP
HBSI1L-MYB (rs9376092). The heterozygous state is found in 66.7% of cases of both SNP Xmnl (rs7482144) and BCL11A (rs4671393). The
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homozygous genotype for the mutated allele of both SNPs constitutes 33.3%. HbF levels lie in the 10-20% range.
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SNPs in the homozygous state for the mutated allele (22.22%) from
the reported genotypes.

Based on the results obtained and according to the hypothesis
of the study, a direct correlation is observed between the number
of SNPs homozygous for the mutated allele and haplotypes
with higher levels of HbF. This distribution of SNPs could
be responsible for the increase in HbF levels. Although only
the SNP Xmnl (rs7482144) showed a statistically significant
association, this result is probably due to the small sample size,
so it would be necessary to expand the sample to extract more
statistically robust results.

All these genetic modulators of HbF levels, and therefore of the
clinic and severity of SCD, could be used as biomarkers to stratify
patients based on their ability to produce HbE, with the objective
of a more customized clinical and pharmacological management
according to the expected phenotype. This could have implications
in genetic counseling and prenatal diagnosis of patients.

The SNPs potential
pharmacological targets to devise novel therapies that increase

genetic described may become

the level of HbF in individuals with a more severe phenotype

and improve their clinical development. In this regard, strategies
using BCLIIA as a genetic target, such as silencing this gene,
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are being devised since this is a repressor of the synthesis of
y-globin chains. Silencing increases HbF production and corrects
the disease phenotype in mouse models of SCD without affecting
erythropoiesis or the expression of other genes (21). Other
strategies rely on interference with BCL11A enhancers through
genetic engineering to decrease their synthesis and thus enhance
HDbF production (22).

The global burden of the disease is expected to increase in
the coming years, owing to improved treatment and migration
to countries with higher incomes that allow for increased patient
survival (5). These estimates highlight the importance of finding
and exploiting genetic or pharmacological targets to improve
quality of life and decrease mortality in patients with SCD.

The high heterogeneity of this disease, not yet fully explained
by the genetic factors described here, implies that additional genes
are involved in HbF production to be discovered. Therefore, we will
better understand the genetic mechanisms underlying this disease
and new candidate genes to study.

The advancements that are being performed allow us to
improve the quality of life of patients, and every day we are closer
to achieving a customized therapy that adjusts to the characteristics
of each individual.
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5 Conclusion

In conclusion, our study affirms that individuals exhibiting
elevated HbF levels manifest a milder phenotype. Additionally, the
mutated alleles of the identified SNPs are linked to an inclination
for increased HbF production. The correlation between haplotypes,
the quantity of SNPs, and higher HbF levels indicates that a
less severe phenotype is associated with a greater number of
SNPs. Notably, the Benin and Bantu haplotypes, conventionally
associated with a poorer prognosis, harbor the fewest mutated
SNPs. To further validate these findings, more comprehensive
studies involving larger patient cohorts are warranted, especially
considering the limited representation of individuals with Arab-
Indian or Cameroon haplotypes in our current analysis.
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