
Frontiers in Medicine 01 frontiersin.org

Diagnostics of lung cancer by 
fragmentated blood circulating 
cell-free DNA based on machine 
learning methods
Ivan O. Meshkov 1*, Alexander P. Koturgin 1, Pavel V. Ershov 1, 
Liubov A. Safonova 1, Julia A. Remizova 1, 
Valentina V. Maksyutina 1, Ekaterina D. Maralova 1, 
Vasilisa A. Astafieva 1, Alexey A. Ivashechkin 1, Boris D. Ignatiev 1, 
Antonida V. Makhotenko 1, Ekaterina A. Snigir 1, 
Valentin V. Makarov 1, Vladimir S. Yudin 1, Anton A. Keskinov 1, 
Sergey M. Yudin 1, Anna S. Makarova 1 and Veronika I. Skvortsova 2

1 Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical 
Health Risks” of the Federal Medical and Biological Agency (Centre for Strategic Planning, of the 
Federal Medical and Biological Agency), Moscow, Russia, 2 The Federal Medical and Biological Agency 
(FMBA of Russia), Moscow, Russia

Introduction: Minimally invasive diagnostics based on liquid biopsy makes it 
possible early detection of lung cancer (LC). The blood plasma circulating cell-
free DNA (cfDNA) fragments reflect the genome and chromatin status and are 
considered as integral cancer biomarkers and the biological entities for ‘cancer-
of-origin’ prediction. The aim of this work is to create a method for processing 
next-generation sequencing (NGS) data and an interpretable binary classification 
model (CM), which analyzed cfDNA fragmentation features for distinguishing 
healthy subjects and subjects with LC.

Methods: 148 healthy subjects and 138 subjects with LC were included in the 
study. cfDNA fractions, isolated from blood plasma biospecimens, were used 
for DNA libraries preparations and NGS on the NovaSeq 6,000 Illumina system 
with a coverage of 100 million reads/sample. Twelve variables, describing the 
abundance and length distribution of cfDNA fragments within each genomic 
interval, and 40 variables based on the values of position-weight matrices, 
describing combinations of 5-bp-long terminal motifs of cfDNA fragments, 
were used to characterize genomic fragmentation. Classification models of the 
first phase of machine learning were based either on logistic regression with L1- 
and L2-regularization or were probabilistic CMs based on Gaussian processes. 
The second phase CM was based on kernel logistic regression.

Results: The final CM can distinguish healthy subjects and subjects with LC with 
AUC values of 0.872–0.875. The performance of developed CM was evaluated 
using datum and testing sets for each LC stage category. Sensitivity values 
ranged from 66.7 to 85.7%, from 77.8 to 100%, and from 70 to 80% for LC stages 
I, II, and III, respectively. Specificity values ranged from 79.3 to 90.0%.

Discussion: Thus, the CM has a good diagnostic value and does not require 
clinical or other data on tumor-associated biomarkers. The current method 
for LC detection has some advantages for future clinical implementation as a 
decision-making support system due to the performance of the CM requires 
data exclusively from NGS-analysis of blood plasma cfDNA fragmentation; the 

OPEN ACCESS

EDITED BY

Victoria Bunik,  
Lomonosov Moscow State University, Russia

REVIEWED BY

Xuejing Sun,  
University of Pittsburgh, United States
Camillo Rosano,  
San Martino Hospital (IRCCS), Italy

*CORRESPONDENCE

Ivan O. Meshkov  
 IMeshkov@cspfmba.ru

RECEIVED 20 May 2024
ACCEPTED 06 January 2025
PUBLISHED 29 January 2025

CITATION

Meshkov IO, Koturgin AP, Ershov PV, 
Safonova LA, Remizova JA, Maksyutina VV, 
Maralova ED, Astafieva VA, Ivashechkin AA, 
Ignatiev BD, Makhotenko AV, Snigir EA, 
Makarov VV, Yudin VS, Keskinov AA, Yudin SM, 
Makarova AS and Skvortsova VI (2025) 
Diagnostics of lung cancer by fragmentated 
blood circulating cell-free DNA based on 
machine learning methods.
Front. Med. 12:1435428.
doi: 10.3389/fmed.2025.1435428

COPYRIGHT

© 2025 Meshkov, Koturgin, Ershov, Safonova, 
Remizova, Maksyutina, Maralova, Astafieva, 
Ivashechkin, Ignatiev, Makhotenko, Snigir, 
Makarov, Yudin, Keskinov, Yudin, Makarova 
and Skvortsova. This is an open-access article 
distributed under the terms of the Creative 
Commons Attribution License (CC BY). The 
use, distribution or reproduction in other 
forums is permitted, provided the original 
author(s) and the copyright owner(s) are 
credited and that the original publication in 
this journal is cited, in accordance with 
accepted academic practice. No use, 
distribution or reproduction is permitted 
which does not comply with these terms.

TYPE Original Research
PUBLISHED 29 January 2025
DOI 10.3389/fmed.2025.1435428

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmed.2025.1435428&domain=pdf&date_stamp=2025-01-29
https://www.frontiersin.org/articles/10.3389/fmed.2025.1435428/full
https://www.frontiersin.org/articles/10.3389/fmed.2025.1435428/full
https://www.frontiersin.org/articles/10.3389/fmed.2025.1435428/full
https://www.frontiersin.org/articles/10.3389/fmed.2025.1435428/full
mailto:IMeshkov@cspfmba.ru
https://doi.org/10.3389/fmed.2025.1435428
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://doi.org/10.3389/fmed.2025.1435428


Meshkov et al. 10.3389/fmed.2025.1435428

Frontiers in Medicine 02 frontiersin.org

accuracy of the CM does not depend on any additional clinical data; the CM is 
highly interpretable and traceable; CM has appropriate modular architecture.
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1 Introduction

Lung cancer (LC) is one the major public health challenges in 
many parts of the world. According to GLOBOCAN (1), the number 
of new cases of LC and the number of LC’ deaths were about 2.2 and 
1.8 million, respectively, in 2020. Luo and colleagues (2) forecast that 
the number of annually diagnosed LC cases in 40 countries of the 
world will grow by about 65% (from 1.31  million in 2010 to 
2.17 million) in 2035. A more distant global forecast for 2050 is even 
less optimistic and indicates that LC incidence and mortality will 
achieve 3.8 and 3.2 million cases, respectively (3). Tobacco smoking 
still remains the most significant risk factor for LC (4). Therefore, 
in-time and early detection of the LC in a wide population exposed to 
a complex of external factors of high carcinogenic risk is a very 
reasonable cancer preventive strategy that will reduce public 
health burden.

Regular LC screening is implemented through national medical 
programs based on the radiation diagnostics, which has its advantages 
and disadvantages (5). The latter are associated mainly with the risk 
of negative consequences of radiation exposure that described in 
reviews (6, 7). Recently, great scientific progress has been made in the 
molecular profiling of circulating cell-free DNA (cfDNA) in peripheral 
blood. cfDNA analysis is being considered as a safer diagnostic 
alternative to low-dose computed tomography of the lung or 
additional option in the clinical decision-making support system (8). 
It is of fundamental importance that presence of cfDNA in blood is an 
integral indicator reflecting the occurrence of many physiological (9) 
and pathological processes in the body (10), in particular, LC (11).

A pool of blood cfDNA is represented as a set of DNA fragments 
of different lengths, which are resulted from the processes of cell 
death. The appearance of cfDNA fragments is also associated with a 
rather complex biology and context-specific regulation of gene 
expression (12, 13). Thus, the cfDNA fragments (fragmentome) 
reflects the current state of the genome and chromatin. We mean a 
term ‘fragmentome’ as the entire set of cfDNA fragments present in a 
particular sample, although there is no well-established interpretation 
of this term yet (13). Apoptosis-associated cfDNA is usually 
represented by fragments of 166 and 320 bp in length in circulating 
blood (14), which corresponds to mono and dinucleosomal clusters, 
respectively. However, in reality, blood cfDNA fragments are 
distributed in a wider range (from 40–200 bp to 180–1,000 bp) (15).

We have summarized below well-known parameters of 
cfDNA. Avanzini and colleagues calculated that, on average, 0.014% 
of DNA enters the bloodstream as a result of a single tumor cell death 
(16). A fraction of circulating tumor DNA (ctDNA) directly releasing 
from tumor cells can be estimated. The total amount of ctDNA might 
be <0.01% of the total cfDNA concentration (17) but the later tumor 
stage the more increasing ctDNA percentage. According to various 
studies, the fraction of ctDNA constitutes ~0.1–89% of cfDNA (15). 
ctDNA fragments are represented as a combination of short and long 

fragments, which ratio, obviously, can vary depending on tumor 
localization and a leading cellular process that contributes to 
fragmentation of genomic DNA. Thus, ctDNA turned out to be a more 
fragmented fraction compared to non-tumor cfDNA fragments, e.g., 
<100 bp in length (18). Similar results were found in (19) where 
isolated cfDNA from patients with colorectal cancer was enriched in 
short fragments of 90–150 bp in length (sub-mono-
nucleosome cluster).

Despite the clear clinical significance of ctDNA analysis in 
peripheral blood or other body fluids, there is still no consensus on 
the advantages of ctDNA detection over imaging methods of cancer 
detection. Pons-Belda and colleagues (20) conclude that current 
methods of ctDNA detection have the potential to predict a tumor 
foci larger than 10–15 mm in Ø, which is comparable to the 
sensitivity of imaging methods. In another work, the performance 
of mathematical model based on ctDNA content for prediction of 
small tumor foci (0.83 cm) was demonstrated (16). A high 
predictive value of ctDNA has been also shown. Tumor treatment 
failure can be predicted 140 days earlier than it is detected by 
imaging methods (16).

Since ctDNA in the early tumor stages is present in extremely low 
concentrations [e.g., genetic alterations in tumors can be detected 
when the ctDNA content is >5% of total cfDNA (14)] and the blood 
ctDNA has a short lifetime (minute-hour interval) (15), it is expedient 
to use information about the fragmentation pattern of total 
cfDNA. The term ‘fragmentation pattern’ is meant a system of 
characteristics of target cfDNA fragments (fragment lengths, ratio of 
different fragments lengths, and nucleotide sequences of fragments). 
This will help to overcome the aforementioned diagnostic limitations 
of ctDNA in the early tumor stages and ensure proper sensitivity and 
specificity of mathematical classifiers for separation of normal and 
tumor cases in accordance with the fragmentation patterns of total 
cfDNA. Data on the fragmentation patterns of cfDNA from body 
fluids are required in the framework of minimally invasive cancer 
diagnostics and to increase interpretability of small tumor foci to 
exclude false positive or false negative results of radiation diagnostics 
(e.g., a low-dose computed tomography data).

Formally, a new era in the analysis of cfDNA fragmentome can 
be associated with works by Cristiano and colleagues (21) and Mathios 
and colleagues (22). They reported usage of a universal DELFI 
algorithm (DNA EvaLuation of Fragments for early Interception) 
based on machine learning methods to process NGS-datasets. It 
performs through the mapping of fragment sequences to the genome 
in 5 million bp non-overlapping regions, and within each region it is 
possible to study the coverage and distribution of short (100–150 bp) 
and long (150–220 bp) cfDNA fragments in groups of healthy controls 
and subjects with cancers (21). Later, the validity of the DELFI 
algorithm in combination with several additional clinical parameters 
was demonstrated to diagnose LC stages I/II and III/IV, respectively, 
at 91 and 96% sensitivity (80% specificity) (22).
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There is an approach, which operates cfDNA fragments 
distribution and nucleotide sequences of end motifs of cfDNA 
fragments. Its applicability is described by Guo and colleagues (23). 
They generated a motif-based breakpoint model at the 5′ end of each 
cfDNA fragment to distinguish between healthy subjects and subjects 
with LC at early stage using three different methods (logistic regression 
with elastic network regularization, deep learning, and extreme 
gradient boosting) (23). Later, the model was improved by including 
multiple cfDNA fragmentome characteristics such as gene copy 
number, cfDNA fragment coverage (FSC) and size distribution (FSD), 
terminal motif sequence data (EDM), and breakpoint motifs (BPM) 
(24). The addition of multiparametric characteristics made it possible 
to increase the sensitivity of the model in detecting lung cancer (stage 
I) and tumor foci <1 cm to 83.2 and 85.0%, respectively (24). The same 
group proposed the model not only to distinguish healthy controls 
from subjects with cancers (AUC ≈ 0.98), but also adapted the model 
to determine the tumor localization by cfDNA having tested it on 
three different cancer types (an overall accuracy = 93%) (25).

Thus, there is strong evidence that classification models based on 
the fragmentation pattern of cfDNA have high diagnostic value in the 
detection of LC. It follows from the existing literature data that at least 
classification models using multiple characteristics, in addition to 
fragmentation patterns of cfDNA, have better sensitivity and AUC 
values. At the same time, the need to collect a large amount of medical 
information about clinical characteristics, risk factors, and cancer 
biomarkers will make it very difficult to apply complex classification 
models in a clinical practice and lengthen the waiting time to get the 
analysis result. As far as we know, no entirely interpretable machine 
learning classification models have been described that allow to 
separate different groups of subjects with high accuracy and excellent 
quality operating with NGS-data on cfDNA fragmentation pattern 
only. Development of such a model, based on a combination of 
machine learning methods, will overcome some limitations in low 
ctDNA concentrations in early LC detection, as well as overcome 
usage of information about multiple biomarkers and clinical patients’ 
data in addition to cfDNA fragmentome data. Therefore, the aim of 
this work is to create a universal method for processing NGS-data and 
to design an interpretable binary classification model for 
distinguishing between healthy subjects and subjects with LC 
according to fragmentation pattern of cfDNA isolated from the 
blood plasma.

2 Materials and methods

2.1 Study design and clinical data

The study involved subjects who met the inclusion criteria. 
Subjects were divided into two equal cohorts: healthy subjects (control 
cohort) and subjects with confirmed LC (cancer cohort). The ratio of 
men and women in the cohorts was about the same.

The inclusion criteria in the control cohort were as follows: signed 
informed consent approved by the ethics committee; men and women 
aged from 40 to 77 years, inclusive; non-smokers and never smoked 
Caucasians; no history of oncological, hematological and autoimmune 
diseases; no exposure to genotoxic environmental factors (silica dust, 
radon, cadmium, asbestos, arsenic, beryllium, chromium, nickel, coal 
smoke, soot) and occupational hazards associated with prolonged 

exposure to vehicle exhaust; absence of acute and chronic diseases of 
the respiratory system; absence of active pulmonary tuberculosis; 
absence of hepatitis B, hepatitis C, HIV; absence of systemic therapy, 
with the exception of nonsteroidal anti-inflammatory drugs 
(NSAIDs), antiplatelet agents and anticoagulants, as well as drugs for 
the treatment of coronary heart disease and hypertension.

The inclusion criteria in the cancer cohort were as follows: signed 
informed consent approved by the ethics committee; men and women 
>18 years old; the presence of clinical signs and indications for surgery 
or biopsy for primary LC, obtained on the basis of computed 
tomography or other methods of radiation diagnostics; histological 
confirmation of the diagnosis after biopsy/resection with an 
assessment according to TNM classification; the presence of 
measurable tumor foci; satisfactory liver function (bilirubin <2× upper 
normal limit); increase in ALT (SGPT) and AST (SGOT) to no more 
than 2.5× upper normal limit (no more than 5× upper normal limit in 
patients with metastatic liver damage); satisfactory kidney function 
(creatinine ≤1.5× upper normal limit and/or creatinine clearance 
according to the Cocraft-Gault formula >50 mL/min); adequate bone 
marrow function expressed in the following peripheral blood 
parameters: neutrophil count >1,500 ×106/l; platelet count >75 × 
106/l; hemoglobin content >90 g/L; absence of treatment for lung 
cancer in the past; absence of another oncological disease in the 
anamnesis over the past 5 years; absence of clinical signs indicating 
the secondary nature of tumor formations; absence of severe condition 
of the subject; absence of active pulmonary tuberculosis; absence of 
hepatitis B, hepatitis C, HIV; absence of pregnancy on at the time of 
the study and during the last 5 years (for women); absence of 
hematological pathologies.

2.2 Collection of biospecimens

Collection of biospecimens and clinical data from the subjects 
recruited for this study was approved by the independent local ethics 
committee at Arte Med Assistance LLC: Protocols no. 253 of May 26, 
2021 and no. 276 of May 11, 2022, and performed in accordance with 
the Helsinki Declaration (Protocol no. 05112019 of 11.11.2019). All 
subjects gave written informed consent after a full explanation of 
all procedures.

Peripheral venous whole blood samples from the subjects 
included in the study were collected in 10 mL PAXgene Blood ccfDNA 
tubes (QIAGEN, Germany). The tubes contain additives preventing 
blood clotting and stabilizing blood cells for excluding contamination 
by intracellular genomic DNA during storage. Thirty milliliters of 
blood were collected from each subject. After that, the tubes were 
immediately mixed manually with smooth movements, without 
shaking the tubes in accordance with the manufacturer’ guidelines. 
Storage of samples was carried out at +4°C to 10°C within 7 days.

2.3 Isolation of blood plasma fraction

The blood plasma fraction was obtained according to the PAXgene 
Blood ccfDNA Tubes (QIAGEN, Germany) manufacturer’s protocol. 
The PAXgene Blood ccfDNA Tubes were centrifuged for 15 min at 
room temperature (15–25°C) and 1900 × g. The supernatant (plasma) 
was transferred to 15 mL conical bottom centrifugation tubes and 

https://doi.org/10.3389/fmed.2025.1435428
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Meshkov et al. 10.3389/fmed.2025.1435428

Frontiers in Medicine 04 frontiersin.org

centrifuged at room temperature for 10 min at 1900 × g. The 
supernatant (plasma) was pipetted into cryo tubes without disturbing 
the residual blood cell pellet at the bottom of the tube, if present. Cryo 
tubes were sent for long-term storage at −80°C.

2.4 The isolation of circulating cell-free 
DNA

Isolation of circulating cell-free DNA (cfDNA) from blood plasma 
samples was performed using QIAamp Circulating Nucleic Acid Kit 
(QIAGEN, Germany) according to the manufacturer’s protocol. The 
isolated cfDNA was stored at −20 °С temperature. cfDNA 
concentration was measured using the Quantus fluorometer 
(Promega, United States) with QuantiFluor ONE dsDNA fluorescent 
dye (Promega, United States). The purity of the isolated cfDNA was 
assessed using the NanoDrop  8,000 spectrophotometer (Thermo 
Fisher Scientific, United States) by measuring absorbance on different 
wavelengths and calculating the A260/A280 and A260/A230 ratios. 
Fragment length distribution of cfDNA was assessed by capillary 
electrophoresis using the Agilent 4,200 TapeStation system (Agilent 
Technologies, United States).

2.5 NGS analysis of the fragments of cfDNA

DNA libraries for NGS analysis were prepared with the NEBNext 
Ultra II DNA Library Prep Kit for Illumina (New England Biolabs, 
United States). The concentration of the libraries was measured using 
the Qubit fluorometer (Thermo Fisher Scientific, United States) with 
the Qubit dsDNA 1X HS Assay Kit fluorescent dye. The length of the 
libraries was determined by an Agilent TapeStation 4,200 system using 
the D1000 ScreenTape Assay (Agilent Technologies, United States).

Sequencing was performed on the NovaSeq 6,000 Illumina system 
(Illumina, United States) with the NovaSeq S1 reagent kit (200 cycles) 
v1.5 and NovaSeq S2 reagent kit (200 cycles) v1.5. A PhiX adapter-
ligated library was used as a control. Sequencing was carried out 
according to the manufacturer’s protocol with a coverage of at least 
100 million reads per sample.

2.6 Bioinformatics processing of NGS-data

The first characteristic of genome fragmentation is the pattern of 
cfDNA fragments distribution by lengths and their ratio. To transform 
NGS-data on the blood plasma cfDNA fragmentome into 
characteristics of genome fragmentation, several stages of processing 
the output NGS-data were performed.

cfDNA fragmentome reads were mapped to the human reference 
genome (hg38) and then filtered by mapping quality. Reads with a 
MAPQ ≤30 (MAPping Quality score), polymerase chain reaction 
(PCR) duplicates, and reads located in areas of ambiguous mapping 
[telomeres, centromeres, and those included in the ENCODE Black-
list (26)] were removed. The genome was divided into 
100,000 bp-intervals, within which the number of short (100–150 bp) 
and long (150–220 bp) fragments was calculated. The number of 
fragments obtained were adjusted for guanine and cytosine content 
(GC-content) according to the protocol described by Benjamini and 

colleagues (27). This method for constructing a fragmentation pattern 
differs from the DELFI method by Cristiano and colleagues (21). The 
final result of DELFI is a set of ratios of the number of short to long 
fragments that undergo double correction for GC-content: first, the 
correction is applied to the number of short and long fragments, then 
to the resulting ratio of the corrected number of fragments. In the 
current study, correction is applied only once, and its result is the 
corrected numbers of short and long fragments for each genomic 
interval under consideration. A schematic representation of the 
algorithm of bioinformatics processing of NGS-data is shown in 
Figure 1.

The second characteristic of genome fragmentation is a set of 
position-weight matrices (PWMs), which are calculated according to 
the method by Claverie and colleagues (28). In the current study, 
PWMs are used to characterize the terminal motifs of cfDNA 
fragments. The PWM contains information about motifs by which 

FIGURE 1

A flowchart of the algorithm for bioinformatics processing of NGS 
data on the cfDNA fragmentome.
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DNA fragmentation most often occurs within a single 100,000 bp 
genomic interval. The PWM is a matrix in which the number of rows 
corresponds to four nucleotides, and the number of columns 
corresponds to the length of the motif. From each 100,000 bp genomic 
interval, 5-bp-long terminal motifs of cfDNA fragments were 
extracted from 5`- and 3`-ends. From these motifs, an alignment was 
compiled for each genomic interval and then converted into a 
PWM. For one sample analyzed, a set of such PWMs was compiled 
for all genomic intervals.

2.7 Generation of training, datum and 
testing datasets

The total number of 286 subjects were included in the current 
study. To train and test the performance of the model, they were 
stratified by sex, age and the presence of LC (the cancer stage was also 
taken into account), and then this array was randomly divided, taking 
into account stratification, into three datasets in the ratio 60%: 20%: 
20% for training, datum and testing datasets, respectively 
(Supplementary Figure S1A, Tables S1–S6). The training dataset 
included 60% of the total number of subjects and was used to train the 
model. The datum dataset included 20% of the total number of 
subjects and was used both to test the performance of the model and 
to generate new variables at cer-tain stages of constructing the 
classification model. The testing dataset included 20% of the total 
number of subjects and was used for the final verification of the 
model’s performance.

2.8 Description of the study variables

The target cfDNA fragmentome is a pool of DNA fragments from 
100 to 220 bp mapped to the genome. In turn, the genome is divided 
into non-overlapping intervals and a certain number of DNA 
fragments are found within each of them. Many DNA fragments 
within one genomic interval can be characterized from two sides 
at once.

First, 12 variables were used to describe the abundance of DNA 
fragments and the distribution of their lengths within each genomic 
interval. The total number of DNA fragments, the number of short 
fragments (100–150 bp), the number of long fragments (151–220 bp) 
and the logarithm of the ratio of the number of short fragments to the 
number of long fragments were considered. Since a situation is 
possible when either long or short fragments are absent in a particular 
genomic interval, it was decided to limit the resulting logarithm value 
to limits from −10 to +10. Variables, characterizing the total number 
of fragments, the number of short and long fragments, taking into 
account changes in the GC-content throughout the genome, were 
considered. In addition, the characteristics of the distribution of 
fragment lengths were assessed for each genomic interval: mean, 
standard deviation, skewness (asymmetry), kurtosis (kurtosis 
coefficient, a numerical characterization of the degree of sharpness of 
the peak of the distribution of a random variable) and standard error 
of the mean.

Secondly, variables based on the values of PWM were used. The 
NGS-data is divided into 26,460 non-overlapping intervals. In 
turn, each interval is characterized by 40 variables that correspond 

to PWM elements (4 nucleotides*2 ends of the fragment*5 
positions at each end). Using the principal component analysis 
(PCA), it is possible to perform dimensionality reduction and 
replace 40 variables with a smaller number, while losing as little 
information as possible. To reduce dimensionality, a datum dataset 
was used.

The dimensionality reduction procedure is presented in 
Supplementary Figures S1B, S2. Briefly, the datum dataset was 
initially considered a table consisting of n rows corresponding to 
observations and 26460*40 columns corresponding to variables. The 
datum dataset was transformed into a table, where a separate region 
of a subject became an observation; the columns began to correspond 
to the elements of PWM. The resulting table had a dimension of 
26460*n rows by 40 columns and was converted using PCA. Using a 
scree plot, m informative principal components were identified 
(m < 40). The calculated principal components are linear 
combinations of elements of PWM and will be referred to hereinafter 
as “fragmentation pattern.” The formula used to calculate an 
individual fragmentation pattern is the same for all genomic intervals 
and for all subjects, so the fragmentation pattern reflects the 
characteristics of the terminal motifs of cfDNA fragments on a 
metagenomic scale. As a result, for each subject and for each genomic 
interval it is possible to replace 40 variables, corresponding to PWM 
elements, with m variables, corresponding to the fragmentation 
patterns (m < 40).

The formulas, for calculating fragmentation patterns, were 
obtained solely on the basis of observations from the datum dataset; 
no information from the training or testing datasets was used in 
their calculation.

2.9 Preliminary description of the 
classification model architecture

Metamodeling is used to generate a classification model in the 
current study. This method is widely used in machine learning and 
adapted for generation of several dozens of classification models at the 
first phase that are relatively easy to interpret. Each model separately 
may demonstrate mediocre results for classification of observations. 
In addition, the model generated at the first phase of machine learning 
may not use the entire set of features but uses a part of them, for 
example, the distribution of cfDNA fragments lengths or 
fragmentation pattern. In the second phase, the results of the models 
generated at the first phase are used as variables to build the 
final model.

The flowchart of the algorithm of statistical processing of 
converted NGS-data obtained after bioinformatics processing is 
presented in Figure 2.

Classification models of the first phase of machine learning were 
based either on logistic regression with L1- and L2-regularization or 
were probabilistic classification models based on Gaussian processes. 
The second-phase classification model was based on kernel 
logistic regression.

After calculating fragmentation patterns based on PWM values, an 
individual subject (or an observation) corresponds over 20,000 
genomic intervals, each, in turn, is characterized by several variables. 
Thus, each observation is characterized by tens of thousands of 
variables, leading to the problem of high-dimensional data. Generation 
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of a machine learning model with outstanding performance without 
applying methods for dimensionality reduction of the input data is 
difficult or even impossible. Therefore, before training the classification 
model, several methods like that were used. A different method of 
dimensionality reduction was used for each type of classifier.

Each logistic regression model captured only one characteristic of 
genomic intervals, such as average fragment length or fragmentation 
pattern. The values of a characteristic were averaged within each 
chromosome according to the formula (1):

 

1
,

, ,
j

i chrJchri chr
x

X Jchr

=

= ∑  (1)

where i – index of observation, chr – a chromosome name, Jchr  – 

a number of genomic intervals within the chromosome
 

chr,
 

1
,

j
i chrjchr x=∑

 
– the sum of the values of the genome characteristic for 

all positions within the chromosome chr from initial to final Jchr .
After averaging, the number of input variables for the logistic 

regression model is reduced to 22 that corresponds to the number of 
human autosomes in the haploid set.

The result of logistic regression is the probability of the i-th subject 
belonging to the class of subjects with LC, which is calculated by the 
formula (2):

 ( )0

1 ,
1 exp

i T
p

Xβ β
=

+ +
 

(2)

 0 0 1 , , 1 22 , , 22
T

i metric chr i metric chrX X Xβ β β β β+ = + ∗ +…+ ∗

where 0 22, ,β β…  are coefficients, variables 
, , 1 , , 22, ,i metric chr i metric chrX X…  are average values of a certain 

characteristic within each chromosome.
The calculation of coefficients 0 22, ,β β…  is performed by 

minimization of the loss function value ( )0 22, , , ,L β β λ α… , where λ 
and α  – indications of hyperparameters.

Each Gaussian process classifier covers only one characteristic 
of genomic intervals. A flowchart of the procedure of 
dimensionality reduction of the input data for a Gaussian process 
classifier is shown in Supplementary Figure S3. As a result of this 

FIGURE 2

A flowchart of the algorithm for statistical processing of data on the cfDNA fragmentome.
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procedure, the dimension of the input data is reduced to 
several variables.

Gaussian process classifier allows one to calculate the probability 
of i-th subject belonging to the class of subjects with LC, indicated as 

ip , based on the training dataset and a set of 
predefined hyperparameters.

The formula (3) for calculation of ip  is shown below:

 ( )1 2, , , , ,i training ip stdzψ θ θ= Φ Ψ  (3)

where i  – index of observation from the test sample, trainingΨ   – 
training dataset, iψ  – an observation from the test sample, 1θ , 2θ , stdz  – 
indications of hyperparameters, Φ – a function for calculation of ip  
based on the argument values (29, 30).

The predictions of the first phase models were used as variables in 
the second phase of machine learning. The output of logistic regression 
and Gaussian process classifier is a probability. Next, this metric was 
converted into the logarithm of the odds ratio (OR) according to the 
formula (4):

 
log ,

1odds
pl

p
 

=  −   
(4)

The resulting value is not limited by any limits above or below, 
therefore, in order to avoid the appearance of infinite values, the log 
(OR) values were limited not to exceed │10│. The data for the second 
phase of machine learning model were summarized in a table with 
rows and columns corresponding to observations and predictions of 
the first phase models, respectively. This table was converted using 
PCA. The informative components obtained were used as input 
variables for the final classification model based on kernel 
logistic regression.

Kernel logistic regression allows one to calculate the probability 
of i-th subject belonging to the class of subjects with LC, indicated as 

ip , according to the formula (5):

 
( )2, , , ,i training ip ψ= Φ Ψ λ σ

 
(5)

where i  – index of observation from the test sample, trainingΨ   – 
training dataset, iψ  – an observation from the test sample, λ  and 

2σ  – indications of hyperparameters, Φ – a function for calculation 
of ip  based on the argument values.

The metric ip  is a final result of the entire classification model. The 
physical interpretation of ip  is that the closer the metric to 1 or to 0, 
the greater the confidence that a subject belongs to the class of subjects 
with LC or healthy subjects, respectively.

The training of all classification models of both the first and 
second phases was carried out solely on the training dataset with 
selection of hyperparameters by grid search and Monte Carlo cross-
validation. The training dataset was randomly stratified into internal 
training and validation datasets with a ratio of 75 to 25%, respectively. 
The model was trained with a given set of hyperparameters on the 
internal training dataset, and its performance was tested on the 
validation dataset. Stratification took into account the status of a 
subject (a subject with LC or a healthy subject). For each type of 
classification model and, in turn, for each combination of 
hyperparameters, 100 random splits into internal training and 

validation datasets were carried out, followed by training and testing 
of the model. The area under the ROC curve (AUC) was used as a 
classification quality metric.

All statistical calculations were performed in the R programming 
language version 4.2.1, using RStudio environment v. 2022.02.3.492 
for data analysis.

3 Results

148 healthy subjects and 138 subjects with confirmed LC were 
included in the study according to the criteria described in Materials 
and Methods section. After conducting NGS-analysis of cfDNA 
fragments isolated from the blood plasma, training, datum and testing 
datasets were generated for bioinformatics and statistical processing 
of NGS-data. Stratified selection made it possible to keep the 
distribution of subjects by age and gender in all three generated 
datasets the same as it was in the original dataset. Table 1 shows the 
number of subjects in the training, datum and testing dataset, as well 
as the distribution of subjects by age, gender and TNM classification.

Based on the datum dataset, which included 55 observations, an 
array with dimensions of 1,455,300 (26,460 × 55) rows and 40 

TABLE 1 Characteristics of the training, datum and testing datasets.

Variable Descriptive statistics of the 
datasets

Training 
dataset

Datum 
dataset

Testing 
dataset

Age (median, lower and 

upper quartiles)

63; (54.5 … 69) 62; (53.5 … 

69)

63; (54.75 … 

68.25)

The number 

of subjects 

in the age 

group

< 55 years 44 (25.1%) 14 (25.5%) 14 (25%)

55–63 years 50 (28.6%) 15 (27.3%) 16 (28.6%)

64–69 years 40 (22.9%) 13 (23.6%) 13 (23.2%)

> 69 years 41 (23.4%) 13 (23.6%) 13 (23.2%)

The number of healthy 

subjects

89 (50.9%) 29 (52.7%) 30 (53.6%)

The number 

of subjects 

with lung 

cancer

Stage I 23 (13.1%) 7 (12.7%) 6 (10.7%)

Stage II 29 (16.6%) 9 (16.4%) 10 (17.9%)

Stage III 31 (17.7%) 10 (18.2%) 10 (17.9%)

Stage IV 3 (1.7%) – –

The total number of 

subjects with lung cancer

86 (49.1%) 26 (47.3%) 26 (46.4%)

Gender Male 90 (51.4%) 30 (54.5%) 28 (50%)

Female 85 (48.6%) 25 (45.5%) 28 (50%)

Smoking 

status in the 

LC group

Smokers 36 (41.9%) 16 (61.5%) 15 (57.7%)

Non-

smokers

50 (58.1%) 10 (38.5%) 11 (42.3%)

Smoking index in the LC 

group (median, lower and 

upper quartiles)

0; (0 … 30) 25; (0 … 37.5) 25; (0 … 40)

All three datasets have been created from the original dataset by stratified random sampling 
method using age, gender and subject status as stratification variables. The smoking index is 
calculated as a product between the number of daily smoked cigarettes and the overall 
duration of smoking status in years divided by the a dimensional coefficient of 20.
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columns was generated. This array was then transformed using 
PCA. Twenty-eight informative principal components were selected, 
representing more than 90% of total variance of the original dataset in 
multivariate space using a scree plot (Supplementary Figure S4). The 
remaining principal components were omitted due to their 
low-informative value. The selected principal components were 
further considered as fragmentation patterns reflecting the 
characteristics of terminal motifs of cfDNA fragments on a 
metagenomic scale. The fragmentation patterns calculation was 
carried out on all the genomic intervals regarding each subject of the 
training, datum and testing datasets. In other words, 40 variables 
corresponding to PWM elements were replaced by 28 fragmentation 
patterns at each genomic interval regardless of a subject.

To determine the status of a subject at the first phase of 
classification, 33 and 24 models were generated based on logistic 
regression with L1- and L2-regularization and Gaussian processes. 
Each first-phase model covered only one characteristic of genomic 
intervals. The logistic regression models used the distribution of 
cfDNA fragment lengths (mean, standard deviation, slope, and 
kurtosis), logarithms of the ratio of the abundance of short fragments 
to the abundance of long fragments, and fragmentation patterns as 
input data. Gaussian processes models used the abundance of 
cfDNA fragment lengths within genomic intervals, the distribution 
of cfDNA fragment lengths, and fragmentation patterns as input 
data (Table 2).

One hundred AUC-values were obtained for each set of 
hyperparameter values when tested on validation datasets during the 
generation of an individual model. Descriptive statistics (median, 
lower and upper quartile) were calculated from this set of AUC-values. 
A set of hyperparameters values corresponding to the highest median 
AUC-value was recognized as the best set and was further used for 
generation of input data array for the second-phase model. The results 
of hyperparameters selection for the first-phase models are shown in 
Supplementary Tables S7, S8.

Some Gaussian process models using data on a particular 
fragmentation pattern as input data were excluded from consideration. 
It was impossible to generate a classification model that demonstrated 
any acceptable performance when tested on the validation dataset 
using such input data regardless of the hyperparameters values.

To generate the second-phase model, a training dataset consisting 
of 175 observations and 57 variables was used. Each variable 
corresponded to a result obtained by a particular first-phase 
classification model.

Prior to the generation of the second-phase model, exploratory 
data analysis (EDA) was carried out. The training dataset was 
transformed using the PCA. Two informative principal components 
(PC1 and PC2) were selected. They represented in total more than 
40% of the variance of the original dataset in the space of variables of 
the training dataset. Statistically significant differences of values of 
principal components between healthy subjects and subjects with LC 
were found. These differences were the most noticeable in the case of 
PC1 (Kruskal-Wallis’s test p-value <10−16, size effect value η2 = 0.72). 
The remaining principal components were omitted due to their 
low-informative value.

The informative principal components were used as independent 
variables to generate a kernel logistic regression model. During the 
model generation, for each set of values of the hyperparameters λ and 
σ2, 100 AUC-values were obtained when testing on validation datasets. 
The highest median AUC-value of 0.994 was obtained when using the 
hyperparameters values λ = 0.001 and σ2 = 10 (Figure 3). This set of 
hyperparameters values was found to be the best one. Using the entire 
training dataset as input data and the best values determined for the 
first- and second-phase models, we generated the final version of the 
classifier and evaluated its performance on the datum and testing 
datasets. AUC-values equal to 0.875 and 0.872 were obtained when 
tested on the datum and testing datasets, respectively.

The final classification model allows us to assess the probability of 
a subject with LC ( ip ), but does not unambiguously indicate whether 

TABLE 2 Methods used for data pre-processing in this study.

Data pre-processing method Calculation the 
mean value within 
each chromosome

Centering and scaling within 
one observation followed by 
smoothing and averaging of 
chromosomal rows

Abundance indicators of DNA 

fragments of genomic intervals

A number of short fragments no yes

A number of long fragments no yes

A total number of fragments no yes

The derivative of the ratio “the number of short 

to the number of long fragments”

yes yes

Statistical metrics Average yes yes

Standard deviation yes yes

Skewness yes yes

Kurtosis yes yes

Standard error of the mean no yes

Fragmentation patterns based on 

information about the terminal motifs 

of DNA fragments

Principal components (from 1 to 28) yes yes

Machine learning method used Logistic regression with 

L1- and L2-regularization

Probabilistic classification model based on 

Gaussian processes
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the subject is healthy or with LC. Therefore, it was decided to 
determine the optimal threshold value for the ip -value.

We conducted the following simulation experiment considering 
several options for the threshold value thrp  for ip -value. For each 
option, 100 simulations, each consisting of several stages, were carried 
out. Briefly, the training dataset was divided into internal training and 
validation datasets. The internal training dataset was used to train the 
kernel logistic regression model with hyperparameters values 
λ = 0.001 and σ2 = 10, and the validation dataset was used to test the 
performance of this model. Subjects with ip  ≥ thrp  or ip < thrp  were 
considered as subjects with LC or healthy subjects, respectively. 
Balanced accuracy was used as a classification quality metric. It was 
determined that the optimal thrp -value was equal to 0.35 according to 
the results of the simulation experiment (Figure 4).

The sensitivity, specificity, and balanced accuracy of the final 
version of the classifier were evaluated when tested on the datum and 
testing datasets using this threshold value (Table 3; Figure 5). The 
sensitivity value when checking on the datum and testing datasets was 
0.81, specificity − 0.79 and 0.90, respectively; balanced accuracy – 0.80 
and 0.85, respectively.

4 Discussion

The study demonstrated that NGS-analysis of cfDNA 
fragmentome isolated from blood plasma can be used to detect LC 
cases with high sensitivity and specificity. To our knowledge, it is the 
first cohort study with representative samples of healthy subjects and 
subjects with LC from Russian population. This can be considered as 
the first aspect of the novelty of the study. Another aspect of novelty 
is the unique combination of statistical and machine learning methods 
used to generate the binary classification model. Experimental part to 
obtain data on cfDNA fragmentome are consisted of highly 
reproducible methods (commercially available kits for cfDNA 
extraction, preparation of DNA-libraries and performing the Illumina 
NGS-sequencing).

Integration of data on the distribution of short and long cfDNA 
fragments (fragmentation pattern) and position-weight matrix data, 
reflecting end motifs of cfDNA fragments, resulted in high diagnostic 
performance of the classification model generated. This was achieved 
without additional data on mutational and methylome signatures of 
cfDNA, concentrations of proteomic biomarkers in blood plasma, 
clinical data of patients and radiological data. In fact, this points to the 
advantage of LC detection based solely on analysis of cfDNA 
fragments from blood plasma samples.

It should be noted about the limitations of the study. Thus, the 
cohort of subjects with confirmed LC was mixed by cancer stages. The 
cases with different stages of LC (I and II − early stages, III – advanced 
stage) were represented in approximately equal proportions in the 
testing and validation samples. In addition, several subjects with LC 
stage IV were represented in the training sample.

The generated method demonstrates the best sensitivity values 
when detecting LC stages II and III. Therefore, in this context, it is 
relevant to consider the applicability of the binary classification model 
for distinguishing healthy subjects and subjects with 
non-metastatic LC.

Another limitation is a lack of information about the performance 
of the binary classification model in relation to other cancer types. For 
example, using the DELFI machine learning method, which was 
originally adapted for the detection of LC, colorectal cancer (CRC) 
and hepatocellular carcinoma detection were demonstrated (25), as 
well as in the studies of monitoring patients with CRC (31) or liver 
cancer diagnostics (32). In this context, future studies with inclusion 
of subjects with different cancer types will reveal the specificity and 
areas of applicability of the approach for classification model design.

The results of the current study can be  compared with other 
diagnostic methods based on NGS-analysis of cfDNA fragmentome. 
The classification model Lung-CLiP generated by Chabon and 
colleagues (33) uses input data on targeted sequencing of the same 
genomic intervals-of-interest of blood plasma cfDNA and leukocyte 
DNA. The Lung-CLiP covers the data on cfDNA fragments length 
distribution, single nucleotide variants and copy number variations. 
It has been shown that the Lung-CLiP yielded 16, 52 and 80% 
sensitivity in cases of 1 mL, 10 mL and > 10 mL sample volumes, 
respectively. The specificity values of the Lung-CLiP were 99 and 96% 
for the training and test cohorts, respectively (33).

The DELFI method presented by Cristiano and colleagues (21) is 
based on the analysis of low-coverage sequencing data of cfDNA 
fragmentome. The authors evaluated the length of each detected 
fragment and mapped it to the genomic origin. They divided the 
genome into non-overlapping intervals, each 5 million base pairs in 
length, and evaluated the distribution of fragment lengths for each 
interval. The method results in the DELFI metric that classifies a 
subject on to the healthy subject or subject with cancer. In total, 236 
subjects with LC and 245 healthy subjects were included in the study 
(21). The DELFI method has been shown to have a sensitivity of 57 to 
99% with a specificity of 98% depending on the cancer type. Mathios 
and colleagues (22) applied the DELFI method in a sample of 46 
subjects with LC and 385 healthy subjects. It was shown that when 
choosing the cut-off value of the DELFI metric at 80% specificity, the 
values of diagnostic sensitivity are 57, 58 and 100% for LC stage I, II 
and III – IV, respectively. It has also been found that the DELFI metric 
can be used to analyze the survival rates of subjects with LC (22).

FIGURE 3

Results of selection of hyperparameters λ and σ2 (second phase of 
machine learning).
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In the present work the performance of developed classification 
model was evaluated using datum and testing sets for each lung 
cancer stage category. The results of evaluation are presented in 
Table 3. Sensitivity values ranged from 66.7% to 85.7% for LC stage 
I, from 77.8 to 100% (stage II) and from 70 to 80% (stage III). 
Specificity values ranged from 79.3 to 90%. As can be  seen, the 
performance metrics of classification solution developed in the 
present study are close or even identical to characteristics of 
diagnostic approaches applied by other research teams.

It should be noted that the cumulative findings on eight studies 
reviewed in the meta-analysis by He and colleagues (34) additionally 
support the validity of our classification model generated. They 
assessed the analytical accuracy of cfDNA-based biomarkers for the 
diagnosis of non-small cell LC. An average AUC value of 0.89 was 
found, which is very close to AUC values obtained in this work 
(0.87–0.875). It allows us to consider the classification model as 
corresponding to the analogs level and having a good 
diagnostic value.

FIGURE 4

Results of selection of the threshold value (pi-value). The optimal cutoff value is 0.35 due to the highest average values of balanced accuracy.

TABLE 3 The classifier performance metrics calculated for training, datum and testing datasets.

Confusion matrices

Model prediction Real data

Training dataset Datum dataset Testing dataset

LC H LC H LC H

Subjects with lung cancer (LC) 82 2 21 6 21 3

Healthy subjects (H) 4 87 5 23 5 27

Model’s performance metrics

AUC 0.994 0.875 0.872

Sensitivity 0.953 0.808 0.808

Specificity 0.978 0.793 0.900

Balanced accuracy 0.966 0.800 0.854

Precision 0.976 0.778 0.875

F1-measure 0.965 0.792 0.840

Sensitivity for LC stage I 0.870 0.860 0.670

Sensitivity for LC stage II 0.970 0.780 1.000

Sensitivity for LC stage III 1.000 0.800 0.700

Sensitivity for LC stage IV 1 – –
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The metrics such as sensitivity, specificity and AUC are crucial 
characteristics to prove the diagnostic performance of the classification 
model. In addition, the possibilities for clinical implementation of our 
classification model are indicated by the following advantages: (1) the 
performance of the classification model requires data exclusively from 
NGS-analysis of cfDNA fragmentome isolated from blood plasma and 
the accuracy of the classification model does not depend on the 
presence of other clinical data; (2) the classification model’s decision-
making is interpretable and traceable; (3) modularity of the 
classification model.

First, the classification model does not take into consideration 
any variables that are derived from radiologic studies, biochemical 
and clinical analysis of blood samples and histology analysis of 
biopsy samples. One can note also an advantage of liquid biopsy 
approach: no traumatic and high-risk tissue biopsy 
procedure required.

Second, the classification model is consisted of several modules. 
Each module is relatively easily interpretable and may be represented 
as a logistic regression formula or as a sequence of matrix operations. 
Each module calculates the probability of LC presence using only a 

FIGURE 5

The location of the training dataset observations in the coordinates of the principal components and the result of testing the classification model on 
the datum and testing datasets. The coordinate axes forming the scatter diagram correspond to the principal components obtained during the 
calculation of the phase II model. The points correspond to patients. Panels from left to right: training, datum and testing dataset. The top row of 
panels shows the results obtained by the phase II model without using the cut-off value of 0.35. The middle row is a demonstration of the quality of 
the phase II model using a threshold value (pthr). The bottom row is a demonstration of the quality of performance of the phase II model in diagnosing 
lung cancer depending on the disease stages.
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certain part of the indicators from the original set of 106,074 variables. 
Furthermore, the results given by each module can be are graphically 
represented as one- or two-dimensional scatter plot for the first and 
second phases of classification. As a matter of fact, this plot depicts 
one- or two-dimensional space where each of projected points 
correspond to subjects. The location of a point in one or another area 
of such a low-dimensional space corresponds to a greater or lesser 
probability of belonging to the group of subjects with LC.

The coordinate axes of the space are quantitative variables that, 
in turn, are calculated as a linear combinations of input data or 
through sigmoid transformation of such linear combinations. 
Therefore, there is the ability to trace the decisions made by all 
classification models of the 1st phase.

The resulted input data for the second phase classification model 
is two-dimensional matrix where rows are observations that 
correspond to subjects and columns are variables that correspond to 
probabilities of calculated by the models of the first phase. The 
observations are projecting to the low-dimensional space by the 
sequence of algebraic operations. The region of this space corresponds 
to the decision to classify the observation to the group of subjects 
with LC or to the group of healthy subjects. Our classification model 
presented as a set of formulae with supplementary one- and 
two-dimensional plots cannot be considered as a “black box” and is 
easier to interpret in comparison with trained neural networks and 
random forests (35).

If new characteristics of cfDNA fragments are added during modeling 
in cfDNA fragmentome studies, opportunities for creating of new 
modules will open up and, ultimately, it will contribute to improving the 
quality of the classification model. Moreover, the very architecture of 
model offers the ability to improve the classification performance by 
integrating the results of external diagnostical solutions. The computer 
vision system can analyze lung computed tomography (CT) scans and 
returns categorical or probabilistic value describing the status of the 
subject. For a cohort of participants, the resulted values can be 
incorporated in the architecture of classification model both at the first or 
at the second phases of machine learning as an input variable. These 
measures may yield better separation between analyzed classes but such 
modification requires new study cohort with genomic-wide 
characterization of cfDNA fragments and CT scan obtained for each 
study participant.

NGS-analysis of nucleic acids isolated from biospecimens produces 
a large amount of biological data (‘big data’), the processing and 
interpretation of which provide information to diagnose and clinical 
decision-making (36). The method for LC detection demonstrated in this 
work can become the basis for the development of a highly specific and 
minimally invasive test based on NGS-analysis of cfDNA for the early 
detection of malignant neoplasms. Thus, after clinical validation of the 
method, on the one hand, NGS-analysis of blood plasma cfDNA 
fragmentome may be  an additional diagnostic option in the case of 
questionable and difficult interpretation of radiological data in order to 
minimize the need to perform a highly traumatic lung tissue biopsy or to 
verify the diagnosis in the case of biopsy failure of affected area. On the 
other hand, NGS-analysis of cfDNA fragmentome may in the future 
become a screening step for identifying suspected LC cases with further 
disease verification in accordance with the recommendations of national 
health authorities.

In conclusion, the described bioinformatics and statistical algorithm 
for NGS-data processing for minimally invasive diagnostics of LC stage 

I-III by blood plasma cfDNA allowed us to generate a binary classification 
model based on a unique combination of machine learning methods 
(L1–, L2 – regularized logistic regression, Gaussian process classifier, 
principal component method and kernel logistic regression). The 
classification model is characterized by AUC values from 0.872 to 0.875 
(from 0.8 to 0.9 the quality is ‘excellent’) and makes it possible to 
distinguish healthy subjects and subjects with LC stage I-III by cfDNA 
fragmentation features. The classification model operates without using 
additional information about genomic, transcriptomic, proteomic and 
metabolomic biomarkers, clinical data of the subjects and the results of 
other instrumental techniques, including imaging techniques 
(radiography and computed tomography).
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