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Objectives: During the coronavirus disease 2019 (COVID-19) pandemic, the 
Hospital-at-Home (HaH) program played a key role in expanding healthcare 
capacity and managing COVID-19 pneumonia. This study aims to evaluate the 
factors contributing to readmission from HaH to conventional hospitalization 
and to apply classification algorithms that support discharge decisions from 
conventional hospitalization to HaH.

Methods: Blood biomarkers (IL-6, Hs-TnT, CRP, ferritin, and D-dimer) were 
collected from 871 patients transferred to HaH after conventional hospitalization 
for COVID-19 at the Hospital Universitari Germans Trias i Pujol. Of these, 840 
patients completed their recovery without any complications, while 31 of them 
required readmission. Statistical tests were conducted to assess differences in 
blood biomarkers between the first day of conventional hospitalization and the 
first day of HaH, as well as between patients who successfully completed HaH 
and those who were readmitted. Various classification algorithms (bagged trees, 
KNN, LDA, logistic regression, Naïve Bayes, and the support vector machine 
[SVM]) were implemented to predict readmission, with performance evaluated 
using accuracy, sensitivity, specificity, F1 score, and the Matthews Correlation 
Coefficient (MCC).

Results: Significant differences were observed in IL-6, Hs-TnT, CRP (p < 0.001), 
and ferritin (p < 0.01) between the first day of conventional hospitalization 
and the first day of HaH for patients who were not readmitted. However, no 
significant differences were found in patients who were readmitted. At HaH, 
readmitted patients exhibited higher CRP and Hs-TnT values. Among the 
classification algorithms, the SVM showed the best performance, achieving 85% 
sensitivity, 87% specificity, 86% accuracy, 84% F1 score, and 71% MCC.

Conclusion: Hs-TnT was a key predictor of readmission for COVID-19 patients 
discharged to HaH. Classification algorithms can aid clinicians in making 
informed decisions regarding patient transfers from conventional hospitalization 
to HaH.
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1 Introduction

At the end of 2019, the COVID-19 pandemic placed immense 
strain on hospitals worldwide, as a surge of affected people required 
admission to conventional hospital settings. This unprecedented 
situation pushed healthcare systems to their capacity limits, requiring 
rapid, temporary expansions to accommodate the increasing demand 
for hospital care (1). Discharging patients based on clinical criteria 
from conventional hospitalization to Hospital-at-Home (HaH) 
emerged as a crucial strategy to free up hospital beds for more 
critically ill patients while ensuring that discharged patients continued 
receiving hospital-level care in their homes (2, 3). HaH is an acute 
hospital substitution service that allows patients to receive treatment 
and hospital-level care in the comfort of their own homes, with 
conditions comparable to those of conventional hospital stays.1

Multiple studies evaluating the HaH unit conclude that it is both 
safe and effective in optimizing hospital resources and capacity, 
especially during the pandemic (1–4). Various studies have shown that 
HaH is a safe and effective alternative for managing COVID-19 
patients with varying levels of severity, allowing for better allocation 
of hospital resources. In all studies, the inclusion criteria for HaH 
candidates were based on clinical, basic analytical, or respiratory 
function parameters. Additionally, clinical protocols and treatments 
were adjusted throughout the different waves of the pandemic to align 
with changing therapeutic guidelines (1).

During the first four waves and amid various COVID-19 variants, 
the “Hospital Universitari Germans Trias i  Pujol” treated 3,038 
patients, of whom 871 patients (28.6%) were discharged through HaH 
to reduce their hospital stay. Additionally, 3.6% of patients were 
readmitted due to poor clinical progress. Although the results were 
very good based on the selection criteria used, we  believe that 
developing clinical-analytical algorithms for patient selection can 
enhance the quality of care provided in the HaH and improve 
clinical safety.

The various studies published show little variation among them 
regarding the clinical criteria for discharging COVID-19 patients. 
Among the majority of frequently mentioned characteristics are 
suitable home conditions, the absence of fever, a good respiratory rate, 
and adequate oxygen saturation (1). In cases of COVID-19 
pneumonia, in addition to the clinical and analytical criteria described 
above, different biomarkers are associated with disease severity or 
progression (including CRP, IL-6, D-DIMER, and Hs-TnT) or 
mortality (D-DIMER and Hs-TnT) as well (5–10). Although these 
biomarkers are not systematically used in clinical practice for decision-
making, it is reasonable to consider that they can help identify patients 
who require admission, those at risk of progression to invasive 
ventilation, and high-risk patients who require special treatments. In 
our case, these can assist in making the decision to transfer the patient 
to HaH with maximum safety, thereby avoiding readmissions to 
conventional hospitalization.

1 https://whahc-community.kenes.com/mod/page/view.php?id=1042

Generally, large datasets lead to better classification performance, 
while smaller datasets may cause overfitting (when the algorithm fits 
the training data well but fails to generalize). However, in practice, 
collecting medical data presents challenges due to patient privacy 
concerns, the rarity of certain conditions, and various organizational 
and legal obstacles (11). To address these difficulties, data 
augmentation algorithms provide a way to create additional data 
samples for effective model training. This method is valuable for 
extracting richer insights from limited data. Several researchers have 
implemented data augmentation techniques to increase the diversity 
of their datasets (12).

There are various algorithms for data augmentation, with their 
application depending on the data type. For quantitative data, one 
prominent algorithm is the Synthetic Minority Over-sampling 
Technique (SMOTE). SMOTE is designed to enhance the performance 
of machine learning algorithms by generating new data through 
oversampling the minority class, which aims to improve classification 
accuracy. This method identifies samples that are close to each other 
(k-nearest neighbors) in the feature space, draws a line between these 
samples, and adds a new synthetic sample at a point along this line 
(13, 14).

Regarding the application of machine learning (ML), it classifies 
new data points (or patients) into previously defined groups based on 
a trained model. Thus, ML presents an opportunity to help clinicians 
in decision-making. There are multiple ML algorithms, including 
bagged trees, K-nearest neighbors (KNN), linear discriminant analysis 
(LDA), logistic regression, Naïve Bayes, and support vector machines 
(SVMs) (15). A decision tree algorithm involves building a hierarchy 
of if/else questions that lead to a decision. In bagging, multiple 
decision trees are constructed before a decision is made through 
majority voting. Bagging enhances the accuracy and robustness of the 
decision tree. KNN predicts the class of an unseen sample using the 
information from the K-nearest neighbors based on feature similarity. 
LDA finds a linear combination of features that best separates different 
classes of data. Logistic regression predicts the likelihood of a binary 
output using one or more input features by applying a logistic (or 
sigmoid) function to convert predictions into probabilities, which are 
then utilized for classification. Naïve Bayes models learn by 
considering each feature independently and collecting simple statistics 
for each class. For our application, Gaussian Naïve Bayes is used as it 
handles continuous data effectively, unlike binary or count data. 
Finally, the SVM algorithm aims to identify the best hyperplane that 
divides the data points of different classes. This hyperplane is chosen 
to maximize the margin, which is the distance between the hyperplane 
and the closest data points from each class (16, 17).

The evaluation of the algorithms’ classification tasks is conducted 
using performance metrics such as sensitivity, specificity, F1 score, and 
accuracy. In addition, for unbalanced datasets, the Matthews 
Correlation Coefficient (MCC) serves as the evaluation metric (18).

Considering all the points mentioned above, this study aims to 
evaluate the factors that lead to the readmission of COVID-19 patients 
who develop pneumonia from HaH to conventional hospitalization. 
In addition, it seeks to validate, using machine learning techniques, 
the usefulness of a set of biomarkers (IL-6, Hs-TnT, CRP, ferritin, and 
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D-dimer) registered on the first day of HaH admission and their role 
in the readmission of patients admitted to HaH for COVID-19.

2 Materials and methods

2.1 Participants

Blood biomarkers (IL-6, Hs-TnT, CRP, ferritin, and D-dimer) 
were collected from a total of 871 patients (age: 59 ± 15 years; weight: 
81.5 ± 18.5 kg; BMI: 29.3 ± 9.2 kg/m−2) who were transferred to HaH 
after being conventionally hospitalized at the “Hospital Universitari 
Germans Trias i Pujol” (HUGTiP) for COVID-19 between March 
2020 and July 2022.

2.2 Study protocol

This is an observational retrospective study in which blood 
biomarkers (IL-6, Hs-TnT, CRP, ferritin, and D-dimer) were collected 
immediately before referral to HaH. The patients referred to HaH after 
conventional hospitalization included those with COVID-19 who 
required hospitalization but could be treated at home due to their 
good clinical and analytical progress, thereby reducing the duration 
of conventional hospitalization. Of the 2,839 patients with COVID-19 
pneumonia admitted to the hospital (conventional hospitalization, 
semi-critical, and ICU), 871 patients (30.68%) were transferred to the 
HaH Unit to decrease the average stay, enable home admission, and 
free up hospital beds during a time of great need. The criteria for 
transfer to HaH include fulfilling the following conditions: a heart rate 
of <100 bpm, a respiratory rate of <24 rpm, an axillary temperature of 
<37.2°C, a systolic blood pressure of >90 mmHg, a basal oxygen 
saturation of >90% (if there was no previous respiratory failure), and 
an adequate level of consciousness.

These criteria had to be  accompanied by an analytical 
improvement (a decrease in CRP, LDH, and transaminases and 
resolution of leukopenia), which was evaluated based on medical 
judgment. In addition, patients were transferred to HaH only if their 
socio-familial and home conditions were deemed suitable. Each case 
was individually evaluated and managed in accordance with public 
health guidelines.

The protocol for home monitoring of patients was the same for all 
patients and included at least one daily medical and/or nursing visit, 
telemedicine monitoring, and complementary examinations 
according to healthcare requirements. Patients receiving care at home 
could access oxygen therapy, nebulizations, and intravenous antibiotic 
or antiviral treatment as needed.

Patients exhibiting poor progress, defined by persistent fever, 
worsening respiratory symptoms, and oxygen saturation levels below 
90–92% based on individual cases, were readmitted to the 
conventional hospital.

2.3 Data analysis

2.3.1 Statistical analysis
The chi-square test was used to evaluate differences in previous 

pathologies between patients who successfully performed HaH and 

those readmitted to conventional hospitalization after being home 
hospitalized. The Shapiro–Wilk test was used to assess the normality 
of variable distribution (IL-6, troponin, CRP, ferritin, and D-dimer) 
for patients readmitted to conventional hospitalization, while the 
Kolmogorov–Smirnov test was used to evaluate normal distribution 
for the group of patients succeeding in HaH. Variables that were not 
normally distributed are presented as median (interquartile range, 
IQR) and minimum–maximum. Normally distributed variables are 
represented as mean ± SD with a 95% confidence interval (CI) (lower 
bound–upper bound). The Wilcoxon test was applied to determine 
differences in blood biomarkers between values on the first day of 
conventional hospitalization and the first day of HaH. The Mann–
Whitney U test was used to assess the significance of blood biomarkers 
between patients succeeding in HaH and those readmitted to 
conventional hospitalization after being home hospitalized.

The statistical software IBM®SPSS®version 24.0 (IBM Corp, 
Armonk, NY, United States) was used for data analysis. The level of 
statistical significance was set at p < 0.05.

2.3.2 Data augmentation
From the 871 patients initially gathered, only those with complete 

information about all the biomarkers collected (IL-6, Hs-TnT, CRP, 
ferritin, and D-dimer) were included in the study. The final number 
of patients was 779, consisting of 755 patients who successfully ended 
recovery at HaH and 24 patients who needed to be readmitted to 
conventional hospitalization from HaH. The SMOTE technique for 
data augmentation was applied to the minority group (patients 
requiring readmission to conventional hospitalization). An 
oversampling of 1,000% was conducted, increasing the number of 
samples from 24 original data points to 240 synthetic values, resulting 
in a final sample size of 264 patients for the minority group. A 
maximum of 10 nearest neighbors was selected to minimize bias. 
Finally, of the 755 patients who completed recovery at HaH 
successfully, 264 were randomly selected for the study to balance the 
groups. The dataset used for analysis consisted of 528 patients (rows) 
and five input variables (columns) representing biomarkers: IL-6, 
Hs-TnT, CRP, ferritin, and D-dimer.

2.3.3 Machine learning algorithms
A model-blind test set was created to apply classification 

algorithms, which is separate from the training and cross-validation 
sets. To minimize bias in the test set selection, the data was randomly 
shuffled. A total of 20% of the data were set aside as a blind test set, 
while 80% of the data were used to perform K-Fold Cross-validation 
(KCV) with five folds. Cross-validation was used as a strategy to 
reduce data overfitting.

Hyperparameter optimization during the KCV process was 
performed to select the parameters to achieve the highest possible 
accuracy. As a binary classification problem, typical algorithms used 
for this purpose included logistic regression and the SVM. Additionally, 
LDA, bagged trees, KNN, and Naïve Bayes were implemented, 
although these also accommodate multiclass classification problems. 
To evaluate the performance of each algorithm, the accuracy ± 
standard deviation of accuracy across the five folds was calculated. The 
majority of suitable algorithm for the data was then used to classify 
the blind test set. The following metrics were calculated to evaluate the 
performance of the best algorithm: accuracy, sensitivity, specificity, F1 
score, and MCC.
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The software MATLAB version 23.2.0.2485118 (R2023b), Natick, 
Massachusetts: The MathWorks Inc.; 2023, has been used to 
implement the algorithms with the Classification Learner App.

3 Results

Figure 1 shows the distribution of patients who went to “Hospital 
Universitari Germans Trias i Pujol.” A total of 3,038 patients (Group 
A) visited “Hospital Universitari Germans Trias i Pujol” for COVID-19 
(age: 61 ± 17 years; weight: 79.9 ± 18.5 kg; BMI: 29.0 ± 10.2 kg/m−2). 
Of the 3,038 patients, 199 of them (Group B) did not require 
hospitalization and were directed straight to HaH (age: 56 ± 17 years; 
weight: 69.5 ± 14.8 kg; BMI: 25.2 ± 4.9 kg/m−2), whereas 2,839 (Group 
C) required conventional hospitalization. Among the patients needing 
conventional hospitalization, 871 (Group D) were referred to HaH to 
complete their recovery (age: 59 ± 15 years; weight: 81.5 ± 18.5 kg; 
BMI: 29.3 ± 9.2 kg/m−2), while 1,669 of them (Group E) were 
discharged directly from conventional hospitalization (age: 
61 ± 17 years; Weight: 80.2 ± 18.3 kg; BMI: 29.1 ± 10.3 kg/m−2). 
Unfortunately, 299 patients (Group F) died during conventional 
hospitalization (age: 75 ± 12 years; weight: 76.3 ± 19.1 kg; BMI: 
28.8 ± 12.6 kg/m−2). Finally, among the 871 patients transferred to 
HaH to complete their recovery, 840 of them (Group D1) reported no 
complications during recovery (age: 60 ± 15 years; weight: 
82.0 ± 18.7 kg; BMI: 29.4 ± 9.3 kg/m−2), while 31 of them (Group D2) 
required readmission to HaH (age: 71 ± 15 years; weight: 
72.2 ± 12.5 kg; BMI: 27.2 ± 4.6 kg/m−2). A red square is used to 
visualize the groups analyzed in this study.

Blood biomarkers (IL-6, Hs-TnT, CRP, ferritin, and D-dimer) 
were collected on the first day of conventional hospitalization and 
immediately before referral to HaH, involving a total of 871 patients. 
Among these, 31 patients from HaH were readmitted to conventional 
hospitalization, with a readmission duration of 7 ± 6 days, while the 
total number of patients discharged from HaH was 840.

3.1 Descriptive analysis of previous 
patients’ conditions

Table  1 shows the descriptive analysis of prior pathologies 
experienced by all COVID-19 patients (Group A), as well as 
individual analyses for Groups D and E. It also includes a descriptive 
analysis of subgroup D regarding prior pathologies in Groups D1 and 
D2. Furthermore, the Chi-Square test results, including the statistic 
χ2 and the significance p-value, are displayed for the comparison of 
prior pathologies between Groups D and E and between Groups D1 
and D2. Group A (all COVID-19) consists of patients who visited 
HUGTiP for COVID-19; Group D includes patients referred to HaH 
after conventional hospitalization for COVID-19; Group E comprises 
patients directly discharged from conventional hospitalization 
following treatment for COVID-19; Group D1 (non-readmitted) 
refers to patients from HUGTiP who were sent to HaH after 
conventional hospitalization and successfully completed their 
recovery; Group D2 (readmitted) refers to patients from HUGTiP 
who were referred to HaH after conventional hospitalization and 
required readmission to conventional care.

The majority of common causes of readmission to conventional 
hospitalization in D2 groups included fever (N = 5, 16.13%), dyspnea 
(N = 13, 41.94%), worsening respiratory conditions (N = 4, 12.90%), 
COVID-19 pneumonia (N = 5, 16.13%), and worsening of general 
conditions (N = 8, 25.81%).

3.2 Differences in blood biomarkers 
between the first day of conventional 
hospitalization and the first day of HaH

Figure 2 shows the boxplot representation of blood biomarker 
values on the first day of conventional hospitalization and the first 
day of HaH for (a) D1 and (b) D2 groups. In each box, the center 
mark indicates the median, while the bottom and top ends represent 

FIGURE 1

Distribution of COVID-19 patients admitted to the Hospital Universitari Germans Trias i Pujol.
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the 25th and 75th percentiles, respectively. Whiskers extend to the 
most extreme data points that are not considered outliers. The blue 
line represents the mean values at each moment. Outliers are not 
shown for visualization purposes.

Table 2 shows the description of the IL-6, Hs-TnT, CRP, ferritin, 
and D-dimer variables on the first day of conventional hospitalization 
(H) and the first day of HaH, divided according to non-readmitted 
(D1) and readmitted (D2) patients. In addition, the statistic of W of 
the Wilcoxon test for non-parametric related samples and the 
statistical significance of the test are also represented.

3.3 Inter-subject differentiation in blood 
biomarkers

Figure  3 shows a boxplot comparing the IL-6, Hs-TnT, CRP, 
ferritin, and D-dimer variables between non-readmitted (D1) and 
readmitted (D2) patients prior to their HaH admission. The central 
line of the box represents the median of the variables, while the lower 
and upper lines indicate the lower and upper quartiles, respectively. 
The extreme lines denote the minimum and maximum values that are 
not considered outliers. Outliers are excluded for clarity. The blue line 
illustrates the mean values for each group.

Table 3 provides descriptions of the IL-6, Hs-TnT, CRP, ferritin, and 
D-dimer variables, categorized by non-readmitted (D1) and readmitted 

(D2) patients. Additionally, the results of the Mann–Whitney U test 
and the statistical significance of the analyses are also included.

3.4 Data augmentation

Figure 4 shows the results of data augmentation using the SMOTE 
process for all the biomarkers analyzed (IL-6, Hs-TnT, CRP, ferritin, and 
D-dimer) in the implementation of the machine learning classification 
algorithms. The red dots indicate the original values from patients who 
returned to conventional hospitalization after being discharged to HaH, 
while the blue circles represent the synthetic data generated.

Table 4 shows the descriptive and statistical analysis of the original 
data compared to SMOTE + the original data for all the biomarkers 
used (IL-6, Hs-TnT, CRP, ferritin, and D-dimer), showing no 
significant differences (p > 0.05) between the two groups.

3.5 Machine learning algorithms 
classification results

Table 5 shows the accuracy, misclassification cost, and the AUC 
obtained during the 5-fold cross-validation process for the multiple 
algorithms tested (bagged trees, KNN, LDA, logistic regression, Naïve 
Bayes, and the SVM).

TABLE 1 Percentage of patients with previous pathologies who visited “Hospital Universitari Germans Trias i Pujol” due to COVID-19.

Group A
N = 3,038

(%)

D
N = 871

(%)

E
N = 1,669

(%)

χ2 p

Asthma 7.4 7.1 7.5 0.155 0.694

Diabetes I 1.1 1 1.1 0.058 0.810

Diabetes II 30.7 29.3 30.1 0.176 0.675

Arterial Hypertension 43.5 42.9 41.9 0.262 0.608

COPD 10.7 10.2 9.8 0.098 0.754

Obesity 43.2 45.4 44.2 0.329 0.566

Ischemic cardiopathy 18.9 17.3 17.9 0.131 0.717

Heart failure 9.4 5.5 10.0 14.925 <0.001

Dyslipidemia 51.5 51.9 49.4 1.458 0.227

Renal insufficiency 16.1 11.7 16.3 9.588 0.002

Group A
N = 3,038

(%)

D1
N = 840

(%)

D2
N = 31

(%)
χ2 p

Asthma 7.4 7.14 6.45 0.022 0.883

Diabetes I 1.1 0.95 3.23 1.511 0.219

Diabetes II 30.7 28.33 54.84 10.144 0.001

Arterial hypertension 43.5 42.14 64.52 6.108 0.013

COPD 10.7 9.64 25.81 8.514 0.004

Obesity 43.2 45.48 41.94 0.151 0.697

Ischemic cardiopathy 18.9 16.79 32.26 4.994 0.025

Heart failure 9.4 4.76 25.81 25.427 <0.001

Dyslipidemia 51.5 50.95 77.42 8.389 0.004

Renal insufficiency 16.1 10.71 38.71 22.662 <0.001

In addition, the results of the Chi-Square statistical test and the statistic χ2 compare the pathologies of patients between groups D and E, as well as between groups D1 and D2.
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Figure 5 shows the mean accuracy values obtained through the 5-fold 
cross-validation process, along with the standard deviation for the 
algorithms that achieved a mean accuracy above 80%. The SVM produced 
the best results; therefore, it is used to classify new blind-test data.

Figure 6 shows the classification metrics for the blind test data using 
the previously trained SVM model. It shows the confusion matrix along 
with the accuracy, sensitivity, specificity, F1 score, and MCC achieved.

4 Discussion

During the COVID-19 pandemic, some patients with COVID-19 
pneumonia who were in conventional hospitalization were transferred 
to HaH to free up beds for more critically ill patients. Although the 
majority of patients (840) successfully completed their treatment in 
HaH, 31 of them required readmission to conventional hospitalization 

FIGURE 2

Boxplot representation of the variables IL6, Hs-TnT, CRP, Ferritin and DDIMER the first day of conventional hospitalization and the first day of hospital at 
home for (a) D1 group and (b) D2 group.
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after failing their treatment (Figure  1). According to published 
literature on COVID-19, patients readmitted to conventional 
hospitalization had a higher average age than compared to those who 
successfully completed HaH without readmission.

This study evaluated the differences in blood biomarkers between 
patients who were readmitted to conventional hospitalization (D2) 
and those who recovered successfully in HaH (D1).

The patients transferred to HaH had significantly more 
comorbidities, as reflected in Table 1, including a higher prevalence of 
underlying cardiorespiratory pathology (p < 0.001) and renal failure 
(p < 0.01). Consequently, they required medical management for all 
their pathologies in addition to hospitalization for COVID-19 
pneumonia. Consequently, we can state that the patients directed to 
HaH represented a high-complexity subgroup with an extended 
average length of stay forecast. Many of the pathologies affecting our 
patients have been correlated with high mortality rates in extensive 
studies on COVID-19. Generally, patients with pre-existing conditions 
are more likely to fail the home hospitalization process (Table 1). 
Conditions such as Diabetes II, COPD, and dyslipidemia (p < 0.01), 
as well as arterial hypertension, ischemic cardiopathy (p < 0.05), and 
heart failure and renal insufficiency (p < 0.000), were more prevalent 
among patients who failed HaH compared to those who successfully 
completed the process. Given that a confounding variable is a factor 
that interferes with the relationship between the independent and 
dependent variables in a study, these comorbidities may act as 

potential confounders. After this analysis, we believe that part of the 
clinical criteria mentioned in section 2.2 and the different 
comorbidities that were statistically significant should be considered 
in future admissions of patients to HaH due to COVID-19. 
Furthermore, if comorbidities are integrated into the algorithms, the 
validation of the selected biomarker package would not be possible 
since the algorithms would not classify solely based on these variables 
but by incorporating additional factors. Asthma, obesity, and diabetes 
did not significantly influence the recovery process (p > 0.05). Overall, 
the results show that people readmitted to conventional hospitalization 
exhibited a more complex clinical history.

To ensure patient safety during admission to the HaH for the 
majority of critical cases (such as respiratory failure requiring oxygen 
at home), the use of telemedicine was proposed through a telemedicine 
platform and an app for two-way interaction between the healthcare 
team and the patient-caregiver. In addition to medical and nursing 
visits, telephone monitoring, and complementary tests, all COVID-19 
patients were monitored for temperature and provided with a pulse 
oximeter to monitor oxygen saturation.

Regarding other possible confounding variables, the authors 
found no statistically significant differences in sex. In the D1 group, 
there were 326 (38.81%) women and 514 (61.19%) men; in the D2 
group, there were 10 (32.26%) women and 21 (67.74%) men, with a 
χ = 0.542 and p = 0.462. Length of hospital stay, which had a 
non-normal distribution, showed statistical significance (U = −3.231 

TABLE 2 Description of the IL-6, Hs-TnT, CRP, ferritin, and D-dimer variables.

Descriptive W p

D1

H HaH

IL-6 39.17 (55.62)

(0.42–1,632)

16.04 (43.21)

(0.37–1,632)
−10.360 <0.001

Hs-TnT 6 (10.8)

(0–3342.7)

3.6 (6)

(0–917.7)
−14.583 <0.001

CRP 78.8 (107.7)

(0.3–666.4)

17.4 (51.1)

(0.3–466.2)
−17.538 <0.001

Ferritin 548.1 (792)

(12–12,148)

530 (673)

(16–12,148)
−2.963 0.003

D-DIMER 712 (777)

(59–131,129)

705 (826)

(59–16,397)
−1.588 0.112

D2

H HaH

IL-6 24.8 (26.68)

(1.51–139.43)

18.01 (42.07)

(0.4–1425.79)
−1.013 0.311

Hs-TnT 10.3 (15.23)

(1.4–60)

10.25 (24.28)

(1.4–86.8)
0.000 1.000

CRP 44.6 (58.25)

(7.5–281.1)

43.9 (50.6)

(1.2–131.1)
−1.232 0.218

Ferritin 405.5 (619.85)

(26–4,470)

439.5 (713.48)

(26–4,470)
2.045 0.041

D-dimer 690 (946)

(249–4,645)

695.5 (792)

(186–4,645)
−0.622 0.534

In addition, the Wilcoxon statistic (W) and the statistical significance are also shown. The variables that are not normally distributed are shown as the median (interquartile range, IQR) and 
minimum-maximum values. Normally distributed variables are represented as the mean ± SD with a 95% CI (lower bound–upper bound).
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and p = 0.001), with a value of 10 (5) (5–21) for the D1 group and 7 
(6) (1–18) for the D2 group. Biomarker values were collected just 
before admission to HaH, and the values of the variables on the first 
day of conventional hospitalization were not included to minimize the 
impact of hospitalization on these values. Regarding age, statistical 
significance was obtained (F = 18.92 and p < 0.001), with a normally 
distributed value of 64 ± 11 (60–68) for the D1 group and 71 ± 14 
(66–76) for the D2 group. Studies on COVID-19 patients from various 
countries highlight the significant impact of age on mortality, 
identifying critical thresholds for ages over 50 years and especially 
over 60 years (19). Accordingly, when separating by age groups, 
we found the following: (1) patients under 50 years: 227 (27.02%) 

patients in D1 and 2 (6.45%) patients in D2 with a p = 0.011; (2) 
patients between 50 and 60 years: 201 (23.93%) patients in D1 and 3 
(9.68%) patients in D2 with a p = 0.066; (3) patients between 61 and 
70 years: 196 patients (23.33%) in D1 and six patients (19.35%) in D2 
with a p = 0.606; (4) patients between 71 and 80 years: 155 patients 
(18.45%) in D1 and 14 patients (45.16%) in D2 with a p < 0.001; and 
(5) patients >80 years: 61 patients (7.26%) in D1 and six patients 
(19.35%) in D2 with a p = 0.013. Therefore, we found that patients 
returning to conventional hospitalization after HaH were statistically 
older than those who completed their treatment in HaH.

Biomarker values vary with age (20–23). Particularly, we found 
statistically significant correlations between age and IL-6 (ρ = 0.097), 
Hs-TnT (ρ = 0.374), and D-dimer (ρ = 0.164), with a p-value of 
<0.001. However, the correlation coefficient is less than 0.5 for all the 
biomarkers, meaning that age could not be  considered as a 
confounding variable. Moreover, although not directly, age is already 
incorporated into the algorithm. Incorporating correlated variables in 
machine learning algorithms reduces classification metrics (24, 25) 
while introducing redundancy, which does not contribute additional 
knowledge to the algorithm but increases model complexity. 
Furthermore, removing correlated features enhances generalization 
capacity. For this reason, age has been excluded from the algorithm. 
Moreover, the study aims to validate, using machine learning 
techniques, the usefulness of a set of biomarkers without accounting 
for other variables.

For all these reasons, we thought it was convenient to look for 
markers that would allow us to identify patients who required hospital 
readmission. According to Bhattacharyya et  al. (26), the selected 
package of biomarkers is categorized as predictive, as the goal is to 
determine the treatment response (transitioning from conventional 
hospitalization to HaH) while the disease (COVID-19) remains 
present. Surprisingly, given the patient’s profile and using only the 
standard selection criteria, the results were very good. However, 

FIGURE 3

Boxplot representation of the variables IL-6, Hs-TnT, CRP, ferritin, and D-dimer at HaH for non-readmitted (D1) and readmitted (D2) patients.

TABLE 3 Description of IL-6, Hs-TnT, CRP, ferritin, and D-dimer.

Descriptive

D1 (Non-
readmitted)

D2 
(Readmitted)

U p

IL-6 16.04 (43.21)

(0.37–1,632)

18.01 (42.07)

(0.4–1425.79)
−0.182 0.856

Hs-TnT 3.6 (6)

(0–917.7)

10.25 (24.28)

(1.4–86.8)
4.035 <0.001

CRP 17.4 (51.1)

(0.3–466.2)

43.9 (50.6)

(1.2–131.1)
1.965 0.049

Ferritin 530 (673)

(16–12,148)

439.5 (713.48)

(26–4,470)
−0.801 0.423

D-dimer
705 (826)

(59–16,397)

695.5 (792)

(186–4,645)
0.707 0.479

In addition, the Mann–Whitney U statistic and its statistical significance are also included. 
Non-normally distributed variables are indicated as median statistics (interquartile range, 
IQR), along with minimum and maximum values. Normally distributed variables are 
expressed as mean ± SD with a 95% CI (lower bound–upper bound).
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despite this, a percentage of patients were readmitted to 
conventional hospitalization.

We selected five markers clearly related to the mortality and 
severity of COVID-19 that were not included in the initial discharge 
protocols to determine whether we could successfully identify patients 
who were candidates for transfer to the HaH.

Regarding the results shown in Figure  2 and Table  2, it is 
important to note that patients who did not require readmission to 
conventional hospitalization (D1) exhibited greater changes in the 

analyzed blood biomarkers, with significant differences observed in 
IL-6, Hs-TnT, CRP (p < 0.000), and ferritin (p < 0.01). However, no 
significant differences are found in blood biomarkers between the first 
day of conventional hospitalization and the first day of HaH for 
patients who needed readmission to conventional hospitalization 
(D2), particularly with respect to Hs-TnT, where the significance (P) 
is 1. Therefore, it is crucial to evaluate the patient’s evolution rather 
than focus solely on the blood biomarker values at the end of 
conventional hospitalization. Moreover, although protocols were 
accurate for the majority of patients, complex cases (such as those 
referred to HaH) require thorough evaluation, and protocols must 
be tailored to each individual.

With respect to the results obtained from differentiating between 
groups D1 and D2 in blood biomarkers (Figure 3; Table 3), the Mann–
Whitney U statistical test was conducted to evaluate differences in 
blood biomarkers (IL-6, Hs-TnT, CRP, ferritin, and D-dimer) between 
D1 (non-readmitted) and D2 (readmitted) patients. The results 

FIGURE 4

Results of data augmentation for patients returning to conventional hospitalization from HaH. Red dots represent original data values, while blue circles 
indicate the synthetic data created.

TABLE 4 Description of IL-6, Hs-TnT, CRP, ferritin, and D-dimer for both 
the original data and the SMOTE + Original data.

Descriptive U p

D2

Original 
data

SMOTE + Original 
data

IL-6 18.01 (42.07)

(0.4–1425.79)

20.50 (32.64)

(0.4–1425.79)
0.409 0.682

Hs-TnT 10.25 (24.28)

(1.4–86.8)

17.54 (25.93)

(1.4–86.8)
1.677 0.094

CRP 43.9 (50.6)

(1.2–131.1)

41.58 (37.29)

(1.2–131.1)
−0.036 0.971

Ferritin 439.5 

(713.48)

(26–4,470)

321.25 (496.95)

(26–4,470)
−0.864 0.387

D-dimer 695.5 (792)

(186–4,645)

690.13 (494.56)

(186–4,645)
−0.514 0.607

In addition, the U of Mann–Whitney statistic and its statistical significance are included. The 
variables that are non-normally distributed are represented as the median statistic 
(interquartile range, IQR), along with minimum and maximum values.

TABLE 5 Accuracy, misclassification cost, and the AUC obtained during 
the 5-fold cross-validation process for the tested models (bagged trees, 
KNN, LDA, logistic regression, Naïve Bayes, and the SVM).

Model Accuracy Misclassification 
cost

AUC

Bagged trees 85.3 62 0.93

KNN 84.4 66 0.84

LDA 71.1 122 0.73

Logistic 

regression

73.7 111 0.75

Naïve Bayes 78.2 92 0.82

SVM 86.7 56 0.91
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indicated statistical differences in Hs-TnT and CRP (p < 0.05). This 
finding reveals that patients who were readmitted to conventional 
hospitalization had higher levels of Hs-TnT compared to those who 
did not require readmission, suggesting that the cardiac muscle of 
readmitted patients was more damaged than that of 
non-readmitted patients.

The HaH unit gained importance during the COVID-19 
pandemic, particularly at a time when there were not enough beds 
available to accommodate patients. This situation marked an inflection 
point for the HaH unit, which has continued to grow in significance 
since then. Although the vast majority of patients (96.44%) recover 
successfully in the HaH unit, 3.56% of patients needed to 
be  readmitted to conventional hospitalization. This indicates that 
while clinical protocols were effective, a small percentage still did not 
succeed. For this reason, it is important to develop tools to assist 
clinicians in their decision-making, such as determining whether it is 
appropriate to discharge a patient from conventional hospitalization 
to the HaH unit.

One limitation of clinical studies is the low availability of data, as 
seen in this study, which includes only 24 cases from the minority 
group for analysis. On the one hand, this reflects the accuracy of 
clinical protocols. On the other hand, to address the issue of 
unbalanced and scarce data, it is necessary to apply data augmentation 
techniques to improve the accuracy and training of the algorithm. The 

SMOTE algorithm for data augmentation has been used to increase 
the balance between the group discharged from conventional 
hospitalization to HaH and successfully completed recovery, as well as 
the group that required readmission to conventional hospitalization. 
The drawback of applying these types of algorithms is that if there are 
biases in the data, the algorithm will also generate synthetic points 
near those biased values, further exacerbating the bias. To address 
such situations, instead of using the default five neighbors, we selected 
10 nearest neighbors when generating new data points from the 24 
samples in the minority group (those requiring readmission from 
HaH to conventional hospitalization). This adjustment aimed to 
minimize bias as much as possible. Data visualization helps analyze 
the synthetic samples to ensure their validity and that they fall within 
the feature range of the minority class (27). According to the results of 
the data augmentation algorithm shown in Figure 4, where red points 
represent real data and blue points denote synthetic samples, it has 
been proven that the data augmentation algorithm is effective, as all 
synthetic data created is close to the real samples. In addition, Table 4 
shows no statistically significant differences between the original data 
and the SMOTE + Original data, proving that the generated data 
remains consistent with the original D2 dataset. In addition, when 
considering 10 neighbors, the influence of outer values is reduced.

The algorithm has successfully increased the sample size from the 
original 24 samples to 240 synthetic points, resulting in a final sample 
size of 264 for the minority group. From the 755 patients in the 
majority group (patients who were discharged to HaH from 
conventional hospitalization and completed recovery successfully), 
we  randomly selected 264 to train the algorithm (≈ 35% of the 
dataset). Therefore, the final size of the dataset for the algorithm 
comprises 528 samples and five features or biomarkers (IL-6, Hs-TnT, 
CRP, ferritin, and D-dimer).

We implemented a model-blind test set strategy by partitioning 
the data into 80% for training and 20% for testing. For the 80% 
allocated for training, we utilized K-Fold cross-validation with five 
folds. K-Fold cross-validation ensures that the model is evaluated on 
data it has not encountered during training in each fold. This approach 
prevents the model from being evaluated solely on the training data, 
which could result in overly optimistic performance estimates. 
Furthermore, cross-validation is commonly used for hyperparameter 

FIGURE 5

Mean and standard deviation obtained from the 5-fold cross-validation process for the algorithms with an accuracy above 80% (bagged trees, KNN, 
and the SVM).

FIGURE 6

Classification metrics for the blind test data using the SVM-trained 
model, along with the confusion matrix showing accuracy, 
sensitivity, specificity, F1 score, and MCC obtained.
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tuning. Evaluating the model across multiple splits helps establish 
parameters that generalize well, thus minimizing the risk of overfitting 
to specific datasets or configurations (27). Various algorithms (bagged 
trees, KNN, LDA, logistic regression, Naïve Bayes, and the SVM) have 
been optimized, trained, and tested to determine which algorithm is 
best suited for our application.

Table 5 shows the accuracy, misclassification cost, and the AUC 
obtained during the 5-fold cross-validation process for the multiple 
methods tested. As shown in Table 5 and Figure 5, bagged trees, 
KNN, and the SVM are the only algorithms that achieve an accuracy 
exceeding 80%. Furthermore, the misclassification costs—
interpreted as penalties for classification errors—are 62, 66, and 56, 
respectively (28). The two algorithms with the area under the curve 
(AUC) greater than 90% are bagged trees and the SVM (92.3 and 
91.5, respectively). In addition, the literature suggests that the SVM 
is among the best-performing algorithms in the medical field (29–
31). As illustrated in Figure 5, bagged trees, KNN, and the SVM 
achieved a mean accuracy above 80% across the five folds. The 
standard deviation is also shown to ensure consistent training. In 
all three algorithms, the standard deviation of accuracy is low, 
indicating consistency. However, the SVM shows the best metrics, 
with the highest accuracy and the highest upper and lower bounds. 
For these reasons, the SVM has been chosen as the most appropriate 
algorithm to evaluate the blind test set data given the trained model. 
As depicted in Figure  6, various metrics have been obtained to 
assess the trained SVM model on the blind test data (accuracy, 
sensitivity, specificity, F1 score, and MCC). For visualization, the 
confusion matrix is also included. Utilizing metrics sensitive to 
imbalanced data, such as sensitivity and F1 score, provides a deeper 
understanding of model performance than accuracy alone, which 
can be misleading in imbalanced datasets (17).

Among the metrics used to evaluate the performance of different 
models, we particularly focus on sensitivity, which emphasizes the 

capacity to evaluate positive instances, specifically patients who will 
require readmission to conventional hospitalization, and scored a 
value of ≈85%.

The MCC, a specific case of the Pearson Correlation Coefficient 
(32), can be  evaluated according to the criteria of the Pearson 
Correlation Coefficient, which states that a value of 70% or higher 
indicates a strong positive relationship. According to the MCC result 
obtained for the SVM (71.5%) shown in Figure 6, the MCC value, 
along with the sensitivity and accuracy values (≈ 85%), suggests that 
the SVM could be utilized to predict the readmission of COVID-19 
patients from HaH.

This study reveals that the value of the biomarker is important not 
only at the time of discharge to HaH but also in the evolution of 
patient biomarkers from the first day of conventional hospitalization. 
Furthermore, among all the biomarkers, Hs-TnT appears to be the 
most influential factor in patient readmission.

This study also addressed the issue of unbalanced datasets by 
generating effective synthetic data. In addition, it predicted which 
COVID-19 patients transitioned from conventional hospitalization to 
HaH and would require readmission to conventional hospitalization, 
using high metrics and the SVM while considering only the blood 
biomarkers registered on the first day of HaH. These results open up 
the possibility of applying classification algorithms across various 
hospital services to help clinicians make decisions.

5 Conclusion

In conclusion, Hs-TnT emerged as the most influential biomarker 
associated with readmission to conventional hospitalization in 
COVID-19 patients discharged to HaH. In addition, ML algorithms 
can serve as valuable tools to help clinicians make decisions regarding 
patient discharge. Moreover, the challenge posed by the limited 

FIGURE 7

Diagram illustrating the integration of machine learning model outcomes into clinical decision-making.
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number of cases that clinicians often encounter can be effectively 
addressed through the application of data augmentation algorithms.

6 Contribution

During the COVID-19 pandemic, particularly during the initial 
three waves, hospitals experienced an influx of ICU patients that 
overwhelmed unprepared facilities. Emergency protocols were enacted 
to relieve this strain by facilitating patient recovery at home under the 
care of HaH services. However, these protocols, formulated during that 
time, lacked criteria based on biomarker values, despite numerous 
studies demonstrating the significance of Hs-TnT as a prognostic 
biomarker. This study illustrates that troponin levels were indicative of 
failure in the HaH process, necessitating patient readmission to 
conventional hospitalization. In addition, the application of ML 
algorithms can help clinicians make decisions regarding when to 
discharge patients from conventional hospitalization to HaH. A diagram 
illustrating the integration of machine learning model outcomes into 
clinical decision-making is presented in Figure 7.

7 Limitation

The results of this manuscript arise not from an experimental 
design but from data collected during the peak of the COVID-19 
pandemic. Due to the effective implementation of emergency 
protocols, the resulting sample size is small, necessitating the use of a 
data augmentation algorithm, as discussed above. Nonetheless, these 
limitations do not diminish the significance of the results obtained.
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