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Decalcification is crucial in enhancing the diagnostic accuracy and interpretability 
of cardiac CT images, particularly in cardiovascular imaging. Calcification in the 
coronary arteries and cardiac structures can significantly impact the quality of the 
images and hinder precise diagnostics. This study introduces a novel approach, 
Hybrid Models for Decalcify Cardiac CT (HMDC), aimed at enhancing the clarity 
of cardiac CT images through effective decalcification. Decalcification is critical 
in medical imaging, especially in cardiac CT scans, where calcification can hinder 
accurate diagnostics. The proposed HMDC leverages advanced deep-learning 
techniques and traditional image-processing methods for efficient and robust 
decalcification. The experimental results demonstrate the superior performance 
of HMDC, achieving an outstanding accuracy of 97.22%, surpassing existing 
decalcification methods. The hybrid nature of the model harnesses the strengths 
of both deep learning and traditional approaches, leading to more transparent 
and more diagnostically valuable cardiac CT images. The study underscores the 
potential impact of HMDC in improving the precision and reliability of cardiac 
CT diagnostics, contributing to advancements in cardiovascular healthcare. This 
research introduces a cutting-edge solution for decalcifying cardiac CT images and 
sets the stage for further exploration and refinement of hybrid models in medical 
imaging applications. The implications of HMDC extend beyond decalcification, 
opening avenues for innovation and improvement in cardiac imaging modalities, 
ultimately benefiting patient care and diagnostic accuracy.
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1 Introduction

Cardiac Computed Tomography (CT) has revolutionized the 
landscape of cardiovascular imaging, providing clinicians with 
non-invasive and detailed insights into the anatomical intricacies 
of the heart and its vasculature. In the pursuit of accurate diagnoses 
and effective treatment planning, cardiac CT has witnessed 
remarkable advancements in technology and methodology. 
However, amidst these strides, challenges persist, and one such 
challenge that warrants meticulous attention is the impact of 
calcification on cardiac CT images (1, 2). Calcification, the 
deposition of calcium in tissues, introduces complexities in image 
interpretation, compromising the clarity and accuracy of cardiac 
CT scans. The clinical significance of accurately visualizing 
coronary arteries, heart valves, and myocardial structures must 
be balanced, making effective decalcification paramount. This study 
unravels the multifaceted importance of decalcification in cardiac 
CT imaging, illuminating its role in elevating diagnostic precision, 
optimizing treatment strategies, and ultimately improving patient 
outcomes. Cardiac CT imaging has become a cornerstone of 
cardiovascular diagnostics, offering a comprehensive view of 
cardiac anatomy and pathology (3). The ability to visualize coronary 
arteries, assess cardiac function, and detect abnormalities without 
invasive procedures has positioned cardiac CT as an invaluable tool 
in contemporary cardiology. However, the clinical utility of cardiac 
CT is contingent on the quality and clarity of the acquired images 
(4). Despite its strengths, cardiac CT encounters challenges 
associated with calcification, particularly in patients with 
atherosclerotic disease. Calcific plaques can distort images, 
mimicking or obscuring pathological conditions. This introduces a 
diagnostic conundrum, emphasizing the critical need for effective 
decalcification strategies to unveil the actual state of the cardiac 
structures (5).

1.1 Challenges posed by calcification in 
cardiac CT imaging

1.1.1 Image artifacts and distortions
The deposition of calcium within coronary arteries and cardiac 

tissues gives rise to artifacts that can compromise the accuracy of 
diagnostic interpretations. Figure  1 shows the cardiac CT image. 
These artifacts manifest as streaks or shadows, obscuring adjacent 
structures and impeding the delineation of subtle abnormalities.

1.1.2 Misinterpretation and false diagnoses
Calcification can mimic pathological conditions or mask the 

presence of actual abnormalities. This creates a risk of misdiagnosis, 
leading to inappropriate interventions or overlooking significant 
cardiac issues. The impact of misinterpretation is particularly 
pronounced in coronary artery disease (CAD) assessment cases.

1.1.3 Treatment planning challenges
In cases where intervention or surgery is warranted, accurate 

visualization of the coronary anatomy is imperative for optimal 
treatment planning. Calcification poses challenges by obscuring the 
extent of stenosis, potentially influencing the choice of interventions, 
such as angioplasty or stent placement.

Deep learning models are pivotal in cardiac CT imaging, offering 
unprecedented advancements in interpreting and analyzing complex 
medical data (6, 7). The intricate anatomical structures of the heart 
and its vasculature demand precise and accurate assessments, and 
deep learning models excel in meeting these challenges. One of the 
critical contributions lies in their ability to automatically extract 
intricate patterns and features from cardiac CT images, enabling a 
level of image analysis that was previously unattainable. Specifically, 
models like CNNs showcase remarkable proficiency in identifying 
subtle abnormalities, such as calcifications or arterial stenosis, 
providing clinicians with a detailed and nuanced understanding of 
cardiovascular health (8).

In cardiac CT, where image clarity is paramount, deep learning 
models have demonstrated their prowess in mitigating the impact of 
artifacts caused by calcification. These models excel at automated 
feature extraction, discerning relevant details from the noise of 
complex medical images. This enhances diagnostic accuracy and 
contributes to a more comprehensive assessment of cardiac conditions. 
The application of deep learning in cardiac CT extends beyond mere 
image recognition; it encompasses tasks like risk prediction, disease 
prognosis, and treatment planning. These models adapt to diverse 
patient populations by learning from extensive datasets, contributing 
to personalized and more effective healthcare strategies (9, 10).

Moreover, the transformative impact of deep learning is evident 
in its ability to streamline workflows and reduce the burden on 
healthcare professionals. Automated segmentation of cardiac 
structures, identification of anomalies, and even predicting 
cardiovascular events are becoming integral components of deep 
learning applications. The efficiency gains translate into quicker 
diagnoses, more informed decision-making, and improved patient 
outcomes (11, 12). As cardiac CT continues to evolve, deep learning 
models are invaluable assets, pushing the boundaries of what is 
achievable in medical imaging. Their adaptability, capacity to handle 
large datasets, and ability to uncover intricate details make them 
indispensable tools for advancing our understanding of cardiovascular 

FIGURE 1

Cardiac CT image illustrating the impact of calcium buildup in the 
coronary arteries. The resulting artifacts, such as streaks and 
shadows, interfere with the visualization of nearby structures and 
complicate the detection of subtle cardiac abnormalities.
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health. The importance of deep learning models in cardiac CT images 
lies in their immediate contributions to diagnostics and their potential 
to redefine the landscape of cardiovascular healthcare, fostering a new 
era of precision, efficiency, and personalized medicine (13, 14).

The primary objective of decalcification is to mitigate the impact 
of calcific artifacts, allowing for more precise and more accurate 
visualization of cardiac structures. This, in turn, enhances diagnostic 
accuracy by reducing the risk of misinterpretation and false diagnoses. 
Decalcification is especially critical in assessing CAD (15). Accurate 
measurement of stenosis severity and identification of vulnerable 
plaques require a clear view of the coronary vessels, which effective 
decalcification enables. Decalcification contributes to more accurate 
follow-up monitoring of patients with known cardiac conditions. This 
allows for precisely tracking disease progression or regression, 
informing timely treatment plan and intervention adjustments. 
Chemical methods involve using acids or chelating agents to dissolve 
calcium deposits. While effective, these methods require careful 
optimization to prevent tissue damage and ensure the preservation of 
the underlying structures. Modern image processing algorithms 
leverage computational techniques to identify and mitigate calcific 
artifacts in CT images. These algorithms often work with machine 
learning models, learning from large datasets to enhance their efficacy. 
Hybrid approaches integrate deep learning methodologies with 
traditional image processing techniques, such as the Hybrid Models 
for Decalcify Cardiac CT (HMDC) proposed in this study. Combining 
both approaches’ strengths, hybrid models aim to achieve superior 
decalcification outcomes. The proposed HMDC represents a paradigm 
shift in addressing the challenges posed by calcification in cardiac CT 
imaging. By integrating deep learning techniques with traditional 
image processing methods, HMDC aims to harness the strengths of 
each approach, offering a synergistic solution for efficient and robust 
decalcification. Deep learning, particularly CNNs, has demonstrated 
remarkable capabilities in image analysis tasks. In the context of 
decalcification, CNNs can learn intricate patterns and features 
associated with calcific artifacts, enabling precise identification and 
mitigation. Traditional image processing methods, including filtering 
and segmentation algorithms, have effectively addressed certain 
artifacts. These methods complement deep learning by providing 
robust preprocessing steps and refining the neural network output.

2 Related works

Using the coronary artery calcium (CAC) score CT is among the 
most typical ways to diagnose CAD. Only some diagnosis techniques, 
which involve CT scans of the coronary arteries to determine calcium 
scores, are time-consuming since each CT picture must be reviewed 
by hand to ensure it falls within the correct range presented (16). 
Using 1,200 CT pictures of healthy cardiovascular systems and 
another 1,200 images of systems with calcium, this research applies 
three CNN models. As part of their experimental test, they divided the 
CT image data into three types: original CAC score images, which 
included the entire rib cage; cardiac segmented images, which isolated 
the heart region; and cardiac cropped images, which were generated 
from the segmented and enlarged cardiac images. Using the ResNet 
50 model with cardiac cropped image data produced the best results 
in the experimental test for estimating the amount of calcium in a CT 
picture using the Inception ResNet v2, VGG, and ResNet 50 models. 

Consequently, this study expects that future studies will provide the 
path for automating the calcium assessment score for each CAC score 
CT and the essential presence of calcium. Cardiovascular CT 
blooming artifacts: a clinical presentation, causes, and possible 
remedies was the goal of this article. A comprehensive literature 
evaluation was conducted, including all pertinent studies, on calcium 
blooming and stent blooming in cardiac CT. An analysis and 
evaluation of the claims presented in the literature were conducted to 
determine the most critical elements leading to blooming artifacts and 
the most effective approaches to address them (17). Nearly thirty 
scholarly academic publications focused on blooming artefacts. 
According to studies, the main causes of blooming artefacts were the 
partial volume effect, motion artefacts, and beam hardening. Solutions 
were classified as high-resolution CT hardware, high-resolution CT 
reconstruction, subtraction approaches, and post-processing 
techniques, emphasizing deep learning (DL) approaches. The partial 
volume effect was a leading cause of blooming artefacts. Improving 
the spatial resolution of CT scans with more sophisticated high-
resolution CT hardware or reconstruction methods could reduce the 
impact of the partial volume effect. Furthermore, DL approaches 
demonstrated significant potential in addressing blooming artefacts. 
Avoiding repeated scans for subtraction methods might be achieved 
by combining these strategies. Artificial intelligence (AI) for cardiac 
CT has recently advanced to a point where it improves diagnostic and 
prognosis prediction for cardiovascular illnesses. Deep learning has 
revolutionized radiology by enabling automatic feature extraction and 
learning from large datasets, particularly in image-based applications. 
Artificial intelligence (AI) driven approaches have surpassed human 
analysts’ speeds in the quick and reproducible processing of cardiac 
CT images. More research and validation on these AI-driven methods 
of cardiac CT are needed to determine their diagnostic accuracy, 
radiation dose reduction, and clinical correctness. Artificial 
intelligence (AI) has recently made great strides in cardiac CT, with 
new capabilities such as tools to fix coronary artery motion, score 
calcium automatically, measure epicardial fat, diagnose coronary 
artery stenosis, forecast fractional flow reserve, and predict 
prognosis (18).

A discussion of the current limits of these strategies and an 
examination of potential problems are also included. Calcification in 
the CAC was an excellent indicator of potential danger to 
cardiovascular health. However, the need for AI-based solutions was 
driven by the fact that its measurement could be  laborious and 
complicated. To that end, measuring CAC volume using AI-based 
algorithms to forecast cardiovascular events automatically is presented 
(19). It also suggested how these technologies could be  used in 
therapeutic settings. Efficacy and excellent agreement with 
categorization by qualified physicians were proven in research on 
using AI for CAC scoring. So far, the potential for automation and risk 
stratification has been revealed. The problem was that studies in this 
area needed to be organized and consistent. Computer scientists and 
cardiologists might have been working together less, which might 
have been a factor. Healthcare providers, organizations, and 
institutions have collaborated to use this technology to enhance 
patient care, reduce waste, and save money. A framework is developed 
by utilizing deep CNNs (DCNN) and enhanced feature extraction for 
classifying medical data, specifically COVID-19 CT scan images (20). 
An approach incorporating an adaptive CNNs and guided image 
filtering is proposed to mitigate noise in medical images namely MRI, 
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CT, X-ray, with extensive evaluation and comparisons to existing 
techniques (21). The CAD diagnosis and risk classification is enhanced 
by using the Adaptive Gated Spatial CNN model with ultrasound 
imaging (22). The Super Resolution and alignment frameworks are 
developed for improving axial resolution in cardiac CT imaging, 
enhancing diagnostic accuracy and efficiency in CAD detection (23). 
A binary classification methodology is proposed for analyzing nailfold 
capillary images using a Sugeno fuzzy integral system integrated with 
CNNs like GoogLeNet, ResNet, and DenseNet, to detect early 
indicators of systemic sclerosis (24). The impact of comprehensive 
rehabilitation acupuncture therapy on neurological recovery in 
cerebral infarction patients and optimize CT images is analysed by 
using CNN methods to improve lesion localization accuracy (25). A 
custom 3D CNN technique with a U-Net architecture is presented to 
predict radiation doses from CT images, utilizing a ReLU function to 
eliminate negative values and a dose–volume histogram-based loss 
function for meaningful dose predictions (26).

Although polygenic risk score and CAC score have been suggested 
as potential new indicators of CHD risk, no research have directly 
compared the two in the same populations. Suppose you have a model 
that uses traditional risk variables to predict the likelihood of coronary 
heart disease (CHD). In that case, you can change the findings by 
adding a CAC score, a polygenic risk score, or both. A total of 1991 
people from 6 different US centers participated in the Multi-Ethnic 
Study of Atherosclerosis (MESA), whereas 1,217 people from 
Rotterdam, the Netherlands, participated in the Rotterdam Study 
(RS). Participants in both population-based trials ranged in age from 
45 to 79 and were of European descent; neither study reported any 
clinical cases of CHD. Traditional risk factors for cardiovascular 
disease were used to calculate the CAC score, computed tomography 
was employed to establish the CAC score, and genotyped samples 
were used to provide a validated polygenic risk score (27). This study 
assessed the model’s discrimination, calibration, and net 
reclassification improvement capabilities to predict incident CHD 
occurrences. Comparing RS with MESA, we find a median age of 67. 
Both the polygenic risk score and the log were significantly associated 
with the 10-year incidence of incident CHD in MESA. A C statistic of 
0.76 was recorded for the CAC score, whereas a C statistic of 0.69 was 
recorded for the polygenic risk score. A 0.09 change to the CAC score, 
a 0.02 change to the polygenic risk score, and a 0.10 change to both 
scores were the outcomes of including all PCEs. Overall, category net 
reorganization was not improved by including the polygenic risk score 
with the PCEs; however, the CAC score did. PCE and model 
calibration based on CAC and polygenic risk scores were adequate. 
The results remained unchanged even after dividing the population 
into subgroups based on median age. The results were comparable 
when comparing the 10-year risk of RS with the longer-term follow-up 
of MESA. In two groups of middle-aged to older adults from the 
United  States and the Netherlands, the polygenic risk score 
demonstrated better discrimination when compared to the CAC score 
for risk prediction of coronary heart disease. When paired with 
traditional risk indicators, the CAC score greatly improved coronary 
heart disease (CHD) risk classification and risk discrimination.

3 Methodology

This study presents a ground-breaking methodology termed 
Hybrid Models for Decalcify Cardiac CT (HMDC), which 

integrates a DenseNet model ensembled with a Random Forest 
model. The primary objective is to improve the clarity of cardiac CT 
images by addressing the challenges posed by calcification. 
Decalcification is a pivotal step in medical imaging, particularly in 
cardiac CT scans, where calcified artifacts impede accurate 
diagnostics. The innovation of HMDC lies in its amalgamation of 
cutting-edge deep learning techniques, exemplified by the 
DenseNet model, with traditional image processing methods 
inherent in the Random Forest model. This hybrid approach aims 
to synergize the strengths of both methodologies, ultimately 
achieving efficient and robust decalcification for enhanced accuracy 
in cardiac CT imaging.

3.1 Data preparation

In the training dataset, CT images from 60 patients were 
incorporated, each having isotropic 0.47 mm resolution. The observed 
calcification volume was generally modest, with most instances 
comprising approximately 100 voxels. Smaller patches measuring 
24x24x24 were extracted from the original images to enhance the 
training process. This area was sampled at a frequency of 8x8x3 in 
each dimension, with a 50% overlapping rate, because the calcified 
segments were mostly located in the middle region of 120x120x48 in 
each picture. A total of 18,000 patches were produced by all 
individuals using this approach. These patches were inverted in all 
three dimensions for data augmentation. The inpainting procedure 
involved defining a 12-by-12- by-12-inch cubic box as the mask in the 
middle of each patch. The procedure of restoring the image was made 
easier and less complicated. Bones and calcification were the most 
prominent features in computed tomography angiography (CTA) 
pictures. Nevertheless, no bones were found in the core region 
according to the criteria. Using this data, calcification zones might 
be located with a 700 Hounsfield Unit (HU) cutoff. The inclusion of 
areas devoid of calcification in the training process is remarkable. The 
neural network learned and successfully reconstructed non-calcified 
portions thanks to this addition. Figure 2 shows the input image. 
While the model was being tested, patches containing calcium were 
given to her, with the mask covering the calcium. Our method 
guaranteed a calcium-free output picture that was consistent with the 
intended restoration result.

3.2 Image preprocessing

Image pre-processing is a crucial step in preparing data for deep 
learning models. Below are some common pre-processing steps can 
be  applied to the CT images are below. Architecture of proposed 
model is shown in Figure 3.

3.3 Normalization

Normalization is a preprocessing technique commonly applied to 
image data before feeding it into a machine learning model, intense 
learning models. The goal is to standardize the pixel values, making 
them more accessible for the model to process and improving the 
convergence during training. In deep learning, the standard scale is 
often defined as having a mean of 0 and a standard deviation of 1. The 
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process involves subtracting the mean value from each pixel and 
dividing the result by the standard deviation. Normalizing the pixel 
values ensures that all features have a similar scale. Having input 
characteristics that are roughly the same size improves the performance 
of many ML methods, intense learning models, therefore this is crucial. 
Because certain traits have more significant values, it helps keep them 
from dominating the learning process. Using it during neural network 
training speeds up the convergence process. When the input data is in 
a standardized format, the optimization algorithms used for training, 
such as stochastic gradient descent, are more likely to converge quickly. 
This can lead to shorter training times and more efficient learning.

If 𝑋 represents the pixel values of an image, the normalized values 
(𝑋𝑛𝑜𝑟𝑚) can be calculated using the following Equation 1:

 

( )
( )

−
=norm
X mean X

X
std X  

(1)

Where, 𝑚𝑒𝑎𝑛(𝑋) is the mean of all pixel values in the image 
and 𝑠𝑡𝑑(𝑋) is the standard deviation of all pixel values in 
the image.

3.4 Image resizing

Resizing is a common image preprocessing technique that involves 
changing the dimensions of an image. In deep learning, resizing is 
often done to ensure that all images in a dataset have a consistent size. 
This process can be essential for several reasons, including reducing 
computational complexity, maintaining uniformity in input sizes for a 
model, and facilitating efficient model training. Neural networks, 
especially CNNs, often require input images of fixed dimensions. 
Image resizing to a standard size simplifies training and inference 
computationally. It simplifies network architecture optimization and 
design by guaranteeing the model handles inputs of consistent 
dimensions. Reducing the size of photographs is essential when dealing 
with limited computing resources since it lowers the memory footprint. 

Smaller images require less memory, making it feasible to train and 
deploy models on devices with memory constraints, such as GPUs or 
mobile devices. Many deep learning models expect input data to have 
a uniform size. Resizing images to a common size ensures the model 
receives consistent input sizes during training and testing. This is 
particularly important when dealing with batch processing and 
deploying models in real-world applications where input size may not 
be fixed.

3.5 Data augmentation

Machine learning and deep learning frequently employ data 
augmentation to fictitiously expand training datasets by applying 
different data manipulations. The objective is to make the training set 
more diverse and variable so the model can better generalize to new 
data. Alteration methods frequently apply transformations such as 
rotation, flipping, and translation to picture data.

Increased Dataset Size: deep learning models, especially 
CNNs, often require large amounts of data to learn diverse features 
and patterns. Data augmentation allows artificially expanding the 
dataset, providing more examples for the model to learn from.

Generalization: augmentation introduces variability, making the 
model more robust and able to handle diverse input conditions. It 
helps prevent overfitting by exposing the model to a broader range of 
variations in the training data.

Improved Performance: augmented data can capture different 
perspectives, orientations, and conditions, improving model 
performance on real-world data exhibiting similar variations.

3.6 Histogram equalization

Histogram equalization is an image processing technique that 
enhances an image’s contrast by redistributing the intensity values. The 
method is particularly effective when dealing with images with varying 
lighting conditions or limited dynamic range. Histogram equalization 

FIGURE 2

(a) Input image illustrating a sample from the training dataset with a patch extracted for the inpainting procedure. (b) The image highlights the regions 
with calcification, where the mask was utilized to simulate missing areas for reconstruction during the training and testing phases of the model.
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works by spreading the intensity levels in the image’s histogram, resulting 
in a more balanced distribution and improved visibility of details.

Histogram equalization improves an image’s contrast by using the 
available intensity levels more effectively, ensuring that the whole 
range is utilized. Images captured under different lighting conditions 
may have varying intensity distributions. Histogram equalization 
(Equation 2) helps standardize the intensity distribution, making it 

especially useful when working with uneven-lighting images. By 
enhancing the contrast, histogram equalization can reveal details in 
an image’s dark and bright regions, making it easier for algorithms to 
detect patterns and features.

If 𝐼 represents the original image and 𝐼𝑒𝑞 represents the equalized 
image, the transformation function 𝑇.

is given by:

FIGURE 3

Overview of the image processing pipeline used in the study, including steps such as dataset import, image resizing, preprocessing, and normalization. 
The pipeline incorporates feature extraction using CNN, data augmentation, convolution with max pooling, and classification through HMDC, followed 
by evaluation of results and fully connected layers for final output.
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Where 𝑇 is the cumulative distribution function (CDF) of the 
original image’s intensity values. The transformation is applied to each 
pixel in the image.

3.7 Feature extraction

One popular and effective feature extraction model for image data 
is the CNN. Image categorization, object identification, and feature 
extraction are just a few computer vision applications where CNNs 
have proven incredibly effective.

3.7.1 Preprocessed input
CNNs are composed of layers designed to automatically and 

adaptively learn hierarchical representations from data. Important 
parts consist of fully linked, pooling, and convolutional layers. 
Convolutional layers capture the spatial patterns in the input 
pictures by applying convolutional processes. To identify 
characteristics like edges, textures, and more intricate patterns, these 
layers employ filters or kernels. Downsampling the spatial 
dimensions with pooling layers reduces computational effort without 
losing key characteristics.

3.7.2 Preprocessed input
The preprocessed input to a CNN typically includes 

normalized and resized images. Normalization ensures that pixel 
values have a consistent scale (mean of 0 and standard deviation 
of 1), which aids in training stability. Resizing ensures uniformity 
in input dimensions, allowing the CNN to process images of the 
same size.

3.7.3 Convolutional layers
Convolutional layers play a crucial role in extracting 

hierarchical features from images. Filters in the convolutional 
layers learn to detect various patterns, textures, and shapes. 
Feature maps generated by these layers highlight local patterns 
and gradually capture more abstract features as the 
network deepens.

3.7.4 Activation functions
Activation functions (e.g., ReLU - Rectified Linear Unit) introduce 

non-linearities, enabling the network to learn complex relationships 
in the data.

3.7.5 Pooling layers
Pooling layers (e.g., max pooling) reduce spatial dimensions and 

computational load while retaining essential features. They provide 
translation invariance to slight variations in input.

3.7.6 Fully connected layers
Fully connected layers at the network’s end combine extracted 

features to make final predictions. These layers may be followed by 
activation functions and, in classification tasks, a softmax layer for 
probability distribution over classes.

3.8 Proposed Hybrid Models for Decalcify 
Cardiac CT (HMDC)

The Hybrid Models for Decalcify Cardiac CT (HMDC) propose 
a novel approach to cardiac CT image analysis, combining the 
power of deep learning with the versatility of ensemble methods. 
The foundation of the HMDC lies in the utilization of DenseNet, a 
deep neural network architecture renowned for its ability to learn 
intricate hierarchical features from medical imaging data. In the 
training phase, the DenseNet model is trained on a dataset of 
cardiac CT scans, extracting high-level features that encapsulate the 
nuances of the imaging data. Following the feature extraction 
process, the HMDC incorporates a Random Forest model into the 
hybrid architecture. This ensemble learning method thrives on the 
diversity of decision trees and is particularly adept at handling 
complex, non-linear relationships within the feature space. The 
extracted features from DenseNet are fed into the Random Forest, 
allowing the model to harness the collective intelligence of both 
architectures. The primary objective of the HMDC is to address the 
task of decalcification in cardiac CT scans. The ensemble prediction 
during inference involves leveraging the knowledge gained from the 
DenseNet model and the trained Random Forest. This fusion of 
deep learning and ensemble methods aims to enhance the 
robustness and accuracy of the model’s predictions. As the project 
progresses, careful fine-tuning and optimization of the hybrid 
model become paramount. Experimentation with hyperparameters, 
the number of trees in the Random Forest, and the layers selected 
for feature extraction from DenseNet ensure that the HMDC 
achieves optimal performance. Evaluation on a dedicated validation 
set or separate dataset is crucial to validate the efficacy of this 
innovative Hybrid Model for the Decalcify Cardiac CT approach, 
paving the way for advancements in medical image analysis and 
decalcification tasks.

3.9 DenseNet model

DenseNet is known for its densely connected blocks, where each layer 
receives direct input from all preceding layers and passes its feature maps 
to all subsequent layers. This dense connectivity pattern helps in feature 
reuse and alleviates the vanishing-gradient problem. Leveraging 
pre-trained DenseNet models involves initializing the model with weights 
learned from a large dataset like ImageNet (Equation 3). The transfer of 
knowledge is represented mathematically as follows:

 ( )θθ θ= argmin ,
DenseNetDenseNet DenseNet DenseNet ImageNetD

 (3)

Where, 𝜃𝐷𝑒𝑛𝑠𝑒𝑁𝑒𝑡 represents the parameters of the DenseNet model, 
DenseNet  is the loss function associated with DenseNet, 𝒟𝐼𝑚𝑎𝑔𝑒𝑁𝑒𝑡 is 

the ImageNet dataset.

3.9.1 Dense blocks
DenseNet is composed of multiple dense blocks. Each dense block 

consists of multiple densely connected layers. The output of each layer 
in a dense block is concatenated with the feature maps of all preceding 
layers in that block.
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3.9.2 Transition blocks
Between dense blocks, transition blocks include a batch 

normalization layer, a 1×1 convolutional layer, and a pooling layer. 
This reduces the spatial dimensions of the feature maps.

3.9.3 Global average pooling (GAP)
GAP is a spatial pooling operation that computes the average 

value of each feature map across all spatial locations. After the 
last dense block, a global average pooling layer is applied to 
reduce the spatial dimensions to 1×1 (Equation 4). For DenseNet, 
this is expressed as:

 
( )

= =
=

× ∑∑
1 1

1 H W

ijki
j k

GAP x x
H W

 
(4)

Where, GAP(𝑥)𝑖 is the 𝑖-th element of the output feature vector 
after global average pooling, H and W are the height and width of the 
feature maps, respectively and 𝑥𝑖𝑗𝑘 represents the 𝑖-th element at 
position (𝑗, 𝑘) in the feature maps.

3.9.4 Fully connected layer
A fully connected layer is added for the final classification.
DenseNet offers several advantages, including parameter 

efficiency, improved feature propagation, and strong performance on 
image classification tasks. The dense connectivity within blocks 
enables the network to learn compact representations and enhances 
gradient flow during training.

3.10 Ensemble with Random Forest model

Random Forest builds a set of decision trees as part of its training 
process. At each decision tree node, we  use a randomly selected 
portion of the training data and characteristics. Random Forest has a 
lower overfitting risk compared to individual decision trees. It 
provides a good balance between bias and variance, making it robust. 
It can handle many input features and is effective in high-
dimensional spaces.

3.10.1 Feature extraction
Feature extracted by 𝐷𝑒𝑛𝑠𝑒𝑁𝑒𝑡 (∅𝐷𝑒𝑛𝑠𝑒𝑁𝑒𝑡) are used as input to a 

Random Forest classifier (Equation 5). The feature extraction 
operation can be represented as:

 ( )=∅RF DenseNet inputX X  (5)

Where, 𝑋𝑖𝑛𝑝𝑢𝑡 is the input image or batch of images, ∅𝐷𝑒𝑛𝑠𝑒𝑁𝑒𝑡 
represents the feature extraction function performed by DenseNet, 
𝑋𝑅𝐹 is the feature representation used as input to the 
Random Forest.

3.10.2 Bootstrapped sampling
During the creation of each tree, a random subset of the training 

data is sampled with replacement. This process is known as 
bootstrapped sampling.

3.10.3 Feature randomization
A decision tree considers a randomly selected collection of 

characteristics at each node to split the node.
This helps to decorrelate the trees and increase diversity in 

the ensemble.

3.10.4 Decision tree construction
The data is divided recursively according to the chosen 

characteristics to build each decision tree. This process continues until 
a stopping requirement, such as a maximum depth or minimum 
samples per leaf, is reached.

3.10.5 Voting for classification
In categorization tasks, the outcome is decided by taking a vote 

from every tree in the forest.

3.10.6 Aggregation for regression
For regression tasks, the final prediction is often the average 

(mean or median) of the predictions made by individual trees.

3.10.7 Out-of-bag (OOB) error estimation
The remaining data, which is not part of the bootstrap sample but 

necessary for training each tree, is called out-of-bag data. The model’s 
performance can be  estimated using this out-of-bag data without 
needing a separate validation set.

3.10.8 Ensemble advantage
The ensemble model combines the strengths of DenseNet’s feature 

extraction (𝑋𝑅𝐹) with the decision – making strength of a Random 
Forest. Mathematically (Equation 6), the ensemble model’s prediction 
( ênsembleY ) is a combination of DenseNet’s prediction ( ˆDenseNetY ) and 
Random Forest’s prediction ( ˆRFY ):

 ( )α α= × + − ×1ˆ ˆ ˆensemble DenseNet RFY Y Y  (6)

Where, 𝛼 is a weight parameter.
This theoretical framework outlines the integration of DenseNet 

with Random Forest for image classification. By detailing the 
feature extraction, ensemble advantage, training, and 
hyperparameter tuning processes, this approach demonstrates a 
robust methodology for leveraging the strengths of both deep 
learning and traditional machine learning in image 
classification tasks.

4 Results and discussions

The proposed tasks were implemented using Python software, 
with the Windows 10 operating system as the designated testing 
platform. The hardware configuration was characterized by a robust 
setup, featuring a processor from the AMD Ryzen series and 8GB of 
RAM. This configuration provided the necessary computational 
power and resources to successfully complete the work. To assess the 
efficiency and predictive accuracy of the models and identify the 
top-performing ones, an evaluation was conducted using various 
accuracy metrics (Equations 7–10). Mean absolute deviation (MAD), 
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root mean squared error (RMSE), mean absolute percentage error 
(MAPE), and maximum error (ME) were among these measurements. 
The following equations were used in the assessment process:
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−
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The cardiac CT Input Image is shown in Figure  4. In the 
preprocessing stage of cardiac CT image analysis, the initial step 
involves resizing the input images to a standardized dimension of 64 
pixels by 64 pixels. This resizing procedure is crucial to establishing a 
uniform and manageable input size for subsequent analysis. 
Standardizing the image dimensions not only aids in computational 
efficiency but also ensures consistency in the input data fed into the 
analytical models. A 64 by 64-pixel resolution is likely driven by a 
balance between maintaining sufficient image detail for meaningful 
analysis and minimizing computational resource requirements. By 
establishing this standardized input size, the subsequent stages of 
image processing and feature extraction can be conducted with a 

consistent and optimized foundation, facilitating robust and reliable 
cardiac CT image analysis. Resized Input Image is shown in Figure 5.

The inpainting process was applied to the cardiac CT images using 
a carefully designed inpainting mask. The inpainting mask accurately 
identified and delineated the regions of interest for reconstruction 
within the images. The reconstructed images, referred to as the 
classification images, were then subjected to a classification algorithm 
to categorize and label distinct features within the inpainted regions. 
The performance of the inpainting process and subsequent 
classification were evaluated based on quantitative metrics, such as 
accuracy, precision, and recall. The results showcase the effectiveness 
of the inpainting technique in restoring missing or damaged portions 
of the cardiac CT images, contributing to enhanced interpretability 
and diagnostic accuracy. Additionally, the classification outcomes 
provide valuable insights into the identification and characterization 
of specific anatomical structures or pathologies within the inpainted 
areas. These findings highlight the potential of the combined 
inpainting and classification approach for improving image analysis 
in cardiac imaging, with implications for diagnostic precision and 
clinical decision-making. Inpainting Mask and Classification Image is 
shown in Figure 6.

Table  1 and Figures  7, 8 realm the predictive modeling and 
regression analysis, the evaluation metrics RMSE, MAD, MAPE, and 
ME serve as critical benchmarks for assessing the performance of 
various machine learning models. This comparative analysis involves 
a cohort of diverse algorithms, each vying to optimize these metrics 
and enhance their predictive capabilities. Linear Regression, a 
fundamental model in predictive analytics, exhibits an RMSE of 4.25, 
indicating the average magnitude of errors in predictions. The MAD, 
standing at 3.5, reflects the average absolute deviation of predictions 
from the actual values. With an 8.50% MAPE, this model showcases 
the percentage-wise accuracy of predictions. The ME, measuring at 
10, denotes the arithmetic mean of prediction errors. Linear 
Regression’s performance provides a baseline for comparison.

FIGURE 4

Original cardiac CT image before preprocessing, used as the input 
for the analysis pipeline. This image undergoes resizing to 
standardize dimensions for effectual and consistent processing.

FIGURE 5

Resized cardiac CT image with dimensions of 64×64 pixels, prepared 
for further image analysis and feature extraction. This step ensures 
uniformity across the dataset for optimal processing.
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Moving to Decision Tree, the model achieves a lower RMSE of 
3.8, signaling improved accuracy in predictions compared to Linear 
Regression. The MAD stands at 3.2, indicating a reduction in 
absolute prediction deviations. The 7.20% MAPE underscores the 
model’s efficacy in percentage-wise prediction accuracy, while the 
ME of 8.5 signifies an overall reduction in prediction errors. 
Random Forest, a robust ensemble learning algorithm, exhibits an 
RMSE of 4.12, marginally surpassing Linear Regression but still 
offering a competitive performance. The MAD at 3.75 and a 9.00% 
MAPE demonstrate the model’s ability to mitigate absolute 
deviations and maintain a relatively low percentage-wise error. The 
ME of 11.2 suggests an increase in the arithmetic mean of 
prediction errors compared to the Decision Tree. Support Vector 
Machine (SVM), a powerful classifier, achieves an RMSE of 3.95, 
showcasing its proficiency in minimizing the average squared 
errors. The MAD at 3.4 signifies a reduction in the mean absolute 
deviations, while the 8.00% MAPE demonstrates a lower 
percentage-wise error. The ME of 9.8 indicates a notable reduction 
in the arithmetic mean of prediction errors, marking SVM as a 
promising contender.

Neural Network, a complex and adaptive model, presents an 
RMSE of 4.5, slightly higher than the SVM but still within a 
competitive range. The MAD at 3.9 suggests a controlled average 

absolute deviation, while the 10.20% MAPE reflects the model’s 
ability to maintain percentage-wise accuracy. The ME of 12.5 signals 
an increase in the arithmetic mean of errors compared to SVM, 
emphasizing the trade-offs in complexity and performance. 
k-Nearest Neighbors (k-NN) emerges with a low RMSE of 3.6, 
showcasing its efficiency in minimizing squared errors. The MAD 
at 3.1 and a 6.80% MAPE underscore the model’s accuracy in 
reducing absolute deviations and maintaining a low percentage-
wise error. The ME of 8 denotes a decrease in the arithmetic mean 
of prediction errors, positioning k-NN as a strong performer. 
Gradient Boosting, a sequential ensemble technique, demonstrates 
an RMSE of 4.2, indicating a competitive yet slightly higher 
performance compared to k-NN. The MAD at 3.6 and a 9.80% 
MAPE reveal the model’s adeptness in minimizing absolute 
deviations and preserving percentage-wise accuracy. The ME of 10.5 
implies a controlled increase in the arithmetic mean of 
prediction errors.

The t-test values given in the table represent the statistical 
significance of the differences in RMSE, MAD, MAPE, and ME 
between the proposed model and the other models. The t-test 
computes whether the observed differences in performance metrics 
namely RMSE, MAD, MAPE, and ME are statistically significant. A 
low p-value (typically less than 0.05) illustrates a significant difference 

FIGURE 6

Inpainting mask applied to the cardiac CT image, highlighting the regions for reconstruction. The corresponding classification image illustrates the 
restored areas, followed by the application of a classification algorithm to detect key features and pathologies within the inpainted regions.

TABLE 1 Performance evaluation of various models based on multiple metrics, comprising RMSE, MAD, MAPE, and ME.

Model RMSE MAD MAPE ME t-test 
(RMSE)

t-test 
(MAD)

t-test 
(MAPE)

t-test (ME)

Linear regression 4.25 3.5 8.50% 10 0.032 0.045 0.021 0.030

Decision tree 3.8 3.2 7.20% 8.5 0.042 0.038 0.029 0.035

Random forest 4.12 3.75 9.00% 11.2 0.030 0.050 0.047 0.039

Support vector machine 3.95 3.4 8.00% 9.8 0.025 0.041 0.033 0.029

Neural network 4.5 3.9 10.20% 12.5 0.041 0.056 0.052 0.046

k-Nearest neighbors 3.6 3.1 6.80% 8 0.027 0.048 0.039 0.035

Gradient boosting 4.2 3.6 9.80% 10.5 0.021 0.043 0.035 0.038

Proposed model 3.45 3 6.50% 7.2 – – – –

The table also presents t-test values for statistical significance across each metric, comparing the performance of the proposed model with other models.
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between the models, suggesting that the proposed model performs 
better or worse than the others in a meaningful way. The t-test allows 
for comparing the performance of the models in terms of error 
metrics, and the absence of t-test values for the proposed model 
signifies that it is the reference model against which others 
are compared.

Finally, the Proposed Model outshines its counterparts with an 
impressive RMSE of 3.45, showcasing superior accuracy in 
minimizing squared errors. The MAD at 3 signals a reduction in mean 
absolute deviations, while the remarkably low 6.50% MAPE 
underscores the model’s exceptional percentage-wise accuracy. The 
ME of 7.2 signifies a substantial reduction in the arithmetic mean of 
prediction errors, positioning the Proposed Model as a frontrunner 
in predictive accuracy. This comprehensive analysis provides a 
nuanced understanding of the strengths and weaknesses of various 
regression models. The trade-offs between complexity and 
performance are evident, with each model showcasing unique 
advantages. The Proposed Model stands out as a top performer, 
emphasizing the significance of continuous innovation in algorithmic 
development. As the field of machine learning evolves, the quest for 
more accurate and efficient predictive models remains a dynamic and 
ongoing pursuit.

In the domain of classification models in Table 2 and Figures 9, 
10, the evaluation metrics of accuracy, precision, specificity, and 
sensitivity serve as pivotal indicators of a model’s effectiveness in 
correctly classifying instances. This comprehensive analysis delves 

into the performance of various classification algorithms, each 
striving to optimize these metrics and enhance their 
discriminatory power. Logistic Regression, a fundamental 
classifier, achieves an accuracy of 91%, indicating the overall 
correctness of predictions. The precision of 88% emphasizes the 
model’s ability to correctly identify positive instances, while the 
specificity of 82% signifies its capability to accurately classify 
negative instances. With a sensitivity of 87%, Logistic Regression 
demonstrates competence in correctly identifying true positive 
instances. Random Forest, a powerful ensemble classifier, 
outperforms Logistic Regression with an accuracy of 93%. The 
precision of 94% highlights the model’s precision in positive 
predictions, while the specificity of 90% underscores its accuracy 
in negative predictions. With a sensitivity of 91%, Random Forest 
excels in correctly identifying positive instances. Support Vector 
Machine (SVM), a robust classifier, achieves an accuracy of 89%. 
The precision of 91% indicates its precision in positive predictions, 
while the specificity of 85% reflects its accuracy in negative 
predictions. The sensitivity of 89% underscores SVM’s 
effectiveness in correctly identifying true positive instances. 
Neural Network, a complex and adaptive model, attains a 
remarkable accuracy of 96%. The precision of 96% showcases the 
model’s precision in positive predictions, while the specificity of 
93% underscores its accuracy in negative predictions. With a 
sensitivity of 94%, Neural Network excels in correctly identifying 
positive instances.

FIGURE 7

Comparison of RMSE, MAD, MAPE, and ME across diverse models, highlighting the performance differences in terms of error metrics.
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The t-test values in the table indicate the statistical significance of 
the differences between the performance metrics namely Accuracy, 
Precision, Specificity, and Sensitivity of the proposed model and the 
other models. Each t-test value compares a specific model’s metric to 
the proposed model’s corresponding metric. A higher t-test value 
suggests a more significant difference between the performance of the 
model, indicating that the proposed model may outperform or 
underperform compared to the others in that metric. These values 

help to evaluate the reliability of the observed differences and provide 
insights into the comparative efficiency of the models. The absence of 
t-test values for the proposed model means it is the baseline against 
which the other models are compared.

k-Nearest Neighbors (k-NN) achieves an accuracy of 92%, 
demonstrating its efficiency in correctly classifying instances. The 
precision of 92% highlights its precision in positive predictions, while 
the specificity of 87% reflects its accuracy in negative predictions. The 

FIGURE 8

Comparison of RMSE, MAD, MAPE, and ME for different models along with t-test results, providing a statistical analysis of the significance of 
performance differences between the models.

TABLE 2 Evaluation metrics for diverse models, including accuracy, precision, specificity, and sensitivity.

Model Accuracy Precision Specificity Sensitivity t-test 
(Accuracy)

t-test 
(Precision)

t-test 
(Specificity)

t-test 
(Sensitivity)

Logistic 

regression

0.91 0.88 0.82 0.87 – – – –

Random forest 0.93 0.94 0.9 0.91 1.45 2.11 0.98 1.05

Support vector 

machine

0.89 0.91 0.85 0.89 2.23 1.30 0.65 0.95

Neural network 0.96 0.96 0.93 0.94 3.54 4.01 1.47 2.65

k-Nearest 

neighbors

0.92 0.92 0.87 0.88 0.80 0.98 1.23 0.90

Decision tree 0.95 0.93 0.89 0.9 1.12 0.97 1.05 0.99

Gradient 

boosting

0.96 0.95 0.91 0.92 2.60 3.25 1.85 2.11

Proposed model 0.97 0.97 0.92 0.93 – – – –

The table also presents t-test results to assess the statistical significance of performance differences across various models, comparing the proposed model with other models.
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FIGURE 9

Comparison of accuracy, precision, specificity, and sensitivity across various models, showing their performance in terms of key evaluation metrics.

FIGURE 10

Comparison of accuracy, precision, specificity, and sensitivity for different models, along with t-test results, giving a statistical analysis of the 
significance of performance differences between the models.
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sensitivity of 88% underscores k-NN’s capability in correctly 
identifying true positive instances. Decision Tree attains an accuracy 
of 95%, showcasing its efficacy in correct classifications. The precision 
of 93% emphasizes its precision in positive predictions, while the 
specificity of 89% reflects its accuracy in negative predictions. With a 
sensitivity of 90%, Decision Tree excels in correctly identifying true 
positive instances. Gradient Boosting, a sequential ensemble 
technique, achieves an accuracy of 96%, outperforming several other 
models. The precision of 95% showcases its precision in positive 
predictions, while the specificity of 91% reflects its accuracy in 
negative predictions. The sensitivity of 92% underscores Gradient 
Boosting’s effectiveness in correctly identifying true positive instances. 
The Proposed Model emerges as the top performer with an impressive 
accuracy of 97%, demonstrating its exceptional discriminatory power. 
The precision of 97% emphasizes the model’s precision in positive 
predictions, while the specificity of 92% reflects its accuracy in 
negative predictions. With a sensitivity of 93%, the Proposed Model 
excels in correctly identifying actual positive instances. This 
comprehensive evaluation provides valuable insights into the strengths 
and capabilities of diverse classification models. Each model exhibits 
unique advantages, and the top-performing Proposed Model stands 
as a testament to the continual advancements in algorithmic 
development. The significance of precision, specificity, sensitivity, and 
accuracy in classification underscores these metrics’ critical role in 
assessing the reliability and effectiveness of machine learning models. 
Pursuing more accurate and robust classifiers as the field evolves 
remains a dynamic and ongoing endeavor.

5 Conclusion and future work

In conclusion, the Hybrid Models for Decalcify Cardiac CT 
(HMDC) introduced in this study have demonstrated exceptional 
efficacy in enhancing the clarity of cardiac CT images through robust 
decalcification. The achieved accuracy of 97.22% surpasses existing 
methods, showcasing the potential of this hybrid approach in 
significantly improving diagnostic precision in cardiovascular 
imaging. The success of HMDC lies in its innovative combination of 
deep learning techniques and traditional image processing methods, 
allowing for a synergistic enhancement of decalcification outcomes. 
The model’s ability to unveil clearer cardiac CT images holds promise 
for advancing diagnostic capabilities, particularly in scenarios where 
calcification poses challenges to accurate interpretation. While this 
study presents a ground-breaking solution, there are several avenues 
for future research and development. Further refinement of HMDC 
could involve optimizing hyperparameters, exploring additional data 
augmentation techniques, and investigating the model’s adaptability 
to diverse datasets. The scalability and generalizability of HMDC 
across different imaging modalities and patient demographics warrant 
careful consideration. Additionally, integrating interpretability tools 
and explainable AI methodologies can enhance the model’s 
transparency, providing insights into the decision-making process. 
Collaborations with medical practitioners and radiologists for real-
world validation and clinical trials are essential to validating the 
practical utility and impact of HMDC in healthcare settings. The 
broader application of hybrid models in medical imaging, beyond 
decalcification, offers a rich area for exploration. Future research could 

explore the extension of HMDC principles to address challenges in 
other imaging domains, contributing to a more comprehensive toolkit 
for healthcare professionals. In conclusion, HMDC represents a 
significant advancement in cardiac CT imaging and lays the 
groundwork for continued innovation in hybrid models, fostering a 
transformative impact on diagnostic accuracy and patient care in 
cardiovascular health.
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