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Objective: This study aimed to determine spirometric norm values for the 
healthy Iranian adult population and compare them with established norm 
equations, specifically the GLI-Caucasian and Iranian equations.

Methods: During the recruitment phase of the Shahedieh Prospective 
Epidemiological Research Studies in Iran (PERSIAN) in 2016, spirometric 
parameters of 998 participants were obtained. KNN regression was used to 
extract reference values for spirometric parameters FEV1, FVC, FEV1/FVC, and 
FEF25–75%, considering height and age as features. The performance of KNN 
regression was compared with conventional models used in previous studies, 
such as the multiple linear regression (MLR) model and the Lambda-Mu-Sigma 
(LMS) model. The predicted values were compared with those obtained from 
the GLI-Caucasian and Iranian equations. The validation criterion was the mean 
squared error (MSE) based on 5-fold cross-validation.

Results: This study included 473 female participants and 525 male participants. 
KNN regression provided more accurate predictions for four spirometric 
parameters than MLR and LMS. The MSE for predicting FVC in female participants 
was 0.159, 0.169, and 0.165 in KNN regression, MLR, and LMS, respectively. The 
predictions of the present study were closer to the actual values of the reference 
population for four indicators compared to the prediction values using two sets 
of reference equations. The MSE of predicted FVC for female participants was 
0.159 in the present study, which was less than the Iranian (MSE = 0.344) and 
GLI-Caucasian (MSE = 0.397) equations.

Conclusion: Using a flexible machine learning approach, this study established 
spirometry reference values specifically for the Iranian population. Recognizing 
that spirometry reference values vary among different populations, the Excel 
calculator developed in this research can be a valuable tool in healthcare centers 
for assessing lung function in Iranian adults.
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1 Introduction

The severity and prognosis of respiratory diseases are primarily 
determined by the results of pulmonary function tests, particularly 
spirometry (1). Standardized reference values based on population 
ethnicity, age, and height are necessary for accurate interpretation of 
spirometry results (2–4). The Global Lung Function Initiative (GLI-
2012) in 2012 provided normative reference values for spirometric 
parameters from over 160,000 samples from 33 countries, which 
included sex, age, height, and ethnicity-specific equations (4). The 
suitability of the GLI-2012 equations should be verified before using 
them for areas not currently covered by the reference equations (5).

The study by Sahebi et al. (6) in Iran showed that the GLI-2012 
equations are unsuitable for the Iranian population. The lack of 
specific predictive values in the Iranian population may lead to 
disease misclassification, necessitating the standardization of 
spirometry reference values. Several studies in other populations, for 
example, Swedish (7), Finnish (8), and Chinese (9), similar to the 
Iranian study, have recognized that the GLI-2012 equations are not 
suitable for their populations. However, the appropriateness of the 
GLI-2012 norms has been confirmed for some populations, e.g., 
Australian (10), Norwegian (11), German (12), and French (13). As 
a result, researchers became aware of how crucial it is to identify 
native reference equations for distinct communities, prompting 
several studies to identify reference equations for various 
populations. For instance, in 2017, Jian et  al. (1) presented 
spirometry equations for a Chinese population using the Lambda-
Mu-Sigma (LMS) model, Choi et  al. (14) developed reference 
equations for Koreans, Al Qerem et al. (15) presented Jordanian 
reference values, and Pefura-Yone et  al. (16) compared 
Cameroonian values.

The relationship between spirometry indicators in spirometry 
tests, such as FEV1 and FVC, with age and height variables as 
independent variables, is non-linear. However, the majority of the 
previous studies in Iran have used multiple linear regression (MLR) 
to provide spirometry reference equations. Among these studies, 
Golshan et al. (17) in Isfahan, Razi et al. (18) in Kashan, Etemadinezhad 
et al. (19) in Mazandaran, and Aloosh et al. (20) in Hamadan used 
MLR to provide native reference values for the Iranian population.

The LMS method, which allows simultaneous modeling of the 
mean (mu), coefficient of variation (sigma), and skewness (lambda) 
of a distribution family is a special case of the generalized additive 
model for location, scale, and shape (GAMLSS) and is another widely 
used method for predicting pulmonary values in spirometry data 
(21–23). In 2022, Sahebi et  al. (6) introduced normal reference 
equations for Iranians aged 4–82 years, highlighting non-linear 
predictor–response relationships using LMS and revealing significant 
differences between Caucasian and Iranian equations.

GAMLSS is a statistical approach used to model data distributions, 
particularly in fields such as spirometry, where measurements may not 
conform to traditional assumptions of normality. This method allows 
for modeling the parameters of a distribution as functions of predictor 
variables, enabling the modeling of complex relationships in the data. 
However, implementing and interpreting them can be complicated, 
and their model selection can be  challenging. They can also 
be computationally intensive, especially with large datasets or when 
using complex smoothing functions. Overfitting is a risk, and the 
distribution assumption is crucial in this method.

K-nearest neighbors (KNN) regression is a highly accurate 
supervised machine learning technique that makes no assumptions 
about the data distribution. In terms of response prediction, it is more 
adaptive than linear regression as it derives the model’s structure from 
the data. This approach overcomes the requirement to verify linearity 
by supporting non-linear interactions between variables. This 
non-parametric method has high accuracy in outcome prediction, 
making it more flexible than linear regression (24, 25). In comparison 
with GAMLSS, KNN is a method that makes predictions based on the 
closest training examples in the feature space, while GAMLSS is a 
parametric model that assumes a specific form for the underlying 
distribution. Both methods can handle non-linearity but may require 
larger datasets to estimate parameters and avoid overfitting accurately.

Machine learning (ML) methods, particularly KNN regression, 
have gained popularity in medical forecasting due to their simplicity 
and effectiveness. Interpretability and transparency are crucial in 
healthcare settings. Thus, the fact that machine learning algorithms 
are incomprehensible makes them a “black box” in many ways. It 
makes evaluating their efficacy, dependability, and interpretability 
challenging. To determine generalizability and reliability, clinicians 
need to know how algorithms produce predictions. For example, 
SHapley Additive exPlanations (SHAP) values can help healthcare 
practitioners understand the contributions of individual features to 
the model’s predictions and provide insight into how different input 
features influence predicted outcomes, such as lung function based on 
spirometry data (26). By incorporating population-specific data, 
models can be  tailored to reflect the unique characteristics of the 
target population, improving the accuracy of predictions (6). By 
leveraging findings from studies such as Huang et al. (27), practitioners 
can put relevant features into models such as KNN to accurately 
forecast health outcomes.

Moreover, this study uses a machine learning method, KNN 
regression, to predict normal spirometry values for Iranian adults aged 
35–70 years. The objective is to provide these values based on age and 
height features by sex. This study compares the predictions of KNN 
regression, conventional methods, the MLR model, and the Lambda-
Mu-Sigma model with those of Golshan et al.’s equations (17) and the 
GLI-2012 of the Caucasian reference population (4).

2 Methods

2.1 Design and participants

This cross-sectional study was nested within the Shahedieh cohort 
study, in which participants were selected randomly. The details of that 
study have been published in another study Sabet et al. (28).

2.2 Reference population

Of the 2,500 participants in the Shahedieh cohort study for whom 
a lung test was conducted, 495 (19.8%) people were excluded due to 
unacceptable maneuvers. Of the remaining 2005 people, after 
excluding 1,007 people based on other exclusion criteria from the 
study (Table  1), 998 healthy non-smoker participants (525 male 
participants and 473 female participants) were included. These 
exclusion criteria were considered based on several recent studies, 
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which are having sputum cough and rhinorrhea for seven consecutive 
days, respiratory complaints, history of smoking regularly, history of 
severe pulmonary disease, physical findings suggestive of 
cardiopulmonary disease, and evident chest deformity, obesity, and 
other cases (allergic reactions, occupational conditions, drug use, 
neurological diseases) (4, 6, 15, 29). In obese people without heart 
disease, oxygen levels fall as BMI rises. In obesity, correlation with 
hypoventilation is linked to a decreased residual expiratory volume 
(30). Therefore, some studies, such as Walid et al. (15), considered a 
BMI > 30 as an exclusion criterion.

2.3 Spirometric measurements

Spirometry was performed using the Spirolab III (MIR, Italy), 
with at least three forced vital capacity (FVC) maneuvers performed 
for each participant in the morning and in the sitting position, 
ensuring repeatability and complying with the American Thoracic 
Society/European Respiratory Society task force (31, 32). Initially, 
participants unable to perform spirometry maneuvers were identified 
and excluded from the study. Criteria such as exercising 30 min before 
the test, eating a large meal within 2 h before the test, and respiratory 
infections were also considered, and if they were positive, the test was 
postponed to another time. Then, the maneuver was explained to each 
participant, and the test was performed under the guidance of the 
operator. All tests were performed by an operator trained in the 
spirometry process.

The study measured FVC, forced expiratory volume at 1 s (FEV1), 
FEV1/FVC, and forced expiratory flow at 25–75% of FVC (FEF25–75%) 
for each participant. The maneuver with the highest FVC + FEV1 was 
chosen as the best. Demographic and anthropometric variables such 
as sex, age, height, and weight were recorded. Height was measured 
without shoes, and age was calculated based on date of birth.

2.4 Data analysis

KNN regression is a highly accurate supervised machine learning 
method that is non-parametric and makes no assumptions about the 
data distribution. It determines the model’s structure from the data, 
making it more flexible than linear regression in predicting responses. 
This method supports non-linear relationships between variables, 
eliminating the need to check for linearity (24, 25). Average values 
close together in KNN regression produce estimates that can account 
for non-linear relationships. By selecting the k-nearest neighborhood, 
this strategy effectively compensates for the necessity to fit a 
regression line.

To predict FEV1, FVC, FEV1/FVC, and FEF25–75% in each sex, KNN 
regression was used considering age and height as features. Calculations 
were performed by the Fast Nearest Neighbors (FNN) package (version 
1.1.4) in R software (version 4.3.0) (33). To find the optimal K, which is 
the number of nearest neighbors needed to predict the value of a new 
data point, we applied 5-fold cross-validation to the training dataset, 
which provided a good balance between bias and variance (25). There 
were no significant outliers or missing data in the data preparation stage. 
To ensure uniform scaling, age and height features were standardized 
using z-scores. Following data preparation, the available data were 
initially randomly split into five folds to determine the optimal k (the 
hyper-parameter) in KNN regression using the five-fold cross-validation 
(CV) method. The remaining four sections were regarded as the training 
set, and one of the five was chosen as the test set. The KNN model was 
trained with the required k-value on the training set by setting the k 
equal to 1–100. The model was then assessed on the test set, and the 
mean squared error (MSE) evaluation criterion was computed. To 
choose each portion as the test set in turn, this procedure was conducted 
for each of the 5-fold. Finally, the average evaluation results were 
computed for each k-value. The k-value with the best performance 
(lowest MSE) in the average assessment results was chosen as the optimal 
k after the aforementioned procedures were completed for all k-values. 
Finally, the dataset trained the KNN regression with the optimum 
k-value. Using this technique, we ensured that the best k was chosen 
based on how well the model performs on several datasets and not only 
on a particular data partition. Therefore, the Rfast package (version 2.1.0) 
was utilized (see Supplementary Figure 1).

This study compared spirometric parameter predictions using 
KNN regression in the reference population with those from the 
GLI-2012 study (4), the Caucasian reference population, and the 2003 
study by Golshan et al. (17). The final criterion for comparison was the 
average MSE of 5-fold cross-validation. The agreement between the 
values predicted by these reference equations was also assessed using 
the intraclass correlation coefficient (ICC). Finally, the lower limit of 
the normal (LLN) range was determined for each spirometric 
parameter, and contour plots were used to display predicted values 
and LLN simultaneously.

3 Results

A total of the 998 participants, the mean (SD) age for male and 
female participants was 48.4 (7.9) and 45.8 (6.9) years, respectively. The 
mean (SD) height for male and female participants was 169.7 (7.4) cm 
and 161.4 (7.7) cm, respectively. Descriptive results for demographic 
variables and spirometric parameters by sex are depicted in Table 2.

Supplementary Table 1 outlines the division of the test data into 
5-fold and the presentation of age and height descriptive statistics by 
sex. Independent t-test results show no significant difference between 
the averages of age and height in each fold and the main data, 
indicating no significant differences.

3.1 Relationship between spirometric 
parameters and anthropometric features

Figure  1 illustrates the scatter plot of spirometric parameters 
versus age and height variables by sex and a smoothing curve within 

TABLE 1 Reasons for exclusion of participants.

Reasons n = 2,500 (%)

Unacceptable maneuvers 495 (19.8)

Respiratory symptoms 477 (19.1)

Chronic respiratory disease 410 (16.4)

Obesity 428 (17.1)

Tobacco smoking 507 (20.3)

Other 183 (7.3)
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each scatter plot. The relationship of spirometric parameters with age 
is close to a linear relationship (Figure 1A), but the relationship of 
spirometric parameters with height is close to a non-linear relationship 
(Figure  1B). Furthermore, based on the smoothed curves, a 
non-parametric regression can predict the relationship of parameters 
based on height better than a parametric one (with a specific 
functional form).

In general, the spirometric parameters of FEV1, FVC, and FEF25–

75% for male and female participants decrease with an almost constant 
slope as they age (Figure 1A). The spirometric parameters of FEV1 and 
FVC have a steep increase in male participants with a height above 
170 cm. It remains almost constant in female participants with a 
height above 170 cm. The relationship between FEF25–75% and FEV1/
FVC with height is more complex for both male and female 
participants (Figure 1B).

3.2 Comparisons

Based on the MSE values presented in Table 3, it can be seen that 
KNN regression has predicted spirometric parameters based on age and 
height features closer to the real values than MLR and LMS. The mean 
(SD) of the predicted spirometric parameters, based on the independent 
variables of age and height of male and female participants in the 
reference population of this study, can be observed in Table 4. The 
comparison of real and predicted values for each spirometric parameter 
based on paired t-tests in all three methods shows that KNN regression 
has predicted spirometric parameters with less bias. A scatter plot of 
actual and predicted values with the help of KNN regression based on 
height and age features and by gender is shown in Figure 2. The points 
in these graphs are uniformly distributed near the hypothetical 
45-degree line and with a balanced dispersion, and no particular pattern 
can be observed in them.

In Table 4, the comparison of MSE (and 95% bootstrap confidence 
interval) based on the predicted values of spirometric parameters for 
KNN regression and the reference equations of GLI-2012 on the 
Caucasian population (4) and Golshan et al. (17) is also presented for 
female and male participants. The MSE values of this study are lower 
compared to the two other studies, and the confidence intervals were 
shorter [except for the FEF25–75% of female participants compared to 
both studies and FEV1/FVC of female participants compared to the 
study of Golshan et al. (17)].

The level of agreement between the three methods was high for 
predicted values of FEV1 (ICC = 0.873, p < 0.001) and FVC 
(ICC = 0.851, p < 0.001), but low for FEV1/FVC (ICC = 0.154, 
p < 0.001) and moderate for FEF25–75% (ICC = 0.448, p < 0.001). This 
issue can be observed in Figure 3, which shows the prediction of 
spirometric parameters and LLNs for different ages with height close 
to the average (160 cm for female participants and 170 cm for male 
participants) for three methods.

Based on Figures 3a,b, the prediction of FEV1 and FVC values 
with the KNN regression decreased in male participants with almost 
the same slope with increasing age [and almost parallel to the 
reference equations of Golshan et al. (17)]. In female participants, 
from the age of 50 onward, the decline happened with a gentle slope 
(Figures 3e,f).

3.3 Prediction of spirometric parameters 
based on age and height by sex using KNN 
regression and the reference population of 
this study

Figure 3 shows the predicted values and the fifth percentile of LLN 
for spirometric parameters in people aged 35–70 years and height of 
160 cm in female participants and 170 cm in male participants. 
We used the contour plot to access predicted values and LLN more 
easily, which is shown in Figures  4, 5: FEV1 (Figure  4A), FVC 
(Figure  4B), FEV1/FVC% (Figure  5A), and FEF25–75% parameter 
(Figure 5B).

If the prediction value of a spirometry parameter based on 
age and height features is needed for a person, contour plots can 
be used directly. Based on the person’s sex, cross the age (year) 
from the horizontal axis and the height (cm) from the vertical 
axis to determine the color range, then based on the specified 
color with the help of the legend, the numerical value of the 
parameter can be  determined. If spirometry indicators are 
needed based on a specific range of age or height of people it is 
suggested to use the website: http://www.graphreader.
com/2dreader, which can extract information from colored 
graphs. If the prediction of spirometry indices based on the 
features of age and height of a large number of people is required 
based on the method of this study, the Excel file can be used, 
which is included in Supplementary file 1.

TABLE 2 Demographic and spirometry measurements in the reference population by sex.

Variables Female participants (N = 473) Male participants (N = 525)

Mean (SD) Min. Max. Mean (SD) Min. Max.

Age (year) 45.81 (6.86) 38 69 48.36 (7.88) 38 69

Height (cm) 161.37 (7.69) 142 185 169.70 (7.40) 138 188

Weight (Kg) 68.28 (9.29) 38 100 74.77 (10.13) 47 106

BMI (Kg/m2) 26.19 (2.86) 16 30 25.95 (2.89) 16 30

FEV1 (L) 2.56 (0.36) 1.7 3.7 3.47 (0.50) 2.3 4.9

FVC (L) 3.01 (0.45) 2 4.5 4.20 (0.62) 2.8 6.2

FEV1/FVC 0.85 (0.04) 0.6 0.9 0.83 (0.05) 0.7 0.9

FEF25–75% (L/s) 3.00 (0.63) 1.5 5.2 3.74 (0.84) 1.9 6.3
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4 Discussion

With a machine learning approach, this study was the first to 
predict normal spirometry values for the Iranian reference 
population. In this study, we revealed that for the age group of 
35–70 years, the relationship of spirometric parameters with age 
and height is non-linear. As the data showed, the intensity of this 
non-linear relationship is higher with height. In the study of 
GLI-2012 (4), the study of Pefura-Yone et al. (16), and a recent 
study conducted in Iran by Sahebi et al. (6), who used various age 
groups to provide norm spirometric equations, emphasized the 
existence of a non-linear relationship between spirometric 
parameters and age and height. For this reason, the LMS model 
based on GAMLSS was introduced and used to predict spirometric 
parameters based on age and height more accurately. Therefore, 

LMS was proposed as the best model for providing norm 
spirometry equations in different communities (21, 22). In this 
study, we used an approach based on machine learning methods to 
predict the spirometric parameters of the reference population, 
that is, KNN regression. Compared to MLR and LMS, KNN 
regression had a lower MSE value for predicting all the spirometric 
parameters of the reference population, and it was observed that it 
had more accuracy in predicting the spirometric indices. The 
prediction of spirometric parameters of the current study was 
compared to those based on the equations of the common norm in 
Iran, GLI-2012, and the study of Golshan et al. (17). In the KNN 
regression method, the average MSE for 5-fold cross-validation 
showed lower values for all parameters in both male and female 
participants. It also had shorter bootstrap confidence intervals for 
most indicators.

FIGURE 1

Scatter plot (points in each plot) to examine the relationship between spirometric parameters between age (A) and height (B) along with the best 
smooth curve fitted to the data (blue lines).

TABLE 3 Comparison of MSE for KNN, linear regression, and LMS for predicting spirometry parameters of the reference population in this study.

Parameters Female participants Male participants

KNN Linear$ LMS# KNN Linear LMS

FEV1 0.1037 0.2817 0.1077 0.1736 0.6550 0.1856

FVC 0.1588 0.1689 0.1649 0.2675 0.2978 0.2994

FEV1/FVC 0.1900 0.2000 0.1948 0.2200 0.2300 0.2242

FEF25–75% 0.3728 0.3775 0.3766 0.6511 0.6594 0.6586

#Fitted model based on the GLI-2012 and other studies: log(Y) = a + b1*log(Height) + b2*log(Age) + M-Spline. $Y = a + b1*Height + b2*Age.
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Genetic and environmental factors influence the variability of 
lung function, making it crucial to establish reference values that align 
with the local population’s ethnic and ecological characteristics (34, 
35). Several physiological and environmental elements contribute to 
the variability between Iranian and Caucasian populations. These 
variations are influenced by a number of important factors, such as 
body composition, genetic diversity, and metabolic reactions to 
nutrition. Iranians may have differing rates of obesity and metabolic 
syndrome than Caucasian populations because of their historical 

migrations and connections with numerous ethnic groups. 
Physiological responses to the climate also influence these variations, 
which are also influenced by dietary patterns, lifestyle choices, and 
cultural customs (36, 37).

In contrast to Western diets that are heavy in processed foods and 
sugars, traditional Iranian diets are rich in grains, legumes, and 
vegetables and may have different health effects (38). Sedentary 
lifestyles and urbanization are two examples of lifestyle choices that 
can affect health consequences. Health behaviors can also 

TABLE 4 Mean (SD) for crude and predicted values comparing the MSE of all three methods, our study, Golshan et al. (17), and GLI-2012 (Caucasians) by 
sex.

Sex Parameters Mean 
(SD)

Predicted

Current study Golshan et al. (17) Caucasian

Mean 
(SD)

p-
value

MSE (95% CI) Mean 
(SD)

MSE (95% 
CI)

Mean 
(SD)

MSE (95% CI)

Female 

participants

FEV1 2.55 (0.39) 2.52 (0.17) 0.452 0.104 (0.10–0.16) 2.82 (0.36) 0.228 (0.17–0.30) 2.82 (0.36) 0.194 (0.17–0.26)

FVC 3.00 (0.48) 2.96 (0.24) 0.403 0.159 (0.15–0.25) 3.27 (0.43) 0.344 (0.25–0.50) 3.49 (0.44) 0.397 (0.36–0.52)

%FEV1/FVC 85.42 (4.18) 85.15 (0.96) 0.166 0.190 (0.13–0.24) 86.65 (1.14) 0.224 (0.16–0.33) 81.33 (1.21) 0.296 (0.28–0.36)

FEF25–75% 3.02 (0.66) 2.97 (0.15) 0.113 0.373 (0.33–0.60) 3.64 (0.28) 0.721 (0.57–0.81) 2.86 (0.41) 0.435 (0.33–0.56)

Male 

participants

FEV1 3.43 (0.55) 3.40 (0.28) 0.190 0.174 (0.17–0.28) 3.34 (0.42) 0.330 (0.24–0.40) 3.59 (0.47) 0.300 (0.23–0.39)

FVC 4.14 (0.68) 4.11 (0.35) 0.261 0.267 (0.24–0.32) 3.89 (0.49) 0.440 (0.34–0.60) 4.50 (0.58) 0.567 (0.40–0.69)

%FEV1/FVC 82.82 (4.66) 82.94 (0.70) 0.540 0.220 (0.16–0.28) 85.99 (1.00) 0.290 (0.22–0.39) 79.92 (1.25) 0.311 (0.24–0.38)

FEF25–75% 3.74 (0.87) 3.72 (0.23) 0.766 0.651 (0.55–0.87) 4.16 (0.35) 1.26 (0.94–1.49) 3.37 (0.53) 0.887 (0.73–1.19)

FIGURE 2

Scatter plot of actual values and predicted values using KNN regression of spirometry indices for male participants (A), female participants (B), and male 
and female participants (C).
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FIGURE 3

Age dependence of mean values (blue color) and fifth percentile (red color) of spirometry parameters in male (height 170 cm; a–d) and female 
participants (height 160 cm; e–h) in comparison with published reference values. Legend: ____: This study; ……: Golshan et al. (17); – – – –: GLI-2012 
(Caucasians).

FIGURE 4

Contour plot for predicted FEV1 (A) and FVC (B). In each section, the predicted values are for male (a) and female participants (b), and the LLN values 
are for male (c) and female participants (d). FEV1, forced expiratory volume in 1 s; FVC, forced vital capacity.
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be influenced by cultural norms and beliefs on wellbeing, nutrition, 
and health (39, 40). Finally, health outcomes can also be impacted by 
the quality and accessibility of healthcare. Addressing public health 
concerns in these populations requires an understanding of these 
elements. To this end, we generated prediction values for FEV1, FVC, 
FEV1/FVC, and FEF25–75% based on lung function data from 998 
participants from healthy Iranian populations, and to present these 
values and their LLN based on age and height features simultaneously, 
we used the colored contour plots.

We compared the agreement of lung function predictions between 
GLI-2012 (Caucasian) (4) and the Iranian population of the current 
study. The highest agreement was for FEV1, and the lowest agreement 
was for FEV1/FVC parameters in male and female participants. 
Despite the high agreement in the estimation of FEV1 and FVC among 
these three studies, it appears that the Caucasian reference (4) 
equations and the equations used in the study by Golshan et al. (17) 
estimated a higher value for the mean and LLN of these two indices 
than the KNN regression method. However, this difference appears to 
be more pronounced in individuals under 60 years of age, particularly 
for FEV1. The agreement between the predicted values of FEV1/FVC, 
which were obtained by the KNN regression method, and the study 
by Golshan et al. (17) was moderate (ICC = 0.481, p < 0.001). The 
agreement was low between the KNN regression method and the 
Caucasian population (ICC = 0.137, p < 0.001) (4). However, based on 
the three studies, the low agreement between the predicted FEV1/FVC 
is primarily due to the difference between Caucasian (4) and Iranian 
equations. The prediction of FEV1/FVC for Iranian male and female 
participants based on the Caucasian reference equations has a lower 
estimation for the mean and the fifth percentile (LLN) than the 
method of the present study. The prediction of FEF25–75% for female 
and male participants based on the Caucasian reference equations (4) 
has a lower estimation than the KNN regression method. In addition, 
a high agreement can be seen between the estimation of LLN for 

FEF25–75% obtained by KNN regression and the reference equations of 
Golshan et al. (17) (ICC = 0.926, p < 0.001), but for female participants 
over 55 years of age, this difference almost increases. This problem 
may be caused by menopause as some studies have pointed out a 
significant decrease in lung function in menopausal women (41, 42). 
Furthermore, in estimating the average FEF25–75%, there is good 
agreement between the prediction by Caucasian equations (4) and the 
prediction of values using the KNN regression method for the 
reference population (ICC = 0.707, p < 0.001). However, from the age 
of 50 years onward for both male and female participants, this 
difference nearly doubles. It appears that the change in the slope of the 
relationship between age and these parameters around the age of 50 
to 55 is not well explained by a linear model. In general, the KNN 
regression-based prediction aligned more closely with the Iranian 
equations of Golshan et al. (17) for all indicators.

K-nearest neighbors (KNN) regression is useful in medical 
studies but faces several challenges. The choice of K is crucial, as a 
small K can lead to overfitting, and a large K can smooth out 
important patterns. In this study, we applied 5-fold cross-validation 
to the training dataset to find the optimal K that provided a good 
balance between bias and variance. By using this technique, we can 
ensure that the best k is chosen based on how well the model 
performs on several datasets, rather than on a particular data 
partition (24, 25). Missing data and outliers from several studies can 
affect KNN regression. Moreover, the features must be on the same 
scale since KNN regression relies on the distance between points. 
Consequently, we checked these items during the data preparation 
step. There were no significant outliers or missing data. To ensure 
uniform scaling, the features were standardized.

This study has three limitations. Although the sample size of this 
research is not very large, this sample size of male and female 
participants is large enough to have sufficient power to validate the 
spirometric reference values (at least 150 subjects for each sex) (43). The 

FIGURE 5

Contour plot for predicted FEV1/FVC% (A) and FEF25–75% (B). In each section, the predicted values are for male (a) and female participants (b), and the 
LLN values are for male (c) and female participants (d). FEV1 forced expiratory volume in 1 s; FVC forced vital capacity; FEF25–75%, forced mid-expiratory 
flow.
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other limitation is that the age range of individuals in this study is 
35–70 years, and the predicted reference values can only be used for 
male and female participants in this age group. Another limitation is 
that the reference population was selected from only one ethnicity living 
in Iran (Persian), and other ethnicities were not included in this study.

5 Conclusion

It is crucial to determine the norm of pulmonary parameters 
specific to each population using a suitable model. Therefore, the 
KNN regression machine learning method was used to predict FEV1, 
FVC, FEV1/FVC, and FEF25–75% in a healthy Iranian population of 
non-smokers aged 35–70 years, based on sex, age, and height. Since 
the KNN regression method estimates pulmonary parameters with 
lower MSE, its predicted values could assist physicians in interpreting 
spirometry results and, when appropriate, in diagnosing diseases and 
assessing their severity in the Iranian population.
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