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Context: The conventional risk factors for cardiocerebral vascular events (CVCs) 
in non-Hemodialysis (HD) patients cannot be directly applied to HD patients due 
to the unique characteristics of this population. More accurate information on 
the risk of progression to CVCs is needed for clinical decisions.

Objective: To develop and validate time-dependent predictive models for the 
progression of CVCs in HD patients.

Design, setting, and participants: Development and validation of time-
dependent predictive models using demographic, clinical, and laboratory data 
from 3 dialysis centers between 2017 and 2021. These models were developed 
using time-dependent Cox proportional hazards regression and assessed for 
discrimination using the concordance index, goodness of fit using the Akaike 
information criterion and net reclassification improvement.

Main outcome measures: CVCs included acute heart failure, acute 
hematencephalon, cardiac or brain-derived death, acute myocardial infarction, 
acute cerebral infarction, ischemic cardiomyopathy, unstable angina pectoris, 
and stable angina pectoris.

Results: The development and validation cohorts included 233 and 215 
patients, respectively. The most accurate model included age, sex, hemoglobin, 
serum albumin, serum phosphate, white blood cell count, blood flow rate and 
ultrafiltration volume during HD (C index, 0.704; 95% CI, 0.639–0.768  in the 
development cohort and 0.775; 95% CI, 0.706–0.843 in the validation cohort). 
In the validation cohort, this model was more accurate than a model containing 
variables whose p value in the Cox proportional hazards regression was less 
than 0.05 (NRI: 0.351, 95% CI: −0.115–0.565).

Conclusion: A time-dependent model using routinely obtained laboratory tests 
can accurately predict progression to CVCs in HD patients.
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Background

The global prevalence of end-stage renal disease (ESRD) has been 
steadily increasing (1, 2). The total population of individuals with 
ESRD receiving renal replacement therapy (RRT) surpassed 2.5 
million in 2010 and is projected to exceed 5.439 million by 2030, with 
the majority of growth anticipated in Asia, where numbers are 
expected to increase from 0.968 million to approximately 2.162 
million (3). The primary modality for RRT continues to 
be hemodialysis (HD), rather than peritoneal dialysis (PD) or kidney 
transplantation (4). The mortality rate in HD patients is high, 
primarily attributed to the occurrence of cardiocerebral vascular 
events (CVCs) (5–7). The clinical decision-making process for HD 
patients is challenging due to the diverse etiologies of kidney diseases, 
variable rates of disease progression, and competing risks of CVCs 
mortality. The accurate prediction of risk could enhance personalized 
decision-making, facilitating timely and appropriate patient care.

Currently, there is a lack of universally accepted predictive tools 
for the incidence of CVCs in HD patients. Therefore, physicians 
cannot identify patients at high risk of CVCs from HD patients in a 
timely manner or implement timely interventions to prevent or reduce 
the eventual occurrence of CVCs.

Recent studies have demonstrated that albuminuria (ALB) (8, 9) 
provides additional prognostic information regarding the progression 
to cardiovascular events (CVEs) in HD patients. One study 
investigated the incorporation of serum phosphate (P) and white 
blood cell (WBC) counts into prediction models (10). However, these 
models are either specific to CVEs but not CVCs or lack external 
validation. More accurate information regarding the risk of 
progression to CVCs in HD patients is required for clinical decisions 
about testing, treatment, and referral. The ideal model for predicting 
progression to CVCs in HD patients should have accuracy, be easy to 
implement, and demonstrate high generalizability across diverse 
patient populations in dependent cohorts.

Utilizing data extracted from the electronic medical records 
system (EMR) in three distinct HD centers, our study aimed to 
develop and externally validate an accurate but simple predictive 
model for the progression to CVCs in HD patients. The objective was 
also to utilize routinely measured variables in HD patients to develop 
a time-dependent predictive model for the progression of CVCs that 
could be easily implemented in clinical settings. We were particularly 
intrigued by models that exclusively rely on clinical laboratory data, 
facilitating the reporting of CVCs risk alongside laboratory test results.

Materials and methods

Study population

Development cohort
The development cohort was derived from the Kidney Disease 

Center at Dongguan Tungwah Hospital, Dongguan, Guangdong, 
China, and the Department of Nephrology at the Luogang Branch of 

the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 
Guangdong, China, between 2017 and 2021. The patients underwent 
two to three weekly sessions of HD for a minimum duration of 
3 months, employing bicarbonate-based dialysate and polysulfone 
membrane dialyzers. Low-molecular-weight heparin was administered 
as an anticoagulant during the dialysis procedure. The criteria for 
sample selection were as follows: patients who were at least 18 years 
old at the time of initiation of HD and who underwent quarterly 
biochemical tests and who had no history of prior renal transplantation 
or surgical procedures within the past year. Individuals with cachexia, 
malignant tumors, or other life-limiting conditions and patients who 
had experienced significant blood loss or severe infectious diseases 
during the study period were excluded from the study. The censored 
data were as follows: among the 56 screened patients who were 
excluded, reasons for exclusion included patient refusal to participate 
(n = 35), renal transplantation (n = 10), withdrawal of consent (n = 8), 
and poor adherence to HD treatment (n = 3).

Validation cohort
The validation cohort was derived from the Department of 

Nephrology at the Tianhe Branch of the Third Affiliated Hospital of 
Sun Yat-sen University, Guangzhou, Guangdong, China, between 
2017 and 2021. The criteria for sample selection and exclusion were 
the same as those for the development cohort. The study was reviewed 
and approved by the institutional review boards at Dongguan 
Tungwah Hospital, Dongguan, Guangdong, China, and the Third 
Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 
China. Written informed consent was obtained from all patients or 
their immediate relatives, and the study was conducted in accordance 
with ethical guidelines (Ethical Batch No. 2020DHLL010).

Follow-up plan
The study investigated the occurrence of CVCs during a 5-year 

follow-up period. Upon occurrence of a cardiovascular event in a patient, 
we promptly initiated the consultation system and collaborated with the 
cardiologist to establish an accurate diagnosis of the cardiovascular 
event. In cases of cerebrovascular events, we sought consultation from a 
specialist in cerebrovascular medicine. We ensured that both diagnosing 
physicians held the title of attending physician or higher.

Variables

Candidate independent variables
The candidate independent variables were selected based on 

their face validity, encompassing demographic factors such as age 
and sex, as well as physical examination variables, including blood 
pressure measurements before, during, and after the HD program, 
along with weight assessments; HD-related variables, including 
dialysis age and blood flow rate (BFR) during HD; and laboratory 
variables obtained from three different hemodialysis centers 
reflecting inflammation, nutrition and renal complications such as 
anemia (Table  1). The aforementioned data were collected on a 
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regular quarterly basis. The baseline values were defined as the 
mean value within a 3-month period following enrollment. 
Exceptionally, the baseline values of serum creatinine (Cr) and 
blood urea nitrogen (BUN) were selected as the first values before 
HD after enrollment. Variables with more than 30% missing values 
were not included in the analysis.

Dependent variable
The outcome of interest was CVCs, including acute heart failure, 

acute hematencephalon, cardiac- or brain-derived death, acute 
myocardial infarction, acute cerebral infarction, ischemic 
cardiomyopathy, unstable angina pectoris, and stable angina pectoris. 
Upon the occurrence of a cardiovascular event in a patient, we promptly 

TABLE 1 Baseline characteristics of the development and validation cohorts.

Characteristics Development cohort (n = 233) Validation cohort 
(n = 215)

p values

Demographics

Age, mean (SD), y 56 (15) 53 (16) 0.26

  ≥65 75 64 NA

  <65 158 151 NA

Male proportion (%) 63.52 56.74 0.14

Dialysis-related

Dialysis age, mean (SD), m 47 (41) 9 (18) 0.087

Pre-HD SP, mean (SD), mmHg 149.82 (15.37) 153.06 (17.81) 0.29

Pre-HD DP, mean (SD), mmHg 81.47 (10.10) 82.91 (12.17) 0.23

Post-HD SP, mean (SD), mmHg 150.61 (19.05) 148.81 (18.80) 0.51

Post-HD DP, mean (SD), mmHg 85.31 (12.95) 83.11 (11.50) 0.39

Access for HD

  SCVC (%) 35.6 10.2 0.005

  LCVC (%) 8.2 3.3 0.045

  AVF (%) 51.5 85.1 0.003

  AVG (%) 4.7 1.4 0.801

BFR, mean (SD), ml/min 208.25 (25.30) 216.46 (25.14) 0.043

UV, mean (SD), ml 1605.61 (1015.82) 2049.30 (1059.50) 0.902

Laboratory data

HGB, mean (SD), g/L 102.81 (18.66) 100.50 (19.84) 0.22

HCT (%) 32.6 (6.9) 30.4 (5.9) 0.001

TSAT (%) 31.9 (15) 28.0 (15) 0.063

WBC, mean (SD), G/L 6.73 (2.67) 6.36 (1.94) 0.014

ALB, mean (SD), g/L 37.61 (4.48) 37.67 (3.67) 0.017

Cr, mean (SD), μmol/L 979.68 (369.75) 1041.56 (343.70) 0.461

BUN, mean (SD), mmol/L 25.28 (8.26) 28.67 (8.30) 0.006

CHOL, mean (SD), mmol/L 3.99 (0.94) 4.24 (1.09) 0.004

iPTH, mean (SD), pg./mL 467.82 (562.32) 512.11 (571.26) 0.205

K, mean (SD), mmol/L 4.96 (0.78) 4.94 (0.90) 0.005

Ca, mean (SD), mmol/L 2.17 (0.22) 2.13 (0.23) 0.008

P, mean (SD), mmol/L 2.00 (0.62) 2.15 (0.68) 0.012

Fe, mean (SD), μmol/L 12.92 (6.52) 10.64 (5.35) 0.038

Outcome

Average time for CVCs, mean (SD), d 670.46 (529.32) 874.69 (650.28) 0.151

Outcome counts 74 (31.7%) 41 (19.0%) NA

The patients in the development and validation cohorts had similar demographics and clinical variables. The incidence of CVCs was greater in the development cohort than in the validation 
cohort (31.7% vs 19.0%). p values less than 0.05 indicated a significant correlation between the occurrence of CVCs and the variables. HD, hemodialysis; CVCs, cardiocerebral vascular events; 
BFR, blood flow rate during HD; UV, ultrafiltration volume during HD; HGB, hemoglobin; HCT, hematocrit value; TSAT, transferrin saturation; WBC, white blood cell count; ALB, serum 
albumin; Cr, serum creatinine; BUN, blood urea nitrogen; CHOL, cholesterol; iPTH, intact parathyroid hormone; K, serum potassium; Ca, serum calcium; P, serum phosphorus; Fe, serum 
ferrium; SP, systolic pressure; DP, diastolic pressure; SCVC, short-term central venous catheter; LCVC, long-term central venous catheter; AVF, arteriovenous fistula; AVG, arteriovenous graft. 
Unless stated, the data are presented as the mean ± SD. The chi-square test was performed to clarify the correlation between the occurrence of CVCs and variables, and p values are shown. 
p < 0.05 was considered to indicate statistical significance.
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initiated the consultation system and collaborated with the cardiologist 
to establish an accurate diagnosis. For patients with cerebrovascular 
events, we  sought consultation from a specialist in cerebrovascular 
medicine. We  ensured that both diagnosing physicians held the 
designation of attending physicians or higher. The prediction of the risk 
of CVCs occurrence has significant implications for decision-making 
processes undertaken by patients, physicians, and healthcare systems. 
The time horizons for risk prediction were 1, 3, and 5 years.

Statistical analysis

Model development
We developed a sequential series of models and compared them 

based on similar variable filtering conditions. We  employed a 
combination of clinical guidelines and forward selection methodology 
to ascertain the selection of variables. Variables not significantly 
associated with CVCs (p > 0.10) were excluded from further analyses, 
except for Model 6, which was based on the chi-square test. Multiple 
testing adjustment: Bonferroni correction was applied to control type 
I  error rate, with adjusted significance level at α = 0.002 (0.05/25 
variables). The enhancement of model performance in time-
dependent multivariate Cox proportional hazards regression models 
was evaluated by incorporating new candidate variables, with 
discrimination and goodness-of-fit metrics employed for assessment. 
Seven sequential models were developed with distinct variable 
selection criteria, Model 1: Variables with p < 0.005 in Cox regression; 
Model 2: p < 0.01; Model 3: p < 0.05; Model 4: p < 0.1; Model 5: All 
candidate variables; Model 6: Clinically meaningful variables 
reflecting anemia, nutrition, inflammation, and dialysis adequacy; 
Model 7: Variables with both clinical relevance and p < 0.1.

Time-varying covariates
Laboratory parameters (e.g., ALB, WBC) were updated at each 

hemodialysis session and analyzed as time-dependent covariates in 
extended Cox models.

Prediction model validation
By incorporating the concordance index (C index) and Akaike 

information criterion (AIC) and models 3, 4 and 6, the most accurate 
models among all the models were evaluated in the external validation 
dataset. The baseline hazard function and coefficients derived from 
the developed model were kept constant and applied to the 
validation dataset.

Prediction model performance
We employed a range of methodologies to assess the performance 

of the models across both the development and validation datasets.

Discrimination
Discrimination refers to the model’s ability to accurately 

differentiate between two classes of outcomes, namely, the occurrence 
and nonoccurrence of CVCs. The computation of the C index serves 
as a measure for assessing discrimination (11–13).

Calibration
The process of calibration refers to the extent to which the 

predicted probabilities align numerically with the observed outcomes. 

We compared the observed and predicted risks of CVCs occurrence 
across all time points and quantified the magnitude of deviation 
between them (14).

Goodness of fit
The overall model fit for sequential models was compared using 

the AIC, which incorporates both the statistical goodness of fit and the 
complexity of the model by penalizing an increase in parameters 
required to achieve a certain level of fit (11).

Reclassification
Reclassification refers to the reassignment of patients from one 

class to another based on changes in their risk category assignment. 
The improvement in reclassification was quantified using the net 
reclassification improvement (NRI) statistic (13).

Sensitivity analysis
The patients were categorized into subgroups based on the 

occurrence of endpoint events (CVCs). Two models from Model 3, 
Model 4, and Model 6 were selected to predict the endpoint events in 
these subgroups. A sensitivity analysis was conducted to evaluate the 
predictive efficacy of the models by comparing the positive or negative 
prediction probability with the actual positive or negative rate 
(predictions falling within a certain range can be considered accurate).

All the statistical analyses were performed using SPSS 20.0. A 
two-sided p < 0.05 was considered to indicate statistical significance.

Results

Cohort description

The development and validation cohorts included 233 and 215 
patients, respectively (Table 1). Patients in the development and 
validation cohorts were similar in age and sex. The HD-related 
variables pre- and post-HD blood pressure, BFR, and UV were 
similar between the two cohorts. Laboratory data, such as 
hemoglobin (HGB), WBC, ALB and so on, were similar between 
these two cohorts. The proportion of events was greater in the 
development cohort than in the validation cohort (74 patients with 
CVCs occurrence [31.7%] vs. 41 patients with CVCs occurrence 
[19.0%]) (Figure 1).

A chi-square test was performed on all patients to clarify the 
correlation between the occurrence of CVCs and variables, and the p 
values are shown in Table  1. p values less than 0.05 indicated a 
significant correlation between them. Indicators were chosen for the 
prediction model based on statistical correlation and clinical practice.

Prediction model performance in the 
development cohort

The hazard ratios for the variables and statistics regarding 
discrimination and goodness of fit for successive models in the 
development dataset are presented in Table  2. According to the 
chi-square test presented in Table  1, variables that showed no 
significant association with CVCs (p > 0.10) were excluded from 
further analyses, except for Model 6.
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Model 1, which included serum potassium (K), cholesterol 
(CHOL), hematocrit (HCT) and HD vascular access types (accesses), 
performed poorly (C index, 0.596; 95% confidence interval [CI], 
0.523–0.668). The C index improved with the inclusion of serum 
calcium (Ca), BUN and blood glucose (GLU) in Model 2 (0.654; 95% 
CI, 0.585–0.722). The addition of more indicators from Model 1 to 
Model 5 led to a gradual increase in the C index value. Model 6 and 
Model 7, each containing representative clinical variables, which 
reflect the state of anemia, nutrition and inflammation, electrolyte 
levels and dialysis adequacy, showed similar performances (C index 
0.704 for Model 6; C index 0.680 for Model 7). Despite a similar C 
index, the AIC was lower for Model 6 than for Model 7 (659.2 vs. 
669.8, respectively). The inclusion of all variables in Model 7 had the 
largest C index (0.772; 95% CI, 0.709–0.834) among all models, and 
the AIC was lowest for Model 6 (AIC: 659.2) compared with the other 
models. Given these results, models 1, 2, and 7 were not considered in 
further evaluation steps.

Performance of the prediction model in 
the validation cohort

After screening by the C-index and AIC, Model 3, Model 4, and 
Model 6 were selected to determine their ability to predict CVCs 
occurrence in the validation cohort. Survival was calculated using 
time-dependent Cox regression and compared with the observed 
Kaplan–Meier (KM) curve of the validation cohort. Figure 2 shows 
the observed vs. predicted non-CVCs rates at all time points for 
models 3, 4, and 6 in the validation cohort. The mean square error 
(MSE) difference between the observed and predicted probabilities 
over the entire period of risk was lower for Model 6 than for Models 
3 and 4 (0.0067, 0.0059, and 0.0052, respectively).

The NRI risk for CVCs (Figure 3) in the validation cohort was 
analyzed. The 1200th daytime node was chosen for NRI analysis. 

Overall, model 6 outperformed models 3 and 4, with NRIs of 0.351 
(95% CI, −0.115–0.565) and 0.329 (95% CI, −0.085–0.604), respectively.

Sensitivity analyses

Sensitivity analyses of each model were performed by comparing 
the difference in the prediction of positive and negative events for the 
validation cohort. The accuracy of predicting the occurrence of positive 
events, specifically CVCs, was represented by the NRI + (positive net 
reclassification improvement), as demonstrated in Table 3. Conversely, 
the NRI represents the accuracy of predicting the absence of CVCs.

The predictive performance of Model 6 surpassed that of Models 
3 and 4  in determining the occurrence of CVCs in HD patients 
(Model 3 vs. Model 6: 0.131, 95% CI, −0.084–0.387; Model 4 vs. 
Model 6: 0.155, 95% CI, −0.005–0.368). Additionally, model 6 
outperformed models 3 and 4 in predicting the absence of CVCs in 
HD patients (model 3 vs. model 6: 0.220, 95% CI, −0.058–0.396; 
model 4 vs. model 6: 0.173, 95% CI, −0.137–0.341).

Correlation coefficients and HR values for 
model 6

Correlation Coefficients and HR Values for Model 6 are presented 
in Table 4. These data represent the coefficients of the time-dependent 
Cox regression model, where positive and negative signs indicate 
positive and negative correlations with the endpoint event, 
respectively. The HR values quantify the extent of influence on the 
endpoint event. The PH test indicated that all independent variables, 
except for gender, satisfy the assumption of proportional hazards. 
Therefore, the correlation coefficient of gender showed as a time-
dependent covariate coefficient, while HR represents a dynamic value 
that varies over time.

FIGURE 1

Kaplan–Meier survival curves for the development and validation cohorts. The proportion of events was greater in the development cohort than in the 
validation cohort (74 patients with CVCs occurrence [31.7%] vs. 41 patients with CVCs occurrence [19.0%]). CVCs, cardiocerebral vascular events. At 
risk: the number of patients with potential risks at a specific time point; Censored: the number of patients censored at a specific time point; Event: the 
cumulative count of risk events that transpired until a specific time point.
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Discussion

In patients who initiate HD, the early mortality rate is high 
(15), with up to 40% of deaths attributed to cardiovascular disease 
(16, 17). Among patients undergoing maintenance HD, 
cardiovascular incidents continue to be  the primary cause of 
mortality (18). Moreover, the incidence of cerebrovascular events 
is significantly greater in HD patients than in the general 
population (6, 7). Despite this knowledge, the risk factors for 
CVCs in HD patients have yet to be fully elucidated to establish a 
practical risk prediction model. However, insufficient research has 
investigated cardiovascular and cerebrovascular events in 
HD patients.

Risk prediction has garnered increasing attention in the past two 
decades, with the emerging literature suggesting enhanced patient 
outcomes through personalized risk prediction and advancements in 
information technology facilitating seamless integration of risk 
prediction models into electronic health records (EHRs) (19–22). The 
availability of these risk prediction tools and their incorporation into 
clinical practice guidelines has resulted in enhanced adherence to 
treatment guidelines and facilitated individual decision-making (23, 
24). Despite these advantages, the lack of readily applicable and 
externally validated models has impeded the widespread integration 
of risk prediction across all medical disciplines (25).

We developed and validated a set of time-dependent risk 
prediction models for progression to CVCs among patients 

TABLE 2 Hazard ratios and goodness of fit for sequential models in the development dataset.

Variables Models

1 2 3 4 5 6 7

Age 0.05 <0.005

Male sex 0.01 0.14

Pre-HD SP 0.57

Pre-HD DP 0.12

Post-HD SP 0.54

Post-HD DP 0.97

SCVC (%) 0.67 0.38 0.76 0.75 0.90

LCVC (%) 0.15 0.21 0.22

AVF (%) 0.28 0.35 0.51 0.51 0.33

AVG (%) 0.46

BFR 0.22 0.31 0.31 0.67 0.67

UV 0.47 0.58

HGB 0.01 0.25

HCT 0.11 0.03 0.31 0.35 0.20 0.99

TSAT 0.76 0.45

WBC 0.09 0.10 0.04 0.19 0.15

ALB <0.005 <0.005 0.01 0.03 <0.005

Cr 0.45

BUN 0.72 0.65 0.55 0.17 0.74

CHOL 0.40 0.34 0.07 0.10 0.05

iPTH 0.53

K 0.56 0.93 0.75 0.7 0.81 0.90

Ca 0.67 0.36 0.5 0.49

P 0.66 0.63 0.41 0.23 0.60

Fe 0.79 0.78 0.67

C index 0.596 0.654 0.718 0.725 0.772 0.704 0.68

95% CI 0.523–0.668 0.585–0.722 0.649–0.786 0.658–0.791 0.709–0.834 0.639–0.768 0.613–0.746

AIC 683.92 677.19 664.2 666.72 659.61 659.22 669.81

p value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

The units of the variables are consistent with those presented in Table 1. Higher values for the C index and lower values for the AIC indicate better models. By incorporating the C-index and 
AIC, models 3, 4 and 6 were chosen for evaluation in the external validation dataset. HD, hemodialysis; BFR, blood flow rate during HD; UV, ultrafiltration volume during HD; HGB, 
hemoglobin; HCT, hematocrit value; TSAT, transferrin saturation; WBC, white blood cell count; ALB, serum albumin; Cr, serum creatinine; BUN, blood urea nitrogen; CHOL, cholesterol; 
iPTH, intact parathyroid hormone; K, serum potassium; Ca, serum calcium; P, serum phosphorus; Fe, serum ferrium; SP, systolic pressure; DP, diastolic pressure; SCVC, short-term central 
venous catheter; LCVC, long-term central venous catheter; AVF, arteriovenous fistula; AVG, arteriovenous graft. p < 0.05 was considered to indicate statistical significance.
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undergoing HD. Our models utilize laboratory data routinely obtained 
from patients undergoing HD, which can be easily integrated into a 
laboratory information system or clinic EHRs.

Among patients undergoing HD, there is significant 
heterogeneity in the risk of progressing to CVCs. For instance, 
Table 5 illustrates the predicted probability of CVCs occurrence in 
two real patients with similar clinical conditions using models 3, 4, 
and 6. For patient A, with an observed time of 3.17 years for CVCs, 
models 3 and 4 exhibited similar predictive probabilities at the 
3-year time point, while model 6 demonstrated an obviously elevated 
value. Model 6 provides substantially different risk predictions than 

models 3 and 4. In comparison to Model 3, Model 6 demonstrated a 
28% increase in the predicted risk for Patient A at the 3-year time 
point and an 18% increase in the risk for Patient B at the 1-year 
time point.

Our models rely on demographic data and laboratory markers 
reflecting dialysis adequacy or complications associated with 
chronic kidney disease (CKD) to predict the future risk of CVCs 
occurrence in HD patients. Similar to previous findings from 
Xiaobing Liu (26) and Yukiko Matsubara (8), we  observed that 
lower levels of HGB, ALB, UV, and BFR, as well as male sex, were 
associated with faster progression to CVCs. The time-varying HR 
for male gender (HR = exp.[0.419 + 0.413 × ln(t)]) suggests 
accumulating risk over dialysis vintage. This pattern may 
be attributed to the vascular calcification process and fluctuations 
in hormone levels, both of which warrant further research. 
Furthermore, higher WBC and serum P levels, along with older age, 
were also predictive of an increased risk of CVCs in HD patients. 
These markers may reflect dialysis adequacy or underlying 
processes of inflammation or malnutrition.

In contrast to previous studies that have individually associated 
these laboratory markers with the progression to CVCs, our 
research integrates them collectively into a unified risk equation 
(the risk calculator can be accessed in Supplementary material 1). 

FIGURE 2

Observed vs. predicted non-CVCs rates using Models 3, 4, and 6 in the validation cohort. The MSE difference between the observed and predicted 
probabilities over the entire time-point of the CVCs was lower for Model 6 than for Models 3 and Model 4 (0.0067, 0.0059, and 0.0052, respectively). 
MSE, mean square error; CVCs, cardiocerebral vascular events.

FIGURE 3

Scatter plot of the NRIs for Model 3, Model 4, and Model 6. The 1200th day time node was chosen for NRI analysis. Model 3 vs. Model 4: NRI -0.007 
(95% CI: −0.220, 0.246); Model 3 vs. Model 6: NRI 0.351 (95% CI: −0.115, 0.565); Model 4 vs. Model 6: NRI 0.329 (95% CI: −0.085, 0.604). NRI, net 
reclassification improvement.

TABLE 3 Sensitivity analyses for Model 3, Model 4, and Model 6.

Models NRI NRI+ NRI−
3 vs. 4 −0.007 (−0.220, 0.246) −0.047 (−0.244, 0.114) 0.004 (−0.220, 0.246)

3 vs. 6 0.351 (−0.115, 0.565) 0.131 (−0.084, 0.387) 0.220 (−0.058, 0.387)

4 vs. 6 0.329 (−0.085, 0.604) 0.155 (−0.005, 0.368) 0.173 (−0.137, 0.341)

The NRI+ represents the accuracy in predicting the occurrence of CVCs. The NRI- 
represents accuracy in predicting the absence of CVCs. The predictive performance of Model 
6 surpassed that of Model 3 and Model 4 in determining the occurrence of CVCs or the 
absence of CVCs in HD patients. NRI, net reclassification improvement; CVCs, 
cardiocerebral vascular events.
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In addition, we  demonstrated no improvement in model 
performance with the addition of vascular access variables and 
physical examination (systolic blood pressure, diastolic blood 
pressure). Although these variables are clearly important for the 
diagnosis and management of HD patients, the lack of 
improvement in model performance may reflect their 
broad applicability.

Our study has several limitations. First, the inclusion of three 
independent dialysis centers in large general hospitals restricts the 
generalizability of our findings to patients undergoing HD in 
community hospitals or community healthcare centers. Second, it 
should be noted that the majority of participants in this study were of 
Han nationality, which reflects the ethnic distribution within 
Guangdong Province, China. However, it is important to acknowledge 
that certain underrepresented ethnic minorities may have a greater 
susceptibility to CVCs. Third, the sample size in this study was 
relatively limited, which may have influenced the stability of the model 
due to the low incidence of CVCs events. Future research will involve 
a multicenter study enrolling at least 2000 patients to validate 
these findings.

In summary, we have developed and validated time dependent, 
highly precise predictive models for progression to CVCs in patients 
undergoing HD. The optimal model we developed utilizes readily 
available laboratory data and demonstrates high accuracy in predicting 

the short-term risk of CVC occurrence. Moreover, its seamless 
integration into a laboratory information system ensures easy 
implementation. Model parameters can be integrated into hospital 
electronic health record systems to automatically compute risk scores 
and trigger alerts following each dialysis session. Prospective studies 
are currently being planned to assess the impact of the model on 
clinical decision-making, including modifications to dialysis regimens 
or enhanced cardiovascular monitoring protocols. Furthermore, 
future research will focus on optimizing the model’s performance 
through systematic exploration. External validation across multiple 
diverse cohorts of HD patients and evaluation in clinical trials 
are imperative.
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TABLE 4 Correlation coefficients and HR values for Model 6.

Model 6 Age BFR UV HGB ALB WBC P Male* T_cov_
Male*

Correlation 

coefficients
0.028 −0.002 −0.001 −0.009 −0.080 0.045 0.341 0.419 0.413

HR values 1.029 0.998 0.999 0.991 0.923 1.046 1.406 exp [0.419 + 0.413*ln(days)]

The coefficients’ positive and negative signs indicate a positive and negative correlation with the endpoint event, respectively. *Male gender, The PH test revealed that the assumption of 
proportional hazards was not satisfied by the male gender. BFR, blood flow rate during HD; UV, ultrafiltration volume during HD; HGB, hemoglobin; WBC, white blood cell count; ALB, 
serum albumin; P, serum phosphorus.

TABLE 5 Predicted probability of CVCs for 2 patients using our prediction 
modelsa.

Model Dialysis 
age

Probability of CVCs, %

Patient A 
(72-year-old 

male, with the 
observed time 

for CVCs 
3.17 years)

Patient B 
(79-year-old 

male, with the 
observed time 

for CVCs 
1.15 years)

3

1 year 3 8

3 years 14 32

5 years 25 51

4

1 year 3 5

3 years 11 21

5 years 19 35

6

1 year 10 26

3 years 42 79

5 years 65 96

aThe risk calculator can be accessed in Supplementary material 1. NRI, net reclassification 
improvement; CVCs, cardiocerebral vascular events.
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