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Objective: To systematically map the knowledge landscape and development 
trends in artificial intelligence (AI) applications for antimicrobial resistance (AMR) 
research through bibliometric analysis, providing evidence-based insights to 
guide future research directions and inform strategic decision-making in this 
dynamic field.

Methods: A comprehensive bibliometric analysis was performed using the 
Web of Science Core Collection database for publications from 2014 to 2024. 
The analysis integrated multiple bibliometric approaches: VOSviewer for 
visualization of collaboration networks and research clusters, CiteSpace for 
temporal evolution analysis, and quantitative analysis of publication metrics. 
Key bibliometric indicators including co-authorship patterns, keyword co-
occurrence, and citation impact were analyzed to delineate research evolution 
and collaboration patterns in this domain.

Results: A collection of 2,408 publications was analyzed, demonstrating 
significant annual growth with publications increasing from 4 in 2014 to 549 in 
2023 (22.7% of total output). The United  States (707), China (581), and India 
(233) were the leading contributors in international collaborations. The Chinese 
Academy of Sciences (53), Harvard Medical School (43), and University of 
California San Diego (26) were identified as top contributing institutions. Citation 
analysis highlighted two major breakthroughs: AlphaFold’s protein structure 
prediction (6,811 citations) and deep learning approaches to antibiotic discovery 
(4,784 citations). Keyword analysis identified six enduring research clusters 
from 2014 to 2024: sepsis, artificial neural networks, antimicrobial resistance, 
antimicrobial peptides, drug repurposing, and molecular docking, demonstrating 
the sustained integration of AI in antimicrobial therapy development. Recent 
trends show increasing application of AI technologies in traditional approaches, 
particularly in MALDI-TOF MS for pathogen identification and graph neural 
networks for large-scale molecular screening.

Conclusion: This bibliometric analysis shows the importance of artificial 
intelligence in enhancing the progress in the discovery of antimicrobial drugs 
especially toward the fight against AMR. From enhancing the fast, efficient and 
predictive performance of drug discovery methods, current AI capabilities have 
revealed observable potential to be proactive in combating the ever-growing 
challenge of AMR worldwide. This study serves not only an identification of 
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current trends, but also, and especially, offers a strategic approach to further 
investigations.
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1 Introduction

Antimicrobial resistance (AMR), which refers to the ability of 
microbes (bacteria, viruses, or fungi) to prevent antimicrobials from 
acting against them, has been recognized as a global public health 
emergency (1). Additionally, World Health Organization (WHO) 
concluded in a report that if no more effective interventions are made 
then AMR is expected to cause 10 million deaths annually by 2050 (2). 
Antibiotics are top-ranked drugs used in both acute-care hospitals and 
outpatient clinics, but rational and necessary use remains a challenge; 
irrational and unnecessary usage increases the emergence of 
multidrug-resistant (MDR) bacterial pathogens, resulting in higher 
mortality, longer hospital stays and higher healthcare costs (3, 4). Due 
to the persistent increase in the incidences of antibiotic resistance 
(AR) and the emergence of MDR, it is crucial to develop better 
solution for this. Current research activities have mainly targeted 
biofilm related strategies, quorum sensing and other factors which 
contribute to bacterial pathogenicity and models focusing on 
enhancing the knowledge in the use of antibiotics (5–7).

Over the past few years, artificial intelligence (AI) technology has 
been applied to medical image understanding, disease diagnosis and 
treatment, and other areas, leading to realistic advances in medical 
image analysis, disease prediction, and precise treatment (8). Thus, AI 
plays a critical role in combating AMR, particularly in the 
identification and design of antimicrobial agents, drug design and 
structural optimization, mechanism of action, and molecular 
exploration (9, 10). Deep learning is utilized to automatically analyze 
the effects of several chemicals on cell morphology and increase drug 
accuracy and action (11). Furthermore, it has been utilized to uncover 
new antibiotic and beta-lactamase inhibitors, improving screening 
and saving time and money while minimizing development failures 
(12). In 2024, Wong and his team employed graph neural networks to 
predict antibiotic activity and cytotoxicity in over 12 million molecules 
(13), finding the substructures of compounds with strong antibiotic 
activity but low toxicity. Deep learning was notably effective against 
Methicillin-resistant Staphylococcus aureus (MRSA) and resistant 
Enterococci, demonstrating its competence and potential.

AI technology is transforming multiple medical fields (14), but its 
specific roles and efficacy in antimicrobial medication discovery and 
AMR response methods are remain insufficiently explored. For this 
reason, bibliometrics fills this research need perfectly. By applying 
mathematical and statistical techniques to analyze quantitative data 
from scientific literature, bibliometrics enables the tracking of research 
trends and outputs (15). It uses indicators including the number of 
published papers, citation rate, and collaboration map to explain 
developmental processes and identify hot spots in medical, biological, 
and engineering sciences (16–18). Moreover, numerous bibliometric 
studies on AI and medicine have been conducted (19–21), which 
confirms the widespread usage of this intelligent technology in 
medicine and provides background and literature for this study.

This bibliometrics study aims to guide policymakers, researchers, 
and medical professionals in leveraging AI to improve antimicrobial 
medication development and use. Our study examined the past 
decade’s literature to uncover technological trends, problems, and 
future prospects in AI for antimicrobial medications. Additionally, 
this research also seeks to explore how deep learning technologies help 
develop novel antibiotics to combat the threat of AMR.

2 Materials and methods

2.1 Data retrieval

The Web of Science Core Collection (WoSCC) is the most well-
known and influential database of scientific literature and is the 
preferred database for bibliometric analysis (22). The WoSCC search 
was conducted on July 25, 2024. After removing duplicates through 
automated and manual verification, the final dataset included 2,408 
publications from 2014 to 2024. All publications were weighted 
equally in the analysis to maintain methodological consistency across 
different research domains. The published period of this study is set 
between 2014 and 2024. The search terms are as follows: TS = (“anti-
infective agent*” OR “anti-bacterial agent*” OR “antimicrobial agent*” 
OR “antimicrobial use” OR “antibiotic use” OR “antimicrobial residue” 
OR “antimicrobial resistance” OR “antibiotic resistance” OR antibiotic* 
OR antifungal* OR antiviral* OR antiparasitic*) AND TS = (“artificial 
intelligence*” OR “deep learn*” OR “machine learn*” OR “neural 
network*” OR “compu* intelligent*” OR robot). Only original articles 
and reviews written in English were included, resulting in a total of 
2,408 publications being analyzed in our study (Figure 1).

2.2 Data analysis and visualization

Data downloaded from the WoSCC include fully recorded and 
cited references. We utilized three analysis tools: VOSviewer 1.6.17, 
CiteSpace 6.3.R3, and Microsoft Excel 2019. Key bibliometric 
measures include: co-authorship, co-citation, and co-occurrence. For 
example, co-authorship analysis focused on examining collaborative 
relationships among authors, nations, or institutions, as indicated by 
jointly authored papers. The analysis of co-occurrences offers a 
quantitative approach to identifying relationships among components, 
while co-citation analysis was employed to evaluate the strength of 
connections between frequently cited elements.

VOSviewer, developed by Leiden University’s Science and 
Technology Research Center in the Netherlands, is a tool for creating 
and exploring network data maps. It offers cluster, superimposed, and 
density views to evaluate research trends and hotspots (23). In the 
maps generated by VOSviewer, each node represents an element, with 
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larger nodes indicating more reflections, and broader link widths 
between nodes indicating a higher level of cooperation. Microsoft 
Excel was employed to depict the worldwide production and 
evolutionary trends of relevant papers and to generate charts regarding 
the rankings of various factors.

CiteSpace is a citation visualization analysis software focused on 
revealing the potential knowledge contained within the scientific 
literature (24). Using CiteSpace, we  analyzed keyword/reference 
clustering and timelines. The parameters for CiteSpace included: ① 
each slice represents a year from 2014 to 2024; ② single node type 
selection; ③ selection criteria based on the g-index, k = 15; and 
④pruning performed using the pathfinder method. The impact factor 
(IF) and category quartile data were derived from the Journal Citation 
Reports (JCR) 2023. Scientific researchers, countries, journals, 
institutions, and journals were evaluated based on the H-index, a 
composite index measuring the quantity and quality of 
academic output.

3 Results

3.1 Analysis of publications

A collection of 2,408 publications was obtained (key findings are 
summarized in Supplementary Table S2). As shown in Figure  2, 
publication output increased moderately from 2014 to 2020, followed 
by a sharp acceleration that peaked at 549 publications in 2023 (22.7% 
of total publications). This dramatic increase coincides with significant 
advances in AI applications for antimicrobial research. The growth 
pattern can be divided into three distinct phases: (1) an initial steady 
phase (2014–2019), reflecting the early adoption of AI technologies in 
antimicrobial research; (2) a transition phase (2019–2021), likely 
influenced by the emergence of more sophisticated machine learning 
algorithms and increased computing power; and (3) a rapid expansion 
phase (2021–2023), marked by breakthrough developments such as 
AlphaFold’s protein structure predictions and advanced deep learning 
applications in drug discovery. The steep acceleration post-2020 also 
correlates with increased funding initiatives and international 
collaborations focused on AI-driven solutions for antimicrobial 
drug development.

3.2 Analysis of countries/regions

The top 10 countries ranked by their number of publications on 
the application of AI in antimicrobial agents are highlighted in Table 1. 
The United States leads with 707 publications, followed by China with 
581, and India with 233. The international cooperation network, 
shown in Figure  3, reveals collaborative relationships among 64 
countries. As shown in Figure  3A, the geographic distribution of 
research collaborations shows strong clustering in North America, 
East Asia, and Western Europe. Figure 3B further demonstrates that 
these collaboration networks are particularly dense between the 
United States and China.

FIGURE 1

Flowchart for identifying and selecting publications.

TABLE 1 The top 10 countries/regions in terms of publications.

Rank Countries Counts Citations TLS

1 United States 707 17,117 511

2 China 581 6,806 273

3 India 233 2,534 157

4 United Kingdom 187 3,717 300

5 Germany 111 1874 193

6 Italy 93 1,131 150

7 Iran 90 1,638 45

8 Spain 89 1,518 146

9 Canada 80 2,945 113

10 Australia 78 1,371 123
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3.3 Analysis of institutions and authors

Leading in publications within this field, the Chinese Academy of 
Sciences stands out with 53 publications, closely followed by Harvard 
Medical School and the University of California San Diego, with 43 
and 37 publications, respectively, (Table  2). Notably, although 
Massachusetts Institute of Technology (MIT) ranks fourth with 28 
publications, it holds the highest TLS value. This demonstrates that 
research from the MIT is both extensive and highly interconnected, 
highlighting its prominent role and influence in global research 
collaborations. Additionally, Figure  4A reveals the cooperation 
network among the top  89 institutions by publication volume, 
identifying two primary clusters. These clusters are distinguished by 
color, with red representing the cluster centered around the Chinese 
Academy of Sciences and green for Harvard Medical School. Table 3 
lists the top 10 authors by publication volume in this field. Sean Ekins 
leads with 18 publications, followed by Chia-Ru Chung with 15, and 
Mahmoud Huleihel with 14. These numbers reflect both their 

productivity and their impact on the research community. Figure 4B 
further shows the collaborative networks among these authors.

3.4 Analysis of journals and co-cited 
journals

Table 4 highlights significant contributions from leading journals 
in the application of AI to antimicrobial agents. “SCIENTIFIC 
REPORTS” tops the list with 73 publications, followed by 
“FRONTIERS IN MICROBIOLOGY” with 67, and “ANTIBIOTICS 
BASEL” with 50. The publication rankings correlate closely with their 
citation impacts, with “SCIENTIFIC REPORTS” achieving the highest 
co-citation count at 4,700. “NATURE COMMUNICATIONS” has the 
highest IF among the top 10 journals in both publication volume and 
citations. Furthermore, Figure  5 represents the extensive 
interconnectedness within scientific research, revealing robust citation 
flows among fields such as medicine, molecular biology, and health 

FIGURE 2

The number of annual publication and the percentage of annual publication.
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sciences. This comprehensive view highlights the collaborative and 
multidisciplinary nature of research in AI for antimicrobial applications.

3.5 Analysis of references

The 10 most frequently co-cited references in research on AI and 
antimicrobial agents are detailed in Table 5. In 2021, the most frequently 
co-cited reference was “Highly accurate protein structure prediction with 
AlphaFold” by Jumper, originally published in Nature (25). This was 
followed by “A deep learning approach to antibiotic discovery” which 
appeared in Cell in 2020 (26). The two papers demonstrate significant 

advancements in the application of AI in antimicrobial agents: 
AlphaFold’s accurate protein structure predictions facilitate drug 
discovery and the development of antibiotics, while a deep learning 
approach has led to the identification of novel antibiotics such as Halicin, 
offering new avenues to address antibiotic resistance. CiteSpace 
visualized co-cited references in Figure  6A, and we  constructed a 
network map of the top seven clusters shown in Figure 6B.

Clustering reveals dominant themes and trends by grouping similar 
references. A timeline analysis in Figure 7 further traces the evolution of 
these trends. Clusters #0 “antibacterial peptide (ABP)” #1 “antibiotic 
resistance prediction” and #3 “artificial intelligence” have been 
continuously active research hotspots since their emergence, significantly 
advancing solutions in global health through innovations in therapy 
development, drug-resistance management, and medical AI applications.

FIGURE 3

The global research collaboration network. (A) Geographic distribution of research collaborations. (B) Thematic clusters of global collaborations.

TABLE 2 The top 10 institutions in terms of publications.

Rank Institutions Counts Citations TLS

1 Chinese Acad Sci 53 752 701

2 Harvard Med Sch 43 2,761 1885

3
Univ Calif San 

Diego
37 2,549 1,347

4 Mit 28 2,407 2,251

5
Univ Chinese Acad 

Sci
26 159 145

6 Emory Univ 25 1,272 1,256

7
Shanghai Jiao Tong 

Univ
24 256 249

8 Stanford Univ 22 887 867

9
Chinese Univ Hong 

Kong
21 176 210

10 Peking Univ 21 153 148

TABLE 3 The top 10 authors in terms of publications.

Rank Author Count Country

1 Ekins, Sean 18 United States

2 Chung, Chia-Ru 15 China

3
Huleihel, 

Mahmoud
14 Israel

4 Lee, Tzong-Yi 14 China

5 Salman, Ahmad 14 Israel

6 Lapidot, Itshak 13 Israel

7 Lu, Jang-Jih 12 China

8 Wang, Hsin-Yao 12 China

9
Horng, Jorng-

Tzong
11 China

10 Sharaha, Uraib 11 Israel
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TABLE 4 The top 10 journals and co-cited journals in terms of publications.

Rank Journals Count IF JCR Rank Co-cited 
Journals

Citations IF JCR

1 Scientific Reports 73 3.8 Q1 1 Scientific Reports 526 3.8 Q1

2
Frontiers in 

Microbiology
67 4.0 Q1 2

Frontiers in 

Microbiology
487 4.0 Q1

3 Antibiotics Basel 50 4.3 Q1 3
International Journal 

of Molecular Sciences
387 4.9 Q2

4
Briefings in 

Bioinformatics
45 6.8 Q1 4 Antibiotics Basel 356 4.3 Q1

5 PLoS One 34 2.9 Q1 5
Science of the Total 

Environment
269 8.2 Q1

6
Nature 

Communications
33 14.7 Q1 6 Microorganisms 245 4.1 Q2

7 Molecules 31 4.2 Q2 7 PLoS One 227 2.9 Q1

8

Journal of Chemical 

Information and 

Modeling

28 5.6 Q1 8 Molecules 218 4.2 Q2

9 Bioinformatics 24 4.4 Q1 9
Nature 

Communications
207 14.7 Q1

10 BMC Bioinformatics 24 2.9 Q1 10
Briefings in 

Bioinformatics
198 6.8 Q1

3.6 Analysis of keywords

In the field of AI and antimicrobial agents, a total of 483 keywords 
were identified, with 33 of these appearing more than 50 times 
(Figure 8A). Supplementary Table S1 presents the top 20 keywords, 
which are the most frequently occurring. These keywords are grouped 
into several thematic categories: AI and data analysis, antibiotic and 
antimicrobial resistance, microbiology-related terms, and concepts 
related to biomolecular and drug development. “Machine learning” 
stands out as the most frequently mentioned keyword, followed 

closely by “antibiotic resistance” and “prediction” in terms 
of occurrence.

Cluster analysis was used to describe the relationships among the 
themes of keywords, revealing interconnections between AI and 
antimicrobial agents, as shown in Figure 8B. Timeline analysis further 
traced the evolution of these themes, as depicted in Figure  9, 
identifying eight clusters (#0 to #7), highlighting shifts in research 
focus and emerging trends. The enduring research clusters from 2014 
to 2024 in the field of AI and antimicrobial agents—#0 sepsis, #1 
artificial neural networks, #2 antimicrobial resistance, #3 

FIGURE 4

The network map of institutions and authors. (A) Institutional collaboration network. (B) Author collaboration network.
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antimicrobial peptides, #4 drug repurposing, and #5 molecular 
docking—highlight the persistent integration of AI in tackling key 
challenges in antimicrobial therapy.

The burst analysis of keywords depicted in Figure 10 underscores 
significant shifts in research focus and the emergence of new themes 
within this field. Key trends such as the sustained interest in “ABPs” and 
“artificial neural networks” from 2014, coupled with the rising concern 
over “drug resistance” and “Mycobacterium tuberculosis” beginning in 
2019, reflect crucial developments and policy shifts. Additionally, the 
analysis highlights growing attention to “tetracycline,” “MALDI-TOF 

MS,” “big data” and “strategy” indicating a broadening of research 
scopes and the integration of new technologies and methodologies.

4 Discussion

4.1 General information

This study analyzed papers over the past decade on AI in 
antimicrobial drugs, highlighting a marked increase in publications 

FIGURE 5

The dual-map overlay of journals represents the topic distribution of academic publications related to AI in antimicrobial resistance research.

TABLE 5 The top 10 co-cited references in terms of publications.

Rank Co-cited references Citations IF JCR Centrality

1 Jumper J, 2021, NATURE, V596, P583, DOI 10.1038/s41586-021-03819-2 6,811 50.5 Q1 0.01

2 Stokes JM, 2020, CELL, V180, P688, DOI 10.1016/j.cell.2020.01.021 4,784 98.4 Q1 0.01

3
Alcock BP, 2020, NUCLEIC ACIDS RES, V48, PD517, DOI 10.1093/nar/

gkz935
2065 16.6 Q1 0.02

4
Murray CJL, 2022, LANCET, V399, P629, DOI 10.1016/S0140-

6736(21)02724-0
989 45.5 Q1 0.02

5
Arango-Argoty G, 2018, MICROBIOME, V6, P0, DOI 10.1186/s40168-

018-0401-z
431 13.8 Q1 0.06

6
Veltri D, 2018, BIOINFORMATICS, V34, P2740, DOI 10.1093/

bioinformatics/bty179
276 4.4 Q1 0.02

7
Pirtskhalava M, 2021, NUCLEIC ACIDS RES, V49, PD288, DOI 10.1093/

nar/gkaa991
243 16.6 Q1 0.01

8
Nguyen M, 2019, J CLIN MICROBIOL, V57, P0, DOI 10.1128/JCM.01260-

18
168 6.1 Q1 0.03

9
Yan JL, 2020, MOL THER-NUCL ACIDS, V20, P882, DOI 10.1016/j.

omtn.2020.05.006
133 6.5 Q1 0.11

10
Moradigaravand D, 2018, PLOS COMPUT BIOL, V14, P0, DOI 10.1371/

journal.pcbi.1006258
109 3.8 Q1 0.01
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FIGURE 7

Timeline view of co-cited references by using CiteSpace software.

since 2021, peaking in 2023. This trend reflects the urgent need to 
combat global AMR, emphasizing the vital role of AI. Significant 
international collaborations, especially among leaders like the 
United  States, China, and India, are essential for fostering 
technological innovation and interdisciplinary approaches to complex 
health challenges. The United States leads globally due to its strong 
research infrastructure and substantial support for new drug 

development (27). China capitalizes on its extensive medical data and 
rapid AI innovation (28), while India benefits from its robust IT sector 
and cost-effective drug development (29).

The contributions of institutions like the Chinese Academy of 
Sciences, Harvard Medical School, and UC San Diego in AI for AMR 
are underscored by leading researchers like Sean Ekins, Chia-Ru 
Chung, and Mahmoud Huleihel. Their prolific work advances the field 

FIGURE 6

Visualization map of references concerning AI in antimicrobial resistance research. (A) Reference co-occurrence network. (B) Reference cluster map.
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and highlights the critical role individual researchers play in shaping 
AMR research (30–33). These institutions stand out due to their 
robust infrastructure and substantial funding, enabling significant 
advancements in AMR solutions. Meanwhile, “SCIENTIFIC 
REPORTS” plays a key role in advancing AI research on antimicrobial 

drugs, offering a platform for diverse multidisciplinary studies. In 
contrast, “NATURE COMMUNICATIONS” with its high IF, 
distinguishes itself by publishing influential, high-quality research that 
drives global scientific agendas. Additionally, the extensive citation 
networks connecting disciplines such as medicine and molecular 

FIGURE 8

Visualization map of keywords concerning AI in antimicrobial resistance research. (A) Keywords co-occurrence network. (B) Keywords cluster map.

FIGURE 9

Timeline view of keywords by using CiteSpace software.
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FIGURE 10

The keywords with the strong citation bursts.

biology further highlight the essential role of interdisciplinary 
collaboration in addressing AMR challenges.

4.2 Research hotspots

The intersection of AI and biomedical research has given rise to 
significant advancements in the fight against microbial threats. 

Among these, three studies stand out for their innovative approaches 
and substantial impact on the field of antimicrobial research.

As the top-ranked co-cited reference (25), the study “Highly 
accurate protein structure prediction with AlphaFold” by Jumper, 
published in Nature (2021), marks a pivotal advancement at the 
juncture of AI and biomedical research. This groundbreaking work 
on accurately predicting protein structures significantly enhances 
the field of antimicrobial drug design. By delivering detailed 
structural predictions of pathogenic proteins, AlphaFold enables the 
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development of targeted antimicrobial therapies that are not only 
more effective but also less prone to resistance. Additionally, it 
provides novel insights into ARmechanisms by predicting structural 
changes in proteins due to mutations, aiding in the design of new 
drugs to counteract resistance. The rapid and efficient predictions 
made by AlphaFold facilitate accelerated research and development 
cycles, essential for keeping pace with swiftly evolving microbial 
threats. This progress not only advances antimicrobial drug research 
but also demonstrates the transformative potential of applying 
advanced computational technologies to biological research, thereby 
opening new pathways for addressing complex health challenges.

As the second most co-cited reference (26), the paper “A Deep 
Learning Approach to Antibiotic Discovery” by Stokes, published in Cell 
(2020), exemplifies the profound impact of computational techniques on 
antimicrobial drug discovery. This innovative study employed a deep 
learning model to screen over 107 million compounds efficiently, leading 
to the discovery of Halicin, a novel antibiotic effective against a broad 
spectrum of resistant pathogens, including Mycobacterium tuberculosis. 
This research not only illustrates the capacity of computational models 
to both accelerate and innovate within the antibiotic discovery process 
but also tackles the pressing issue of antibiotic resistance. It introduces a 
scalable and novel approach that rejuvenates the antibiotic development 
pipeline, potentially addressing global health threats.

As the third most co-cited reference (34), “CARD 2020: antibiotic 
resistome surveillance with the comprehensive antibiotic resistance 
database” by Alcock, published in Nucleic Acids Research (2020), 
highlights the essential role of informatics in combating AMR. The 
Comprehensive Antibiotic Resistance Database (CARD) offers a 
meticulously curated collection of DNA and protein sequences, along 
with detection models and bioinformatics tools designed to elucidate 
the molecular basis of bacterial AMR. This work significantly advances 
AMR surveillance and analysis capabilities, supporting widespread 
applications in public health, clinical settings, agriculture, and 
environmental studies. Through ongoing updates and community-led 
improvements, CARD not only deepens our understanding of AMR 
patterns but also strengthens global efforts to effectively manage and 
reduce antibiotic resistance.

In the field of antimicrobial drugs and AI, significant 
advancements have been realized through the strategic integration of 
machine learning technologies. These developments, centered around 
the key terms “machine learning,” “antibiotic resistance,” and 
“prediction,” form the backbone of current research efforts aiming to 
combat the rising challenge of ARefficiently.

In recent years, machine learning has significantly advanced the 
prediction of antimicrobial drugs and detection of antibiotic 
resistance. Utilizing deep learning and other machine learning 
models, researchers have improved diagnostic accuracy. Notably, 
Stokes (26) used a deep neural network to discover Halicin, a new 
antibiotic effective against resistant pathogens in mouse models. The 
evolution of deep learning has also popularized molecular graph 
representations, enhancing the prediction of antimicrobial activity 
through graph neural networks (35). Furthermore, Arango-Argoty 
(36) created DeepARG, a tool for predicting ARgenes using deep 
learning, and Khaledi (37) applied machine learning to help 
physicians select targeted antibiotics based on genomic data. AR has 
become a major challenge in the global public health arena. According 
to Murray, in 2019, there were 4.95 million deaths associated with 
bacterial antibiotic resistance, of which 1.27 million deaths were 

attributed directly to bacterial antibiotic resistance (38). The World 
Bank estimates that by 2050, ARcould reduce global GDP by up to 
3.8% (39). Although the overuse or misuse of antibiotics is a primary 
driver of resistance, other interconnected factors such as 
environmental contributors, agricultural practices, and global 
disparities in antibiotic exposure also exacerbate the prevalence and 
spread of resistance. For example, the widespread use of antibiotics in 
agriculture leads to the spread of resistant bacteria through the food 
chain and environment, impacting human health (40), while urban 
wastewater treatment plants have become hotspots for antibiotics and 
resistance genes entering the environment (41). Current antimicrobial 
prediction models, such as deep learning and random forests, have 
shown great potential in resistance prediction. However, these models 
face challenges related to data imbalance, quality control, and missing 
data (42, 43). Future research should focus on improving model 
accuracy through data balancing techniques and integrating multiple 
data sources (such as clinical, genetic, and chemical data) to provide 
more comprehensive predictions (44).

Recent clinical implementations of AI models in antimicrobial 
research have shown promising results in several key areas. For 
example, the clinical validation of deep learning models for antibiotic 
discovery has shown tangible outcomes. As demonstrated by Stokes, 
deep learning approaches led to the discovery of novel antibiotics 
effective against resistant pathogens, particularly against MRSA and 
resistant Enterococci (26). Furthermore, Wong successfully employed 
graph neural networks to predict both antibiotic activity and 
cytotoxicity across over 12 million molecules, identifying compounds 
with strong antibiotic activity and low toxicity (13). This systematic 
approach shows great promise for clinical applications. However, 
challenges remain in widespread clinical adoption, including the need 
for extensive validation across diverse patient populations and 
integration with existing hospital information systems.

4.3 Future trends

Based on our analysis of publication trends and citation patterns, 
specific AI models and research priorities emerge as particularly 
promising for near-term clinical impact. The bibliometric data 
suggests that graph neural networks, as demonstrated by Wong show 
particular promise for immediate clinical application due to their 
proven capability in simultaneously predicting both antibiotic activity 
and cytotoxicity (13). Additionally, deep learning models for 
antimicrobial resistance prediction, as shown in Khaledi’s work, 
demonstrate strong potential for rapid clinical implementation in 
resistance prediction (37). These approaches are particularly valuable 
as they can be  integrated into existing clinical workflows with 
minimal disruption.

4.3.1 Application of interdisciplinary methods
There is a problem of integrating artificial neural networks 

(ANNs) in drug repurposing which can help as one of the solutions to 
the major global health threat  – antibiotic resistance. ANNs are 
computing systems that mimic the structure and function of the 
neurons found in biological brains commonly used in the field of 
Machine Learning as well as Artificial Intelligence. Consisting of 
several combined layers of neurons such as human brain neurons, 
ANNs transfer the data through connections and weights (45). Drug 
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repurposing that is also referred to as drug repositioning means using 
already approved drugs to treat other diseases (46). In this way, ANNs 
can be used for discovering new potential drugs from the existing 
libraries and profiles of drug’s resistance, which can be effectively 
analyzed by using the computational power of ANNs. For example, 
using mtc-QSAR-EL that contains ensembles of neural networks for 
virtual screening, researchers have discovered the multi-strain 
inhibitors for diseases such as tuberculosis and demonstrate the ability 
to apply these technique to address antibiotic-resistant pathogens (47). 
Similarly, the work of Tarín-Pelló shows the applicability of TDA for 
repositioning of FDA-approved drugs for possible effectiveness against 
Escherichia coli and stresses on the flexibility of computation 
techniques in identifying multifaceted antimicrobial leads (48). Gupta 
further such AI-based strategies are in the process to become 
prominent in the improvement of drug design, bettering the reuse of 
existing drugs and efficiently overcoming the new dimension of 
AR (49).

These molecular docking techniques have therefore become a 
very important tool in the analysis of antibiotic resistance among 
researchers desiring to reduce this vice. For instance, the study 
done by Das and others used molecular docking and molecular 
dynamics simulations to study the inhibition of Staphylococcus 
aureus tyrosyl-tRNA synthetase by the newly synthesized 
glycolipid biosurfactants and thus might be useful in a discovery 
of new antibacterial agents (50). In the same way, the study by 
Palazzotti involved the use of supervised molecular dynamics 
(SuMD) and molecular docking to reveal the mechanisms of 
interaction between the NorA of S. aureus efflux pump and its 
inhibitors thus opening the way to the development of efflux 
pump inhibitors to reverse the resistance to antibiotics (51). These 
examples show a significant role of molecular docking to 
understand the molecular level principles of drug–target 
interactions, which can further help in designing and optimizing 
the drug candidates against AMR.

Mass spectrometry, particularly Matrix-Assisted Laser 
Desorption/Ionization-Time of Flight Mass Spectrometry 
(MALDI-TOF MS), has enormous potential that enables the 
identification of pathogens and their AMR profiles in the shortest 
time possible. This innovative approach provides a direct and ideal 
way to analyze the microbial profile and to provide the appropriate 
antibiotics. For example, Nguyen’s study was able to demonstrate the 
accuracy of MALDI-TOF MS coupled with AI in predicting AMR in 
Pseudomonas aeruginosa in clinical practice (52). In a similar manner, 
Wesołowska and Szczuka analyzed the composition of Staphylococci 
on the skin of healthy animal with help of MALDI-TOF MS, adding 
more information regarding resistance features even in 
non-pathogenic flora (53). Further, the study by Teodoro successfully 
apply MALDI-TOF MS in order to identify the AMR of Aeromonas 
spp. Since the microbial contamination of ready-to-eat foods poses a 
great concern in food microbiology and public health, the application 
of this technology is significant (54). Such studies emphasize the 
significance of MALDI-TOF MS in the modern concepts of the 
diagnosis of microbial diseases and the fight against AMR.

4.3.2 In-depth analysis of specific areas
Our keyword burst analysis and citation patterns indicate that 

Mycobacterium tuberculosis and sepsis represent critical areas 
requiring immediate research attention. The surge in 

tetracycline-related research (starting from 2019) and the persistent 
focus on drug-resistant pathogens suggest these areas should receive 
high priority. This aligns with recent WHO priorities and the 
increasing global burden of these conditions (38, 39). Furthermore, 
our analysis of emerging trends indicates that the integration of ANNs 
with drug repurposing strategies shows particular promise for 
addressing urgent clinical needs in resource-limited settings.

This category of biosensors remains popular to this day 
because of the idea that ABPs can be used to counteract microbial 
infections, especially concerning the uncontrolled antibiotic use. 
AI has the major role in improving the identification and 
discovery of peptides with high antimicrobial efficacy from the 
large database of peptides. For example, the work of Yue and his 
colleagues demonstrates the usage of the ML techniques for the 
development of a new ABP, IK-16-1 based on human β-defensins 
that demonstrated a broad-spectrum antimicrobial activity, 
making it potentially perspective for using as a cosmetic 
preservative (55). In the same way, Yao and the team launched 
AMPActiPred, a powerful three-step computational tool based on 
deep forest model to predict the presence and activity level of 
ABPs, which provides a highly accurate result and user-friendly 
interface for further study and application (56). Transposing on 
the possibility of using ABPs to reduce microbial threats, their 
utilization could as well be  adopted for other serious health 
emergencies, especially sepsis-an extreme response to infection 
that results to injury of body tissues, organs.

Using ABPs in the fight against microbial threats and the utility of 
their extension to important health concerns like sepsis that often 
results from antibiotic-resistant returns our subject to our literature 
review. Sepsis is a fatal condition that results from an injurious host 
reaction to an infection thus causing the destruction of host tissues 
and organs (57). The enhancement of ABPs directed against antibiotic-
resistant organisms might be a step forward in the prediction and the 
handling of sepsis in circumstances in which antibiotics fail. This calls 
for a more detailed research on the effectiveness and the working of 
ABPs, especially their applicability as treatment to AR and their 
potential in intensive care.

Integrating big data analysis enables a comprehensive 
examination of usage patterns and resistance trends associated 
with tetracycline, facilitating the development of more effective 
management strategies. For example, the study by Huang 
investigates the potential of graphene oxide nanoparticles, 
enhanced by AI, to remove tetracycline from wastewater, thereby 
minimizing environmental contamination (58). In a similar vein, 
Gheytanzadeh and colleagues employ an AI approach to optimize 
the photocatalytic degradation of tetracycline using metal–organic 
frameworks (MOFs), underscoring the influence of operational 
parameters and MOF characteristics on degradation efficiency 
(59). Additionally, research by Wang assesses the impact of 
tetracycline on bacterial communities within agricultural soils, 
revealing substantial alterations in microbial populations and 
resistance genes, which highlights the ecological implications of 
antibiotic usage in agricultural settings (60). These studies 
collectively emphasize the diverse strategies being developed to 
mitigate tetracycline resistance and environmental pollution, 
illustrating the pivotal role of innovative technologies and data 
analysis in advancing solutions for environmental and public 
health challenges.
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4.4 Limitation

This study has some limitation, including the use of English only 
articles from the WoSCC database. Exploring regional databases and 
non-English publications could offer a more comprehensive view of AI 
applications in AMR, particularly from regions with high AMR burden 
but potentially underrepresented in WoSCC. On the positive note, 
WoSCC is quite expansive but the cost is that great research done in 
other languages or databases may not be taken into consideration. In 
addition, the fact that citation delays might lead to underrepresentation 
of recent high-quality publications could affect the accuracy of trend 
analyses. However, one cannot deny the fact that this study is appropriate 
for exploring promising research topics in the development of 
antimicrobial resistance, revealing some specific research areas that hold 
the highest potential, as well as the subsequent areas for potential 
research. The exclusive use of WoSCC is defendable since it along with 
other limitations offers broad fulltext access and citation analysis, which 
PubMed or Embase, for instance, does not afford for a bibliometric study.

5 Conclusion

The findings from this bibliometric analysis highlight the critical 
role of AI in addressing AMR. Our comprehensive review spans the 
years 2014 to 2024, showcasing substantial advancements in AI-driven 
research within notable institutions and from prominent authors, 
predominantly from the United  States, China, and India. Leading 
contributors such as the Chinese Academy of Sciences, Harvard Medical 
School, and MIT have played pivotal roles in international collaborative 
efforts in this field. This research has significantly advanced the 
development and optimization of antimicrobial drugs, particularly 
through groundbreaking applications such as deep learning techniques 
for predicting antibiotic activity and the accelerated discovery of 
effective treatments against resistant pathogens. Key references, notably 
on AlphaFold’s protein structure predictions and AI-driven antibiotic 
discovery, underscore the transformative impact of these technologies. 
Additionally, the analysis of keywords and thematic clusters, including 
“ABPs” and “artificial neural networks” indicates an expanding research 
scope that not only enhances the drug discovery process but also 
integrates AI into broader antimicrobial strategies.
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