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This paper aims to investigate m6A modification during DKD progression. We evaluated 
m6A regulators expression in peripheral blood mononuclear cells, whole kidney 
tissue, glomerular, and tubulointerstitial samples. CIBERSORT and single-sample 
gene set enrichment analysis analyzed glomerular immune characteristics. Logistic-
LASSO regression were used to develop the m6A regulators model that can 
identify early DKD. Consensus clustering algorithms were used to classify DKD 
in glomerular samples into m6A modified subtypes based on the expression of 
m6A regulators. Gene set variation analysis algorithm was used to evaluate the 
functional pathway enrichment of m6A modified subtypes. Weighted gene co-
expression network analysis and protein–protein interaction networks identified 
m6A modified subtype marker genes. The Nephroseq V5 tool was used to evaluate 
the correlation between m6A modified subtypes marker genes and renal function. 
DKD patients’ m6A regulators expression differed from the control group in various 
tissue types. DKD stages have various immune characteristics. The m6A regulators 
model with YTHDC1, METTL3, and ALKBH5 better identified early DKD. DKD was 
divided into two subtypes based on the expression of 26 m6A regulators. Subtype 
1 was enriched in myogenesis, collagen components, and cytokine receptor 
interaction, while subtype 2 was enriched in protein secretion, proliferation, 
apoptosis, and various signaling pathways (e.g., TGFβ signaling pathway, PI3K/AKT/
mTOR pathway, and etc.). Finally, AXIN1 and GOLGA4 were identified as possible 
biomarkers associated with glomerular filtration rate. From the viewpoint of m6A 
modification, the immune characteristics and molecular mechanisms of DKD 
at various stages are different, and targeted treatment would improve efficacy.
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Introduction

With the increase of population aging, poor living habits and environmental pollution, 
the prevalence of diabetes mellitus is rapidly increasing. The number of people with diabetes 
is 463 million in 2019, and it is expected that about 700 million people worldwide will have 
diabetes by 2045 (1, 2). Diabetic patients with chronic complications are common, among 
which kidney involvement is more common, and diabetic kidney disease (DKD) has become 
a major cause of end-stage renal disease (ESRD) (3). Renal damage caused by diabetes can 
involve almost all structures of the kidney, and once renal impairment occurs, it progresses 
faster than in patients with non-diabetic kidney disease. It has also been clinically observed 
that when DKD progresses to end-stage renal failure, patients have a worse long-term 
prognosis than patients with other kidney diseases, whether given dialysis or kidney 
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transplantation. The health burden associated with DKD remains a 
major challenge for individuals, families and society. Therefore, early 
diagnosis and treatment to delay the occurrence and development of 
DKD are of great significance to increase the survival rate and improve 
the quality of life of DKD patients.

Urinary microalbumin is a common early monitoring indicator 
for patients with DKD, but about 28% of patients do not develop 
proteinuria during the progression of the disease, and this variation of 
the disease brings difficulties in early diagnosis (4–6). Currently, the 
main pathogenic mechanisms of DKD include hemodynamic changes, 
metabolic disorders and inflammatory responses, while inflammation 
and immune responses play a central role in disease progression (7, 
8). The control of metabolic abnormalities such as glucose, blood 
pressure, and lipids alone is not enough to meet the treatment needs, 
and many DKD patients still progress to ESRD. Therefore, there is an 
urgent need to further understand the pathogenesis of DKD, to find 
better early diagnostic indexes, and to develop new biomarkers and 
potential targets at the molecular level for the prevention and 
treatment of DKD.

Although individual genetic susceptibility and familial aggregation 
are associated with the development of DKD, there is growing 
evidence that epigenetics, which regulates gene expression 
independently of genomic sequence, also plays an important role in 
the development of the disease (9, 10). Post-transcriptional 
modifications are receiving increasing attention in most fields of 
epigenetics. Among them, the most abundant and prevalent 
modification in eukaryotic mRNAs is the m6A modification, which is 
defined as methylation at the sixth N position of adenylate (11, 12). 
The m6A modification is dynamically reversible, and the level of 
modification is regulated by methyltransferases (“Writers”), 
demethylases (“Erasers”) and methylated reading proteins (“Readers”). 
m6A regulators are involved in a variety of biological functions, 
including tissue development, cell differentiation, circadian rhythms, 
and tumor progression (13). In addition, m6A modification has been 
confirmed to be involved in inflammation and apoptosis in DKD, 
which plays an important role in disease progression (14, 15). 
METTL14 is associated with the progression of DKD, according to a 
previous study by our group (16). Nevertheless, the research on post-
transcriptional epigenetic modifications in DKD is still in its infancy. 
To further understand the mechanism of m6A modifications in DKD, 
this study attempted to elucidate the mechanism of DKD progression 
and identify therapeutic targets from the perspective of m6A 
modifications through bioinformatics analysis.

Materials and methods

Data selection and preprocessing

The flow chart of the study is shown in Figure 1. Relevant data 
were collected from the Gene Expression Omnibus (GEO) database1 
for patients with DKD and controls. A total of four datasets were 
selected for this study: (I) GSE142153 is peripheral blood mononuclear 
cells (PBMC) sample data from GPL6480 (Agilent-014850 Whole 

1 https://www.ncbi.nlm.nih.gov/geo/

Human Genome Microarray); (II) GSE142025 is the whole kidney 
tissue sample data from GPL20301 (Illumina HiSeq  4,000); (III) 
GSE96804 is microdissected glomerular sample data from GPL17586 
(Affymetrix Human Transcriptome Array 2.0); (IV) GSE104954 is 
renal tubulointerstitial tissue sample data from GPL22945 (Affymetrix 
Human Genome U133 Plus 2.0 Array) and GPL24120 (Affymetrix 
Human Genome U133A Array).

Convert all probes to gene names, removing probes with no 
matching gene names or matching multiple gene names. When 
multiple probes existed for the same gene, the probe values were 
averaged. Raw data were normalized using the robust multi-array 
average (RMA) algorithm. Batch effects were removed with the 
combat function of the “SVA” R package (17).

Evaluation of M6A regulators

The 27 m6A-modified regulators in this study were based on the 
results previously reported in the literature (18–21). The m6A 
regulators interaction network was analyzed using the interaction data 
from the STRING database2 and visualized using Cytoscape3 (22). The 
“limma” package was used to compare the differences in expression of 
m6A regulators between controls and DKD at different periods in 
different samples (23). Spearman correlation analysis was used to 
assess the expression relationship between m6A regulators in 
glomerular samples.

M6A regulators and immune characteristics

Estimation of 22 types of infiltrated immune cells using the 1,000 
permutation-based CIBERSORT algorithm in R (24). The immune-
related gene cohorts were obtained from ImmPort database4. The 
immune response activity was evaluated by single-sample gene-set 
enrichment analysis (ssGSEA) algorithm in the “GSVA (gene set 
variation analysis)” R package. The level of immune cells infiltration 
and immune response activity between groups was assessed using 
differential expression heat maps or box plots, with p < 0.05 being a 
significant result. Spearman correlation analysis was used to assess the 
correlation between m6A regulators and immune characteristics in 
glomerular samples.

Development and validation of M6A 
regulators model

In univariate logistic regression analysis, candidate m6A 
regulators with p < 0.05 were selected and included in the LASSO 
regression model. LASSO regression analysis was performed using 
the “glmnet” R package. The lambda value corresponding to 
minimized the cross-validated mean squared error was used for 
model selection (25). The m6A regulators with non-zero regression 
coefficients were selected by LASSO and further included in the 

2 https://string-db.org/

3 https://cytoscape.org/

4 https://www.immport.org/shared/home
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multivariate logistic regression analysis. The final m6A regulators with 
p < 0.05 in the multivariate logistic regression model were used as 
diagnostic model classifier. We applied the classifier to the training 

and validation sets and evaluated the classifier performance based on 
area under curve (AUC) scores in the receiver operating characteristic 
curve (ROC).

FIGURE 1

Study flow diagram. m6A, N6-methyladenosine; PBMC, Peripheral blood mononuclear cells; WGCNA, weighted gene co-expression network analysis; 
PPI, protein–protein interaction.
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Unsupervised consensus clustering analysis 
of glomerular DKD samples

Based on the 26 identified m6A regulators in the glomerular DKD 
samples, a consensus clustering analysis was performed using the 
k-means algorithm in the “ConsensusClusterPlus” R package to 
identify the m6A modified subtypes. The consensus clustering 
algorithm was run for 1,000 iterations, with each iteration containing 
80% of the samples to ensure the stability of the clustering. The 
optimal number of clusters is determined by the cumulative 
distribution function (CDF) curves of the consensus score and the 
consensus matrix heatmaps. The robustness of the k-values of the 
clustering analysis was verified by the “PCA (principal component 
analysis)” R package. The Kruskal-Wallis test was used to compare the 
expression of m6A regulators between subtypes.

Functional pathway enrichment analysis of 
M6A modified subtypes

The expression matrix was transformed into a pathway activation 
score matrix using the “GSVA” R package, and the “limma” R package 
was used to compare the pathway activation scores between the two 
subtypes, with a p value <0.01 as the cut-off criterion (26). The gene 
sets “h.all.v7.5.1.symbols” and “c2.cp.kegg.v7.5.1.symbols” were 
downloaded from the MSigDB database5 and used for the 
GSVA analysis.

Identification of genes and clinical 
significance

Differentially expressed genes between two m6A modified 
subtypes were defined as m6A modified subtype differential genes 
if they satisfied adjusted p < 0.05 and |logFC| > 0.5, and as m6A 
modified related genes if they satisfied adjusted p < 0.0001. 
Assessment of m6A modified subtype differential genes based on 
GO terms and KEGG pathway enrichment analysis (Q-value 
<0.05) (27). We  used the “WGCNA” (Weighted Gene 
Co-expression Network Analysis) R package to identify the 
co-expression modules of m6A modified related genes (28). The 
dissimilarity of the module eigengenes was calculated to merge 
similar modules with a height cut-off value of 0.25, and a 
minimum module size set to 20 genes. The module eigengene 
(ME) is defined as the first principal component of a given 
module. Gene significance (GS) was denoted as the correlation of 
gene expression and the m6A modified subtypes. And the module 
membership (MM) was identified as the correlation between the 
gene expression and the ME. Pearson’s correlation was used to 
analyze the correlation. Genes with MM > 0.8 and GS > 0.6 were 
defined as module hub genes. The genes in the key modules were 
obtained, and the “MCC” algorithm was used to identify the 
top  20 central nodes for the protein–protein interaction (PPI) 
network, which was visualized using Cytoscape. The overlapping 

5 https://www.gsea-msigdb.org/gsea/msigdb

Genes of central nodes in PPI and hub genes in WGCNA were 
defined as m6A modified subtype marker genes.

The Nephroseq V5 tool6 was used to validate the correlation 
between m6A modified subtype marker genes and clinical indicators. 
In addition, NetworkAnalyst7, a database for network analysis, was 
utilized to predict transcription factors (TFs), miRNAs, and chemicals 
of clinically relevant marker genes, as well as to build biological 
interaction networks.

Results

Landscape of M6A regulators in DKD

A total of 27 m6A regulators were included in this study, including 
9 “Writers” (ZC3H13, RBM15B, RBM15, WTAP, METTL14, 
METTL3, VIRMA, CBLL1, METTL16), 16 “Readers” (YTHDC1, 
YTHDC2, YTHDF1, YTHDF2, YTHDF3, IGF2BP1, FMR1, 
HNRNPA2B1, LRPPRC, HNRNPC, ELAVL1, IGF2BP2, IGF2BP3, 
RBMX, NKAP, EIF3A) and 2 “Erasers” (ALKBH5, FTO). Figure 2A 
illustrates the inherent relationship between m6A-modified regulators 
and the occurrence and progression of DKD, which prompted to the 
purpose for our investigation. The regulatory interactions between 
these 27 m6A regulators are shown in Figure 2B.

To investigate the expression of m6A regulators in control and 
various stages of DKD, PBMC (Supplementary Figure 1A), whole 
kidney tissue (Supplementary Figure 1B), microdissected glomeruli 
(Figure 2C), and tubulointerstitial tissue (Supplementary Figure 1C) 
samples were evaluated, respectively. The data from the PBMC sample 
included in this study contained 28 cases of DKD and 10 healthy 
controls, in which patients with DKD were classified into early and 
advanced stages according to eGFR and urine protein levels, with a 
mean eGFR of 35 mL/min/1.73 m2 in the advanced stage. Data from 
whole kidney tissue samples contained 6 cases of early DKD, 21 cases 
of advanced DKD, and 9 paracancerous controls, in which patients 
with DKD were classified into early (mean eGFR 118 mL/min/1.73 m2) 
and advanced (mean eGFR approximately 64 mL/min/1.73 m2) 
according to eGFR and urinary albumin to creatinine ratio (UACR). 
In the glomerular microdissection sample data, there were 20 early 
DKD cases, 21 advanced DKD cases, and 20 paracancerous controls, 
in which patients with DKD were classified into early (mean eGFR 
99 mL/min/1.73 m2) and advanced (mean eGFR 43 mL/min/1.73 m2) 
stages according to clinical and pathological features. The data in the 
renal tubular interstitial tissue sample contained 17 cases of DKD and 
21 healthy controls in which DKD patients had eGFR <90 mL/
min/1.73 m2. There were no significant differences in baseline data 
(e.g., age, BMI, HbA1c levels, etc.) between patients with early and 
advanced DKD in different tissue samples. Supplementary Figure 1A 
revealed that 8 m6A regulators were statistically different in PBMC 
samples against controls, and the majority of m6A regulators exhibited 
a dynamic tendency of up-regulation followed by down-regulation or 
vice versa as the disease progressed in DKD. The majority of m6A 
regulators exhibited significant differences across the three kinds of 

6 http://v5.nephroseq.org/

7 http://www.networkanalyst.ca
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FIGURE 2

The landscape of m6A regulators in DKD. (A) Overview of the dynamic and reversible process of m6A modification, regulated by m6A “Writers,” 
“Readers” and “Erasers.” M6A modification is involved in the biological functions of DKD. (B) Protein–protein interaction (PPI) network composed of 27 

(Continued)
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renal tissue samples (16/25 differential m6A regulators in whole 
kidney tissue, 16/26 differential m6A regulators in glomerular tissue, 
and 14/22 differential m6A regulators in tubulointerstitial tissue). 
Intriguingly, as the disease progressed, m6A regulators, specifically 
YTHDC2, YTHDF1, YTHDF2, IGF2BP2, and RBM15, in glomerular 
tissue showed a trend of changes inconsistent with whole kidney 
tissue, whereas tubulointerstitial tissue samples exhibited changes 
consistent with whole kidney tissue. This unexpected result likely 
happened because glomerular tissue in the whole kidney tissue sample 
was relatively limited. The majority of DKD-related lesions occur in 
the glomerulus, and the identification of m6A regulators was more 
comprehensive in the glomerular tissue samples included in this 
investigation, therefore the follow-up study focused mostly on 
glomerular tissue samples.

Notably, only YTHDC2, WTAP, and METTL3 expression was 
increased in DKD patients with m6A changed regulators in glomerular 
samples, whereas the most were downregulated compared to controls, 
with FMR1 expression level drop having the biggest and most 
statistically significant fold change (Figure  1D). Differential m6A 
regulators were all upregulated in expression in patients with early 
DKD compared to those with advanced DKD (Figure 1E). In the 
correlation study of 26 m6A regulators in glomerular tissue samples 
with and without controls, we  observed a close link between the 
regulators, indicating that they have a coordinated effect (Figure 1F). 
FMR1 and LRPPRC were the most relevant m6A regulators in all 
glomerular samples, whereas HNRNPA2B1 and YTHDC2 were the 
most relevant in DKD glomerular samples.

Immunological characteristics of DKD at 
various stages and the correlation with 
M6A regulators

To investigate the changing immune characteristics of DKD, the 
CIBERSORT algorithm was utilized to compare the expression of 
infiltrating immune cells abundance in glomerular samples from 
healthy controls and DKD patients at various stages 
(Supplementary Figure 2A). Memory B cells, naive CD4+ T cells, γδ 
T cells, and eosinophils were excluded from the expression differential 
analysis due to their lack of expression in all samples. The differential 
analysis revealed significant shifts in macrophages among the intrinsic 
immune response cells, with an increase in macrophage M0 and M1 in 
the early DKD stage and in macrophage M2 in the advanced DKD 
stage. Activated mast cells and neutrophils were significantly reduced 
in DKD. Regulatory T cells were elevated in early DKD, but plasma 
cells and CD8+ T cells were decreased in advanced DKD (Figure 3A 
and Supplementary Figure  2A). The immune response gene sets 
dominated by cytokines, interleukins, chemokines, TGFβ family 
members, TNF family members, and BCR signaling pathway were 
revealed to be  considerably active in advanced DKD. Chemokine 

receptors and cytokine receptors revealed a transitory decline in early 
DKD, but TNF family member receptors and interferon receptors 
were increasingly active as DKD progressed.

To study further the relationship between m6A regulators and 
immune characteristics, we evaluated their association. Both immune 
cell infiltration and immune response gene sets were related with m6A 
regulators, according to the Heatmaps. Activated NK cells had the 
most positive correlation with METTL3, whereas macrophage M2 had 
the strongest negative correlation with ALKBH5 (Figure 3C). TGFβ 
family member receptor had the strongest positive association with 
YTHDC1, cytokine receptors had the strongest negative association 
with FTO, and the majority of immune response gene sets had 
negative associations with m6A regulators (Figure 3D).

Potential of M6A regulators model to 
identify early DKD

To research the role of m6A regulators in the progression of DKD, 
we  developed a model of m6A regulators. Eight modified m6A 
regulators were identified to be related with early DKD by the use of 
univariate logistic regression, which were YTHDC1, ZC3H13, WTAP, 
METTL14, METTL3, VIRMA, ALKBH5, and FTO (Figure 4A). Next, 
LASSO regression was utilized to further filter eight early 
DKD-associated m6A regulators, obtaining five m6A regulators with 
non-zero coefficients (Figures  4B,C). Lastly, putting the LASSO 
regression results into multi-factor logistic regression showed that 
YTHDC1, METTL3, and ALKBH5 were independent correlates of 
early DKD, and the m6A regulators model was developed for further 
research (Figure 4D). The AUC of the training set (GSE96804) for this 
m6A regulators model was 0.948, indicating that the model identified 
between early and advanced DKD efficiently (Figure 4E). Considering 
that whole kidney tissue samples were not tested for YTHDC1 
regulators and there were no DKD clinical staging data in 
tubulointerstitial tissue, PBMC sample data (GSE142153) were used 
as an independent external validation set to evaluate the extrapolation 
of the model. Ultimately, the AUC of the validation set was 0.741 
(Figure 4F), indicating that the m6A regulators model is promising as 
a classifier of early DKD and advanced DKD and deserves to 
be further studied. Unfortunately, our study was unable to develop a 
diagnostic model of m6A regulators adequate for identifying DKD 
from controls.

Identification of M6A modified subtypes

To investigate the regulatory mechanisms of m6A regulators 
during the progression of DKD, we  performed an unsupervised 
consensus clustering analysis of DKD glomerular samples based on 
the expression of 26 m6A regulators (Figures 5A–C). A total of 2 

m6A regulators. (C) Box plots show the expression levels of 26 m6A regulators in the glomeruli between the control group and different stages of DKD. 
Volcano plots show a summary of the differences in expression of 26 m6A regulators between glomerular samples from DKD vs. control patients 
(D) and the early vs. advanced DKD patients (E), respectively. (F) Heatmaps show the correlation between the expression of 26 m6A regulators in all 
glomerular samples and DKD glomerular samples, respectively. The two scatter plots show the two pairs of m6A regulators with the highest 
correlation, respectively.

FIGURE 2 (Continued)
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FIGURE 3

Correlation between m6A regulators expression and immune characteristics in DKD. Heatmaps of differential expression of infiltrating immune cells 
abundance (A) and immune response gene sets activities (B) in glomerular samples (removal of B cells memory, T cells CD4 naive, T cells gamma delta 
and Eosinophils, which were not expressed in all samples). (C) Heatmap of the correlation between 26 m6A regulators and 18 immunocytes. The two 
respective scatterplots show the m6A modified regulator and immunocyte with the highest positive or negative correlation. (D) Heatmap of the 
correlation between 26 m6A regulators and 17 immune response gene sets. The two respective scatterplots show m6A regulators and immune 
response gene sets with the highest positive or negative correlation.
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FIGURE 4

The m6A regulators have the potential to identify the early and advanced DKD. (A) Univariate logistic regression revealed that eight m6A regulators 
were independently related with early DKD (p < 0.05). (B,C) Feature selection by LASSO regression model. (B) Least absolute shrinkage and selection 

(Continued)
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operator (LASSO) coefficient distributions for 8 early DKD-associated m6A regulators. (C) 10-fold cross-validation was conducted to select the best 
model in the LASSO regression. The partial likelihood deviance is plotted against log (λ), where λ is the tuning parameter. The dotted vertical lines are 
drawn at the optimal values by minimum criteria and 1-SE criteria. Five features with non-zero coefficients were selected by optimal lambda. 
(D) Multivariate logistic analysis distinguished three independent factors to model the identification of early DKD. (E) The ability of the m6A regulators 
model to discriminate the early DKD was analyzed using ROC curves and evaluated with AUC values. Model validation was also performed with 
GSE142152 dataset (F).

FIGURE 4 (Continued)

FIGURE 5

Unsupervised consensus clustering analysis of 26 m6A regulators for identification of m6A modified subtypes. (A) Consensus clustering of cumulative 
distribution function (CDF) for k = 2–10. (B) Elbow plot shows relative change in area under CDF curve. (C) Consensus clustering matrix for k = 2. 
(D) Principal component analysis (PCA) of two m6A subtypes in DKD. (E) Heatmap showing the distribution of different DKD stages and m6A gene 
profiles in the two m6A modified subtypes. (F) The 26 m6A regulators showed differences in the two m6A modified subtypes.
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different m6A modified subtypes were identified, with 18 DKD cases 
in subtype 1 and 23 DKD patients in subtype 2. The two m6A 
modified subtypes were significantly different in PCA (Figure 5D). In 
the heatmap, substantial variations in the expression profiles of m6A 
regulators were seen between the two subtypes, with early DKD being 
primarily dispersed in subtype 2 (Figure 5E). YTHDC1, YTHDC2, 
YTHDF3, FMR1, HNRNPA2B1, LRPPRC, HNRNPC, NKAP, 
ZC3H13, RBM15, METTL14, METTL3, VIRMA, CBLL1, METTL16, 
and FTO were highly expressed in subtype 2, whereas IGF2BP1, 
IGF2BP3, and RBM15B were highly expressed in subtype 1 
(Figure 5F).

Immune characteristics and biological 
functions of M6A modified subtypes

To explore the differences in immune characteristics between the 
two m6A modified subtypes, we evaluated the abundance of immune 
infiltrating cells and the scoring of immune response gene sets. It was 
shown that plasma cells and activated NK cells were much more 
prevalent in subtype 2, whereas Tregs were comparatively more 
prevalent in subtype 1. However, there was minimal variation in the 
amount of immune infiltrating cells between the two subtypes 
(Figure  6A). The 2 subtypes showed significant differences in the 
scoring of the immune response gene sets. Except for the TGFβ family 
member receptor, which was more active in subtype 2, the rest of the 
differentially immune response gene sets were less active in subtype 2 
(Figure 6B).

We performed a GSVA to further research the differences in 
biological functional pathways between the 2 subtypes. Enrichment in 
the HALLMARKS pathway revealed that protein secretion, genes with 
reduced UV sensitivity, and TGFβ signaling pathway were more 
enriched in subtype 2, whereas myogenesis, down-regulated KRAS 
signaling pathway and pancreatic β cells were more enriched in subtype 
1 (Figure 6C). Significant differences in KEGG pathway enrichment 
were observed between the two subtypes, with cytokine-cytokine 
receptor interaction, intestinal immune network for IgA production, 
hedgehog signaling pathway, and glycosaminoglycan biosynthesis 
chondroitin sulfate enriching predominantly in subtype 1 and RNA 
degradation, protein export, ubiquitin mediated proteolysis, and mTOR 
signaling pathway enriching mainly in subtype 2 (Figure 6D).

Identification and clinical relevance of M6A 
modified subtypes marker genes

To further understand the biological processes of genes affected 
by m6A regulators, we identified m6A modified subtype differential 
genes and performed GO/KEGG enrichment analysis on these genes. 
A total of 73 m6A modified subtype differential genes with GO 
functional enrichment were mainly focused on immune cell 
differentiation, collagen component formation, heparin binding and 
enhanced extracellular matrix resistance. The top  3 categories 
enriched in KEGG pathways were viral protein interaction with 
cytokine and cytokine receptor, AGE-RAGE signaling pathway in 
diabetic complications, and chemokine signaling pathway (Figure 7A).

To further explore the co-expression relationships between genes, 
1768 m6A modified related genes were included in the WGCNA to 

identify modular hub genes (Figures 7B–D). A total of three modules 
were identified as blue, brown and meaningless gray modules 
(Figure 7E). The blue module had the highest positive correlation 
(R2 = 0.86) with m6A modified subtype 1, meanwhile the brown 
module had the highest positive correlation (R2 = 0.84) with m6A 
modified subtype 2. Interestingly, the early DKD was also positively 
correlated with the brown module. A total of 923 hub genes in the blue 
module and 87 hub genes in the brown module were found 
(Figures 7F,G). Finally, the top 20 central nodes of the PPI of the blue 
and brown module genes were overlapped with the hub genes of the 
respective modules, and 11 marker genes for each of the two subtypes 
were discovered (Figures 7H–K). The subtype 1 marker genes were 
WNT11, WNT7B, WNT10B, AXIN1, WNT10A, DVL1, ROR2, 
SFRP5, NOTUM, FGF8, and ADAMTS14. And VPS54, XRN1, 
TRIP12, ZRANB1, APC, ZMYM2, GOLGA4, KIFAP3, SKP1, AP3B1, 
and PIK3CA were the subtype 2 marker genes.

To further elucidate the association of these m6A modified 
subtype marker genes with DKD disease, we correlated the marker 
genes with clinical data from the Nephroseq database. It was found 
that the AXIN1 gene was negatively connected with GFR in subtype 
1, whereas the GOLGA4 gene was positively correlated with GFR in 
subtype 2 (Figures  8A,B). The regulatory network maps of 
transcription factors, miRNAs, and chemicals for the two m6A 
modified subtypes marker genes, which may be exploited for future 
research, are displayed in Supplementary Figure 3.

Discussion

Diabetic kidney disease is a prevalent microvascular complication 
of diabetes mellitus that is characterized by rapid progression and a 
poor prognosis, causing a serious risk to human health and life. 
Different therapeutic options are available for various stages of DKD 
(29), and the understanding of its pathogenesis is still limited, thus it 
is necessary to identify alternative biomarkers and possible molecular 
targets for the prevention and treatment of DKD.

From the perspective of m6A modifications, this article 
demonstrates the progression mechanism of DKD. First, when 
compared with the control group, we observed significant differences 
in the expression of most m6A regulators in DKD, whether PBMC or 
all or part of kidney tissues. Throughout the progression of DKD, the 
stages of change in m6A regulators are inconsistent. Some regulators, 
such as YTHDC2, YTHDF2, and FMR1 showed significant changes 
in the early stage of DKD, some regulators, such as YTHDC1 and 
METTL14 exhibited significant changes in the advanced stage of 
DKD, and some regulators, such as METTL3 demonstrated dynamic 
changes, which suggested that m6A regulators may play a role in the 
development of the DKD process. DKD is a metabolic disease 
involving inflammatory immunology, and previous study have 
demonstrated an increase in inflammatory cells in the kidneys of 
DKD patients, with leukocyte counts that are seven to eight times 
higher than in healthy kidneys (30). Macrophage infiltration is one of 
the distinctive characteristics of DKD and is notably increased in the 
glomerular tissue of the majority of DKD patients (31). In this study, 
macrophage infiltration was also observed in the evaluation of 
immune characteristics, and the type of infiltrating macrophages 
differed in different stages. In the early stage, M1 macrophage 
infiltration predominated, whereas M2 macrophage infiltration 

https://doi.org/10.3389/fmed.2025.1494162
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Li et al. 10.3389/fmed.2025.1494162

Frontiers in Medicine 11 frontiersin.org

FIGURE 6

Diversity of immune characteristics and biological function enrichment analysis in two m6A modified subtypes. (A) Differences in the abundance of 
infiltrating immunocytes in the two m6A modified subtypes (removal of T cells CD4 memory activated, T cells follicular helper and dendritic cells 
activated where low expression does not allow comparison of differences). (B) Differences in the activities of 17 immune response gene sets in two 
m6A modified subtypes. The differences of HALLMARKS pathway (C) and KEGG pathway (D) enrichment scores between m6A modified subtypes.
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FIGURE 7

Identification and functional analysis of modified subtypes marker genes. (A) GO and KEGG enrichment analysis of modified subtype differential genes. 
(B) Cluster dendrogram of the two m6A modified subtypes and clinical stages of DKD. (C) Scale-free fitting index analysis and mean connectivity of 
soft threshold power from 1 to 20. (D) Clustering dendrogram of m6A modified related genes. Based on the dynamic tree cut, the genes are clustered 
into different modules by hierarchical clustering, and then the modules with similarity greater than 0.75 are merged to reduce the complexity of the 
network. Each color represents one module, and finally 3 modules are identified. (E) Correlation heatmap between module eigengenes and m6A 
subtypes and clinical features. Scatterplots of gene significance (GS) for m6A subtype 1 versus module membership (MM) in the blue module (F) and 

(Continued)
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dominated in the advanced stage. According to previous research, M1 
macrophages can damage the kidneys of DKD patients by producing 
pro-inflammatory cytokines (e.g., IL-1β and IL-23), chemokines, and 
reactive oxygen species, whereas M2 macrophages generally function 
as anti-inflammatory cells and are involved in immunosuppression, 
tissue repair, and tumor progression (32, 33). The M1-to-M2 transition 
of macrophages has been found in both the AKI mouse model and the 
renal fibrosis UUO model, as well as the presence of CD 163+ M2 
macrophages has been shown to accelerate fibrosis and disease 
progression in DKD (34–37). Mast cells have been involved in 
interstitial kidney injury in people with DKD, which is associated with 
renal fibrosis (38). In this work, however, both innate immune 
response cells (activated mast cells and neutrophils) and CD8+ T cells 
involved in particular immunological response were observed to 
be decreased in DKD, but the detailed mechanism remains uncertain. 
Various diseases stages elicit different immune responses. In this 
research, immune response gene sets containing cytokines, 
chemokines, interleukins, TGFβ family members, and TNF family 
members were active in advanced DKD, while cytokine receptor and 
interleukin receptor gene sets were changed in early DKD.

Then, what causes the dynamic changes in immune 
characteristics with the progression of DKD? The subsequent 
correlation heatmap findings provide the possible explanation. m6A 
regulators were significantly associated with a range of immune 
cells and immune responses, as indicated by correlation heatmaps. 
The majority of regulators are associated with activated NK cells, 
M1 and M2 macrophages, cytokines, and TGF family member 

receptors, while METTL3, METTL14, FTO, and IGF2BP3 regulate 
multiple immune cells and immune responses. Growing evidence 
confirms that m6A regulators play an important role in the immune 
response (14, 39–41). In the glomerulus, m6A regulators may 
contribute to DKD development by regulating diverse immune cells 
and immunological responses. The correlation between m6A 
regulators and diverse immune cells was found to be weaker than 
the immune response in this investigation. This finding is similar to 
that of previous studies, and the author attributes the result to a 
technical limitation (42).

Recent research on urinary m6A shown that m6A levels in the 
urine of DKD patients gradually decreased as the disease progressed, 
and the author concluded that urinary m6A levels had the potential 
to serve as a biomarker for early identification and monitoring of 
DKD (43). Similarly, in this study, a model of m6A regulators 
including YTHDC1, METTL3 and ALKBH5 was developed by 
logistic-LASSO regression to identify early DKD. In glomerular tissue, 
the model was able to identify early and advanced DKD well, and 
when verified using PBMC samples, the same good identification 
ability was observed. The results suggest that m6A regulators have the 
potential to be used as biomarkers for early DKD diagnosis. However, 
this study was unable to develop a model to identify between DKD 
and non-DKD. It revealed the presence of dynamic changes in m6A 
regulators at various stages of DKD and indicated that m6A regulators 
may play a key role in regulating disease development. Despite the fact 
that the diagnostic efficacy of this model was lower in PBMC than in 
glomerular samples (probably due to tissue type heterogeneity), it still 

GS for m6A subtype 2 versus MM in the brown module (G). The MM of these genes >0.8 and their GS > 0.6 for the points means that these points are 
the hub genes of the module. PPI network analysis of blue module (H) and brown module (J) genes, visualized with Cytoscape, where the central 
nodes in the PPI are marked in red, orange and yellow. Venn diagram of m6A subtype 1 (blue module) (I) marker genes and m6A subtype 2 (brown 
module) (K) marker genes. The central nodes of PPI overlap with their corresponding hub genes in the blue (I) and brown modules (K), respectively.

FIGURE 7 (Continued)

FIGURE 8

Clinical relevance of m6A modified subtypes marker genes. (A,B) Relationship between m6A modified subtypes marker genes and glomerular filtration 
rate.
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suggests that m6A methylation modifications play a significant 
regulatory function in the progression of DKD.

To further investigate the regulation of m6A methylation 
modification during the progression of DKD, unsupervised 
consensus clustering analysis was performed on DKD samples 
based on the expression of m6A regulators. A total of two m6A 
modified subtypes were identified, whose expression of m6A 
regulators differed significantly. In subtype 2, the majority of m6A 
regulators (including “Writer,” “Eraser,” and “Reader”) were 
up-regulated, showing a hypermetabolic state of methylation and 
demethylation. We found a larger number of subtype 2 individuals 
with early DKD, indicating the fact that the model of m6A modified 
subtypes is different from clinical categorization but associated with 
the degree of disease progression.

In terms of immune cells, the majority of infiltrating immune cells 
did not differ significantly between the two subtypes, whereas in terms 
of immune responses, the majority of immune responses 
demonstrated decreased activity in subtype 2, consistent with the 
trend observed for immune responses in early DKD. M6A modified 
subtype 2 was considerably enriched in protein secretion, TGFβ 
signaling pathway, PI3K/AKT/mTOR signaling pathway, Notch 
signaling pathway, oxidative phosphorylation, fatty acid metabolism 
and apoptosis, while subtype 1 was significantly enriched in 
myogenesis. GO/KEGG enrichment study indicated variations in cell 
differentiation, collagen fiber composition, and chemokine pathways 
between the two subtypes. Despite the fact that most immune 
response activities of subtype 2 are less active than those of subtype 1, 
subtype 2 is enriched in signaling pathways such as inflammation, 
proliferation, and apoptosis, whereas subtype 1 is enriched in 
myogenesis, collagen formation, and fibrosis. The mechanisms of the 
two subtypes have different foci, and the classification based on the 
m6A regulators model could be  considered as an alternative 
classification for DKD, as well as clinically targeting therapy according 
to different molecular mechanisms in different subtypes and guiding 
different stages of medication to improve efficacy.

In this study, m6A modified subtypes marker genes were obtained 
by WGCNA and modular PPI analysis. It can be found that WNT11, 
WNT7B, WNT10B, AXIN1, WNT10A, DVL1, ROR2, SFRP5 and 
NOTUM marker genes in subtype 1 are mainly involved in the Wnt 
signaling pathway. According to whether they rely on β-catenin or not, 
Wnt signaling pathway is divided into typical signaling pathway 
(β-catenin-dependent) and atypical signaling pathway (β-catenin-
independent) (44, 45). It has also been revealed that the Wnt signaling 
pathway is activated during renal injury and is involved in regulating 
renalintrinsic cells injury and renal fibrosis, and it is now considered 
as a crucial regulator in the development of DKD (46–48). FGF8 is a 
subtype of the FGF family of fibroblast growth factors that binds to 
FGFR and participates in paracrine secretion-mediated biological 
activity (49). It has been reported that members of the FGF family 
(FGF1, FGF2, FGF21, FGF23, etc.) are involved in metabolic processes 
in DKD, but no research relating FGF8 subtype to DKD have been 
published (50–52). ADAMTS14 is a subtype member of the ADAMTS 
(a disintegrin-like and metalloprotease domain with thrombospondin 
type 1 repeats) metalloproteinase family, which forms procollagen 
N-protease with ADAMTS2 and ADAMTS3 to degrade type I, II, III, 
and V procollagen and promote collagen fibers formation, and 
participate in coagulation processes, growth and evolution, signal 
transduction, and tumor progression (53, 54).

In subtype 2, the adenomatous polyposis coli (APC) gene 
negatively regulates the WNT signaling pathway by promoting 
phosphorylation, ubiquitination and protein degradation of β-catenin. 
It has been reported that upregulation of APC rescues the effects of 
miR-499-5p overexpression on kidney injury in mice with DKD (55). 
The PIK3CA gene produces a protein that is the catalytic subunit of 
phosphatidylinositol-3-kinase (PI3K), and the PI3K-AKT–mTOR 
pathway regulated by PI3K has been widely recognized to have a role 
in kidney injury and DKD progression (56). The remaining marker 
genes were not reported to be directly associated with DKD. VPS54 
participates in the transport and sorting of several proteins inside 
cells. XRN1 is involved in RNA degradation. The protein encoded by 
the TRIP12 is an E3 ubiquitin-protein ligase that plays a role in the 
DNA damage response. ZRANB1 is involved in fat metabolism 
regulation. The zinc finger protein encoded by the ZMYM2 gene may 
serve as a transcription factor. It is thought that KIFAP3 serves as a 
linker between human chromosome-associated polypeptide (HCAP) 
and KIF3A/B, a kinesin superfamily protein in the nucleus, and that 
it plays a role in the interaction of chromosomes with an ATPase 
motor protein. Skp1 (S-phase kinase-associated protein 1-Homo 
sapiens) is an adapter protein of the SCF (Skp1-Cullin1-Fbox) 
complex, which is involved in cell cycle regulation. The protein 
encoded by AP3B1 is part of the heterotetrameric AP-3 protein 
complex which interacts with the scaffolding protein clathrin. 
GOLGA4 is a Golgi matrix protein involved in glycosylation and 
transport of proteins and lipids.

Nephroseq database clinical data further verified the direct 
clinical significance of marker genes in m6A modified subtypes. In 
subtype 1, the AXIN1 gene was shown to be negatively correlated with 
the GFR, and in subtype 2, the GOLGA4 gene was found to 
be  positively associated with the GFR. Decreasing AXIN1 or 
increasing GOLGA4 levels may ameliorate DKD, and gene-TF-
miRNA and gene-compound regulatory networks are directions for 
further research. Although just these two genes were shown to 
be  significantly related to GFR in the Nephroseq database, other 
marker genes are still worth investigating. Previous studies by our 
team shown that METTLL14 causes α-klotho methylation, resulting 
in kidney injury (16). While klotho can directly and competitively 
bind Wnt ligands to inhibit the activation of this pathway, which is 
equivalent to m6A regulators interact on the Wnt signaling pathway 
indirectly by mediating α-klotho methylation (57, 58). Thimoteus 
Speer noted that it is interesting to determine the exact timing of the 
possible beneficial effects of KP6 (klotho-derived peptide 6) during 
renal injury (59, 60). Our study provides answers to the 
aforementioned concerns and suggests that KP6 can be  used in 
subtype 1 to enhance effectiveness, hence reducing kidney injury.

Conclusion

This is the first study to analyze the association between m6A 
modification and immune characteristics in DKD. In addition to 
the phenotypic level, the m6A regulators model describes the 
progression of DKD at the molecular level. Certainly, there are 
some limitations to this study. First, the sample size was insufficient, 
and neither the clinicopathological data nor the categories of m6A 
regulators were comprehensive. In this study, the glomerular dataset 
includes a total of 41 DKD patients and 20 controls, however, more 
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cases are required for further study. In the collection of total kidney 
tissue samples and glomerular samples, the variety of m6A-modified 
regulators is rather limited. Due to a lack of clinicopathological 
data, this aspect of m6A modification cannot be thoroughly studied. 
Second, no direct experimental validation has been conducted. 
Through bioinformatics analysis, our study identified marker genes 
for different m6A modified subtypes, nevertheless, animal and cell 
research are still required to confirm the exact molecular 
mechanism. Furthermore, the marker genes in our study were 
validated by Nephroseq database data, which increased the 
credibility of the results.

In conclusion, our study developed a model for early DKD 
identification. The model of m6A modified subtype have the ability to 
categorize DKD at the molecular level and are anticipated to perform 
as an alternate classification approach. AXIN1 and GOLGA4 are 
potential biomarkers for targeted therapy. We  comprehensively 
evaluated the potential regulatory mechanisms of m6A modification 
in the progression of DKD, providing new insights into DKD and 
inspiring more effective therapy methods.
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