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Introduction: Ocular melanoma (OM) is a rare but lethal subtype of melanoma.

This study develops a prognostic nomogram for OM using machine learning

and internal validation techniques, aiming to improve prognosis prediction and

clinical decision-making.

Methods: Independent prognostic variables were identified using univariate and

multivariate COX proportional hazard regression models. Significant variables

were then incorporated into the nomogram. The predictive accuracy of the

nomogram was evaluated using receiver operating characteristic (ROC) curves,

calibration plots, decision curve analysis (DCA), and 10-fold cross-validation.

The performance of the nomogram was compared with that of a machine

learning model.

Results: Thirteen variables, including age, sex, tumor site, histologic

subtype, stage, basal diameter size, tumor thickness, liver metastasis,

first malignant primary indicator, marital status, and treatment modalities

(surgery/radiotherapy/chemotherapy) were identified as independent

prognostic factors for overall survival (OS) and were included in the nomogram

(all P < 0.05). The nomogram showed a concordance index of 0.712. The areas

under the curve (AUC) for predicting 3-, 5-, and 10-year survival rates were

0.749, 0.734, and 0.730, respectively. Calibration plots for 3-, 5-, and 10-year

survival were in close agreement with the ideal predictions, and DCA indicated a

superior net benefit. The average AUC from 10-fold cross-validation was 0.725.

The machine-learning model identified liver metastasis as the most significant

predictor of survival, followed by age, radiotherapy, stage, and other factors that

were incorporated into the nomogram. The machine-learning model achieved

a predictive AUC score of 0.750.

Conclusions: A robust nomogram incorporating 13 significant

clinicopathological variables was developed. The combined use of ROC

curve analysis, calibration plots, DCA, 10-fold cross-validation, and machine

learning confirmed the strong predictive performance of the nomogram for

survival outcomes in patients with OM.
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1 Introduction

Ocular melanoma (OM) is a rare subtype of melanoma; the

incidence rate is about 6.2 per million, accounting for ∼5% of

all melanoma cases (1). Uveal melanoma (UM), which includes

melanomas of the choroid, ciliary body, and iris, is the predominant

anatomical site of OM, accounting for ∼85% of these cases

(2). Despite its rare occurrence, OM is highly lethal owing

to its aggressive nature and high potential for metastasis (3).

Although primary melanoma can be treated effectively, ∼30% of

patients experience recurrence that involves metastatic disease.

The prognosis of OM is related to many factors, such as

clinical, pathological, and genomic characteristics (4–6). However,

a reliable prognostic model for predicting the outcome of OM is

currently lacking.

Given the high prevalence of UM among OM, delineating

independent prognostic indicators and formulating prognostic

frameworks for UM is necessary (7–9). Nonetheless, the absence

of an optimal prognostic prediction model encompassing all OM

subtypes underscores the pressing need for a robust predictive

model to elucidate OM prognosis and inform clinical decision-

making. Nomograms, which are graphical instruments that assign

distinct points to each variable within a predictive model,

facilitate the translation of cumulative points into corresponding

survival probabilities.

Machine-learning algorithms have emerged as innovative tools

that are extensively employed in cancer research. Among them,

eXtreme Gradient Boosting (XGBoost) as a prediction gradient

boosting tree stands out as a notable ensemble learning technique

(10). This method incrementally enhances prediction efficacy

by iteratively training a sequence of decision trees. Owing to

their ability to manage structured data and capture non-linear

FIGURE 1

Flow chart of cases selection from SEER database.

associations, gradient-boosting trees outperform random forests

in terms of prediction accuracy. SHapley Additive exPlanations

(SHAP) constitute a method devised to elucidate the prediction

outcomes derived from machine learning models (11). By

integrating these two methodologies, we can assess the predictive

effectiveness of the model in conjunction with a profound

understanding of how each feature shapes the prediction outcome.

In this study, we developed a prognostic prediction nomogram

tailored specifically for patients with OM. Given the rarity of OM,

external validation of the model using a substantial dataset remains

challenging. To comprehensively assess the predictive probability

of our model, we used traditional evaluation methods, including

receiver operating characteristic (ROC) curves, calibration curves,

and decision curve analysis (DCA), along with internal validation

techniques. Additionally, we leveraged advanced methodologies,

namely, XGBoost, in conjunction with SHAP to conduct a

multifaceted evaluation, compare models, and discern the efficacy

of the established prognostic model across various dimensions.

2 Materials and methods

2.1 Study patients

Cohort information for all patients was extracted from the

National Cancer Institute Surveillance, Epidemiology, and End

Results (SEER) database between 2000 and 2021. SEER∗Stat

software version 8.4.3 was used for data selection which covers

∼26.5% of the U.S. population from 17 registries. OMs were

defined by the International Classification of Diseases for

Oncology, Third Edition (ICD-O-3) site code, C69.0-69.6 or C69.8-

69.9, and ICD-O-3 histology codes 8720-8790.

The inclusion criteria were as follows: (1) patients diagnosed

with primary OM between 2000 and 2021; (2) ICD-O-3 site code

of C69.0 (conjunctiva), C69.1 (cornea, not otherwise specified

[NOS]), C69.2 (retina), C69.3 (choroid), C69.4 (ciliary body

and iris), C69. 5(lacrimal gland), C69.6 (orbit, NOS), C69.8

(overlapping lesion of eye and adnexa), and C69.9 (eye, NOS);

(3) ICD-O-3 histology code 8770 (mixed epithelioid and spindle

cell melanomas), 8771 (epithelioid cell melanomas), 8772-8774

(spindle-cell melanomas), 8720 (malignant melanoma, NOS)

and other (including 8721-8723 [nodular melanoma, balloon

cell melanoma and malignant melanoma with regression], 8730

[amelanotic melanoma], 8740-8746 [malignant melanoma in

junctional nevus, malignant melanoma in precancerous melanosis,

lentigo malignant melanoma, superficial spreading melanoma,

acral lentiginous melanoma, desmoplastic melanoma, and mucosal

lentiginous melanoma], and 8761 [malignant melanoma in giant

pigmented nevus]); and (4) patients with localized, regional and

distant tumors defined using SEER staging system (SEER historic

stage A and combined summary stage). Patients with unknown

survival data or survival duration < 1 month, unknown laterality,

SEER stage, race and marital status were excluded. A flowchart of

patient selection is shown in Figure 1. Because the study used a

de-identified and publicly available database, ethical approval was

not required. The design and analysis procedures were performed

in accordance with the principles outlined in the Declaration of
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TABLE 1 Baseline demographics and clinical characteristics of patients (n

= 9,120).

Characteristic N

Age, y (%)

≤61 4,140 (45.4)

>61 4,980 (54.6)

Gender (%)

Female 4,329 (47.5)

Male 4,791 (52.5)

Race (%)

White 8,880 (97.4)

Black 71 (0.8)

Other 169 (1.9)

Site (%)

Choroid 7,139 (78.3)

Ciliary body and iris 989 (10.8)

Conjunctiva 574 (6.3)

Other 418 (4.6)

Laterality (%)

Left 4,525 (49.6)

Right 4,595 (50.4)

Hist.type (%)

Spindle 836 (9.2)

Mixed 715 (7.8)

Epithelioid 273 (3.0)

NOS/other 7,296 (80.0)

Stage (%)

Localized 8,300 (91.0)

Regional 583 (6.4)

Distant 237 (2.6)

Diameter (%)

≤14.9mm 2,950 (32.3)

>14.9mm 796 (8.7)

Unknown 5,374 (58.9)

Thickness (%)

≤5.1mm 2,582 (28.3)

>5.1mm 1,500 (16.4)

Unknown 5,038 (55.2)

Liver.met (%)

No 5,267 (57.8)

Yes 106 (1.2)

Unknown 3,747 (41.1)

Lung.met (%)

No 5,328 (58.4)

(Continued)

TABLE 1 (Continued)

Characteristic N

Yes 44 (0.5)

Unknown 3,748 (41.1)

FMPI (%)

No 1,550 (17.0)

Yes 7,570 (83.0)

Marriage (%)

Married 5,995 (65.7)

Unmarried 1,369 (15.0)

Divorced 789 (8.7)

Widowed 967 (10.6)

Surgery (%)

No/unknown 5,849 (64.1)

Yes 3,271 (35.9)

Radiotherapy (%)

No/unknown 2,939 (32.2)

Yes 6,181 (67.8)

Chemotherapy (%)

No/unknown 8,873 (97.3)

Yes 247 (2.7)

Hist.type, histologic subtype; Liver.met, metastasis at liver; Lung.met, metastasis at lung;

FMPI, first malignant primary indicator.

FIGURE 2

The overall survival curve in all ocular melanoma patients. The

median survival time was 132 months.

Helsinki. Additional information regarding the SEER program can

be found on the SEER website (https://seer.cancer.gov).
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TABLE 2 Univariate and multivariate analysis of overall survival for ocular melanoma patients.

Characteristics Univariate analysis (n = 9,120) Multivariate analysis (n = 9,120)

HR 95%CI P-value HR 95%CI P-value

Age

≤61 Reference Reference

>61 2.680 2.498–2.876 <0.001∗ 2.463 2.286–2.654 <0.001∗

Gender

Female Reference Reference

Male 1.156 1.084–1.233 <0.001∗ 1.249 1.167–1.337 <0.001∗

Race

White Reference

Black 0.836 0.668–1.387 0.836

Other 1.179 0.929–1.496 0.176

Site

Choroid Reference Reference

Ciliary body and iris 1.095 0.989–1.212 0.080 0.992 0.894–1.101 0.879

Conjunctiva 0.910 0.791–1.046 0.185 0.523 0.444–0.614 <0.001∗

Other 1.872 1.653–2.120 <0.001∗ 1.290 1.128–1.475 <0.001∗

Laterality

Left Reference

Right 0.989 0.927–1.055 0.739

Hist.type

Spindle Reference Reference

Epithelioid 2.801 2.325–3.373 <0.001∗ 2.337 1.937–2.819 <0.001∗

Mixed 2.228 1.924–2.579 <0.001∗ 1.685 1.453–1.955 <0.001∗

NOS/Other 1.203 1.070–1.352 0.002∗ 1.520 1.342–1.721 <0.001∗

Stage

Localized Reference Reference

Regional 1.814 1.615–2.039 <0.001∗ 1.436 1.273–1.620 <0.001∗

Distant 7.321 6.335–8.461 <0.001∗ 4.108 3.327–5.072 <0.001∗

Diameter

≤14.9mm Reference Reference

>14.9mm 2.618 2.294–2.988 <0.001∗ 1.777 1.536–2.055 <0.001∗

Unknown 1.544 1.412–1.687 <0.001∗ 1.180 1.012–1.377 0.035∗

Thickness

≤5.1mm Reference Reference

>5.1mm 2.016 1.784–2.278 <0.001∗ 1.512 1.320–1.732 <0.001∗

Unknown 1.664 1.511–1.833 <0.001∗ 1.249 1.066–1.463 0.006∗

Liver.met

No Reference Reference

Yes 12.293 9.905–15.255 <0.001∗ 2.058 1.541–2.749 <0.001∗

Unknown 1.161 1.081–1.247 <0.001∗ 0.975 0.138–6.905 0.980

(Continued)
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TABLE 2 (Continued)

Characteristics Univariate analysis (n = 9,120) Multivariate analysis (n = 9,120)

HR 95%CI P-value HR 95%CI P-value

Lung.met

No Reference Reference

Yes 8.795 6.257–12.365 <0.001∗ 1.217 0.833–1.777 0.309

Unknown 1.125 1.048–1.208 0.001∗ 1.083 0.154–7.630 0.936

FMPI

No Reference Reference

Yes 0.574 0.531–0.621 <0.001∗ 0.708 0.653–0.767 <0.001∗

Marriage

Married Reference Reference

Unmarried 0.996 0.903–1.097 0.929 1.158 1.049–1.279 0.004∗

Divorced 1.223 1.090–1.372 0.001∗ 1.221 1.087–1.372 0.001∗

Widowed 2.121 1.940–2.320 <0.001∗ 1.539 1.397–1.695 <0.001∗

Surgery

No/Unknown Reference Reference

Yes 1.641 1.539–1.751 <0.001∗ 1.227 1.113–1.354 <0.001∗

Radiotherapy

No/Unknown Reference Reference

Yes 0.592 0.555–0.632 <0.001∗ 0.715 0.648–0.790 <0.001∗

Chemotherapy

No/Unknown Reference Reference

Yes 1.818 1.532–2.158 <0.001∗ 1.588 1.323–1.905 <0.001∗

∗P < 0.05.

Hist.type, histologic subtype; NOS, not otherwise specified; Liver.met, metastasis at liver; Lung.met, metastasis at lung; FMPI, first malignant primary indicator; HR, hazard ratio; CI,

confidence interval.

2.2 Study variables

The variables used in the SEER database included age, sex,

race, site, laterality, histological subtype, combined summary

stage, SEER historic stage A, surgery, radiation, chemotherapy,

measured basal diameter, measured thickness, metastasis to the

liver, metastasis to the lung, first malignant primary indicator

(FMPI), marital status, survival months, and vital status. The

overall survival (OS) was designated as the outcome-predicting

variable, which was measured as the time from diagnosis to death

due to any cause.

2.3 Establish and validate the nomogram
model

To build a nomogram model for predicting prognostic risk

factors for ocular melanoma, we initially used a COX proportional

hazards regressionmodel. The independent variables were analyzed

using univariate COX proportional hazards regression, and those

with P < 0.05 were included in multivariate COX proportional

hazards regression. Subsequently, statistically significant indicators

were included in the nomogram model generation. Additionally,

hazard ratios (HR) and matched 95% confidence intervals (CI)

were recorded.

By incorporating the selected indicator factors, we developed

a nomogram to predict the 3-, 5-, and 10-year survival for

patients with OM. The concordance index (C-index) served as

a metric to gauge the discriminatory capacity of the model,

ranging from 0.5 to 1.0. A value of 0.5 signifies random

performance, whereas 1.0 denotes perfect alignment between

the model predictions and actual outcomes. Additionally,

ROC curves and their associated area under the curve (AUC)

were used to elucidate the balance between true-positive

and false-positive rates across various thresholds. Moreover,

calibration curves were used to assess the agreement between

the predicted and observed probabilities at the 3-, 5-, and

10-year intervals. DCA was conducted to evaluate the clinical

relevance of the model by examining its net benefit across different

decision thresholds.

The 10-fold cross-validation involved dividing the dataset into

10 equally-sized subsets. In each iteration, one subset was used for

testing, and the remaining nine subsets were used for training. This
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FIGURE 3

Prognostic nomogram for predicting the probability of 3-, 5- and 10-year OS in patients with ocular melanoma.

process was repeated 10 times to ensure that each subset was tested

at least once.

2.4 Statistical analysis

The X-tile software (Yale University, USA, Version 3.6.1) was

used to determine the optimal cutoff value for continuous variables

by artificially dividing them into distinct groups. The highest chi-

square values calculated by Kaplan–Meier survival analysis and

the logarithmic rank test were used as the optimal cutoff values.

Based on the results, we divided the age into ≤61 years and >61

years. The tumor basal diameter was divided into ≤14.9mm and

>14.9mm, and the measured thickness was divided into ≤5.1mm

and >5.1mm. Patient characteristics, including numbers and

proportions, were analyzed using descriptive statistical methods.

The Kaplan–Meier method was used to analyze the OS and

corresponding survival curves.

XGBoost is a powerful gradient boosting tree algorithm that

can be combined with SHAP to obtain more accurate and

interpretable prediction models. To analyze the data produced

by the machine learning models, we used an explanation model

called SHAP to address the problem of black-box predictions. By

calculating the SHAP value, the SHAP explanationmodel measured

the impact of each input feature on the predicted output. The

values were then used to prioritize the features and visualize

important associations. The importance and predictive power of

the prognostic predictor increased with higher values. The SHAP

analysis utilized the SHAPforxgboost library (V.0.1.3). Finally, the

results of the machine learning algorithm were compared with the

indicators in the nomogram.

All statistical analyses were performed using RStudio software

(V.4.3.1; R Core Team, Vienna, Austria). All statistical tests were

two-tailed, and P < 0.05 indicated statistical significance.

3 Results

3.1 Patient characteristics

This study included 9,120 patients [4,329 women (47.5%) and

4,791 men (52.5%)] with primary OM. The demographic and

clinicopathological features and treatment information of patients

with OM are summarized in Table 1. Among them, the age at OM

diagnosis was>61 years in 4,980 patients (54.6%), and the majority

of patients were Caucasians (97.4%). The choroid was the most

common primary OM site (78.3%), followed by the ciliary body

(10.8%). All patients had unilateral lesions with similar rates on

both the left and right sides. Based on the histologic subtypes, 7,150

(78.4%) patients were included in the NOS category, 146 (1.6%)

were classified as having other types combined as NOS/Other group

(80%), 836 (9.2%) had spindle cell melanoma, 715 (7.8%) had

mixed epithelioid and spindle cell melanoma, and 273 (3%) had

epithelioid cell melanoma. We combined the Combined Summary

Stage (2004+) and SEER historical stage A (1973–2015) into the

SEER stage system. Localized, regional, and distant tumors were

present in 91%, 6.4%, and 2.6% of patients, respectively. Basal

diameter sizes ≤ and >14.9mm were present in 2,950 (32.3%) and

796 (8.7%) patients, respectively. Tumor thickness >5.1mm and
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FIGURE 4

ROC curves were used to verify the predictability of the nomogram at di�erent thresholds, and the AUCs.

≤5.1mmwere present in 16.4% and 28.3% of patients, respectively.

The rate of metastasis in the liver (1.2 %) was higher than that

in the lungs (0.5%). Most patients had OM as their FMPI, and

most were married (65.7%). In terms of treatment, 3,271 (35.9%),

6,181 (67.8%), and 247 (2.7%) patients had undergone surgery,

radiotherapy, and chemotherapy, respectively. Themedian survival

time was 132 months (Figure 2).

3.2 Prognostic factor selection

The analysis included 16 independent variables: age, sex, race,

site, laterality, histological subtype, stage, basal diameter, thickness,

liver metastasis, lung metastasis, FMPI, marital status, surgery,

radiotherapy, and chemotherapy. To select the independent

prognostic factors for OM patients, we used the univariate

and multivariate COX proportional hazards regression models

(Table 2). In the univariate analysis, age >61 years (vs. age ≤61

years: HR= 2.680, 95% CI= 2.498–2.876, P < 0.001); sex male (vs.

female: HR= 1.156, 95% CI= 1.084–1.233, P< 0.001); race, Blacks

(vs. Caucasians: HR = 0.836, 95% CI = 0.668–1.387, P = 0.836),

other (vs. Caucausians: HR = 1.179, 95% CI = 0.929–1.496, P =

0.176); site, ciliary body, and iris (vs. choroid: HR = 1.095, 95% CI

= 0.989–1.212, P = 0.080), conjunctiva (vs. choroid: HR = 0.910,

95% CI= 0.791–1.046, P = 0.185), other (vs. choroid: HR= 1.872,

95% CI = 1.653–2.120, P < 0.001); laterality, right (vs. left: HR

= 0.989, 95% CI = 0.927–1.055, P = 0.739); histological subtype,

epithelioid (vs. spindle: HR = 2.801, 95% CI = 2.325–3.373, P <

0.001), mixed (vs. spindle: HR = 2.228, 95% CI = 1.924–2.579, P

< 0.001), NOS/Other (vs. spindle: HR = 1.203, 95% CI = 1.07–

1.352, P = 0.002); stage, regional (vs. localized: HR = 1.814, 95%

CI = 1.615–2.039, P < 0.001), distant (vs. localized: HR = 7.321,

95% CI = 6.335–8.461, P < 0.001); basal diameter size, >14.9mm

(vs. ≤14.9 mm: HR = 2.618, 95% CI = 2.294–2.988, P < 0.001),

unknown (vs. ≤ 14.9 mm: HR = 1.544, 95% CI = 1.412–1.687, P

< 0.001); tumor thickness, > 5.1mm (vs. ≤5.1 mm: HR = 2.016,

95% CI = 1.784–2.278, P < 0.001), unknown (vs. ≤5.1 mm: HR =

1.664, 95% CI = 1.511–1.833, P < 0.001); liver metastasis (vs. no

liver metastasis: HR= 12.293, 95% CI= 9.905–15.255, P < 0.001),

unknown (vs. no liver metastasis: HR = 1.161, 95% CI = 1.081–

1.247, P < 0.001); lung metastasis (vs. no lung metastasis: HR =

8.795, 95% CI = 6.257–12.365, P < 0.001), unknown (vs. no lung

metastasis: HR = 1.125, 95% CI = 1.048–1.208, P = 0.001); FMPI

(vs. non-FMPI: HR = 0.574, 95% CI = 0.531–0.621, P < 0.001);

marital status, unmarried (vs. married: HR = 0.996, 95% CI =
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FIGURE 5

The calibration plots predicting 3- (A), 5- (B), and 10-year (C) survival in patients with OM were close to the ideal curves.

0.903–1.097, P= 0.929), divorced (vs. married: HR= 1.223, 95%CI

= 1.090–1.372, P= 0.001), widowed (vs. married: HR= 2.121, 95%

CI = 1.940–2.320, P < 0.001); surgery (vs. no/unknown surgery:

HR = 1.641, 95% CI = 1.539–1.751, P < 0.001); radiotherapy (vs.

no/unknown radiotherapy: HR = 0.592, 95% CI = 0.555–0.632,

P < 0.001); chemotherapy (vs. no/unknown chemotherapy: HR

= 1.818, 95% CI = 1.532–2.158, P < 0.001). We found that OM

patients aged >61 years, predominantly men with lesions at other

sites other than choroid, non-spindle types, non-localized lesions,

basal diameter size >14.9mm and unknown, tumor thickness

>5.1mm and unknown, metastasis to the liver and unknown,

metastasis to the lung and unknown, marital status (divorced and

widowed), and those who had undergone surgery/chemotherapy

had a higher mortality risk. However, with OM as the FMPI,

patients who were unmarried and had undergone radiotherapy

showed improved OS. Our results indicated that race and laterality

had no impact on OS in patients with OM.

We selected variables with P < 0.05 using the multivariate COX

proportional hazards regression model. The final screening results

of the multivariate analysis are as follows: age, age >61 years (vs.

age ≤61 years: HR = 2.463, 95% CI = 2.286–2.654, P < 0.001);

sex, male (vs. female: HR = 1.249, 95% CI = 1.167–1.337, P <

0.001); site, ciliary body and iris (vs. choroid: HR = 0.992, 95%

CI = 0.894–1.101, P = 0.879), conjunctiva (vs. choroid: HR =
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FIGURE 6

Decision curve of the model in predicting 3- (A), 5- (B), and 10-year (C) prognosis. The blue curve represents the net benefits of the model for

predicting outcomes.

0.523, 95% CI = 0.444–0.614, P < 0.001), other (vs. choroid: HR

= 1.290, 95% CI = 1.128–1.475, P < 0.001); histological subtype,

epithelioid (vs. spindle: HR = 2.337, 95% CI = 1.937–2.819, P

< 0.001), mixed (vs. spindle: HR = 1.685, 95% CI = 1.453–

1.955, P < 0.001), NOS/other (vs. spindle: HR = 1.520, 95% CI

= 1.342–1.721, P < 0.001); stage, regional (vs. localized: HR =

1.436, 95% CI = 1.273–1.620, P < 0.001), distant (vs. localized:

HR = 4.108, 95% CI = 3.327–5.072, P < 0.001); basal diameter

size, >14.9mm (vs. ≤14.9 mm: HR = 1.777, 95% CI = 1.536–

2.055, P < 0.001), unknown (vs. ≤14.9 mm: HR = 1.180, 95% CI

= 1.012–1.377, P = 0.035); tumor thickness, > 5.1mm (vs. ≤5.1

mm: HR = 1.512, 95% CI = 1.320–1.732, P < 0.001), unknown

(vs. ≤5.1 mm: HR = 1.249, 95% CI = 1.066–1.463, P = 0.006);

liver metastasis (vs. no liver metastasis: HR = 2.058, 95% CI =

1.541–2.749, P < 0.001), unknown (vs. no liver metastasis: HR =

0.975, 95% CI = 0.138–6.905, P = 0.980); lung metastasis (vs. no

lung metastasis: HR = 1.217, 95% CI = 0.833–1.777, P = 0.309),

unknown (vs. no lung metastasis: HR = 1.083, 95% CI = 0.154–

7.630, P = 0.936); FMPI (vs. non-FMPI: HR = 0.708, 95% CI =

0.653–0.767, P< 0.001); marital status, unmarried (vs. married: HR

= 1.158, 95% CI = 1.049–1.279, P = 0.004), divorced (vs. married:

HR = 1.221, 95% CI = 1.087–1.372, P = 0.001), widowed (vs.

married: HR = 1.539, 95% CI = 1.397–1.695, P < 0.001); surgery

(vs. no/unknown surgery: HR= 1.227, 95% CI= 1.113–1.354, P <

0.001); radiotherapy (vs. no/unknown radiotherapy: HR = 0.715,

95% CI= 0.648–0.790, P< 0.001); chemotherapy (vs. no/unknown

chemotherapy: HR = 1.588, 95% CI = 1.323–1.905, P < 0.001).

Briefly, age, sex, site, histological subtype, stage, basal diameter
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FIGURE 7

10-fold cross-validation ROC curve and AUC value.

size, tumor thickness, metastasis to the liver, FMPI, marital

status, and surgical intervention/radiotherapy/chemotherapy were

independent prognostic factors for OS (all P < 0.05).

3.3 Nomogram model for OS prognosis

Anomogramwas constructed by incorporating all independent

factors to forecast the survival probability of patients with OM at

3, 5, and 10 years (Figure 3). As shown in the figure, the stage of

OM had the most significant influence on survival, followed by

the tumor site, age, histological subtype, liver metastasis, tumor

diameter, chemotherapy, marital status, tumor thickness, FMPI,

radiotherapy, sex, and surgery. Each factor in the nomogram was

assigned a specific score using a point system. The scores for all

factors were summed and a vertical line was drawn to determine

the total score, indicating the survival probability of patients with

OM at 3, 5, and 10 years.

3.4 Model performance

This nomogram had an optimal C-index of 0.712 (95%

CI = 0.702–0.722), indicating satisfactory discrimination ability

of the survival analysis model. We evaluated the performance

of the nomogram in predicting 3-, 5-, and 10-year survival

probabilities in patients with OM. ROC curves were used to

verify the predictability of the nomogram at different thresholds,

and the AUCs were computed for the 3-, 5-, and 10-year

survival rates (0.749, 0.734, and 0.730, respectively), and the

95% CI were (0.736–0.763), (0.723–0.747), and (0.719–0.741),

respectively (Figure 4). The calibration plots predicting 3-, 5-

, and 10-year OS in patients with OM were close to the

ideal curves, showing good agreement between the predicted

probabilities and the actual observed results (Figure 5). DCA is

a novel evaluation tool used to evaluate the net benefit of a

predictive model under different thresholds and determine the

usefulness of the model in clinical decision-making. The curve

demonstrated a superior net benefit, highlighting its significant

clinical utility in guiding prognostic assessments (Figure 6). We

verified the predictive ability of the proposed model from

multiple dimensions.

3.5 Validation of the nomogram

Using 10-fold cross-validation, we assessed the predictive

performance of the nomogram. The ROC curve indicated that the

model had good discriminatory power for predicting survival status
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FIGURE 8

SHAP summary plot. The plot ranked the factors by their importance, with liver metastasis being the most influential, followed by age, radiotherapy,

stage, and other factors.

(Figure 7). The average AUC value obtained from cross-validation

was 0.725 (95% CI= 0.711–0.732).

3.6 Machine learning

The SHAP summary plot is a visualized tool to rank

the characteristics in the model and the influence of each

feature on the predictive ability of the model. The plot ranked

the factors by their importance, with liver metastasis being

the most influential, followed by age, radiotherapy, stage,

and other factors (Figure 8). These important factors were

then incorporated into the nomogram. The multivariate

dependence plot demonstrated the interactions between

the different variables (Figure 9). Older patients with liver

metastases and more advanced tumor stages who had undergone

radiotherapy had a significant impact on the model predictions.

Interactions between other variables had no significant impact

on the model predictions. The ROC curves used to verify the

predictability of the machine learning model showed an AUC

of 0.750 (95% CI = 0.729–0.766), indicating good predictability

(Figure 10).

4 Discussion

In this study, we established a prognostic model for predicting

the survival probability of patients with OM. The model

incorporated 13 significant independent prognostic variables,

including age, sex, tumor site, histologic subtype, stage, basal

diameter, tumor thickness, liver metastasis, FMPI, marital status,

and treatment with surgery/radiotherapy/chemotherapy. Previous

studies have not consistently analyzed age and OS (5, 12). We

used the X-tile software to determine the best cutoff value

for age and found that patients aged ≥61 years had a worse

prognosis. Our findings revealed that men had a shorter OS than

women, corroborating the findings of previous studies (5, 13, 14).

In a retrospective study of 8,033 patients, increased melanoma

thickness was associated with an increased risk of metastasis.

Each additional millimeter of thickness increased the risk of

metastasis by 5% after 10 years (15). Furthermore, we included

tumor thickness as a variable in our nomogram. Consistent with

those of previous studies, our findings indicated that other factors

related to the primary tumor, including tumor location, diameter,

histological subtype, and distant metastasis, were independent

prognostic factors (8, 16–18). In addition, our study identified

FMPI and marital status as factors influencing survival. In our
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FIGURE 9

The multivariate dependence plot demonstrated the interactions between the di�erent variables.

study on the treatment modalities affecting the survival prognosis

of patients with OM, the risk of mortality was lower among

patients who had undergone radiotherapy than among those who

had undergone surgical intervention or chemotherapy. Compared

with previous studies, this study identified more prognostic factors

for predicting the survival of patients with OM. Because UM

accounts for ∼85% of all malignant OMs, most studies have

established prediction models for UM (19). Unlike previous studies

that targeted UM specifically, we established a survival prediction

model for all patients with malignant OM, regardless of the specific

site of the tumor. Given the rarity of OM, external validation

of large amounts of data using this nomogram was challenging.

Nevertheless, we conducted calibration and internal validation

using multiple dimensions to evaluate the model prediction. The

nomogram exhibited strong predictive performance for survival

in patients with OM, with a C-index and AUC > 0.7. The use of

the ROC curve, calibration curve, and DCA further validates its

accuracy. The 10-fold cross-validation method provides a robust

and reliable estimate of themodel’s performance (20). By repeatedly

partitioning the dataset and evaluating the model on different

subsets, we ensured consistent performance across different subsets

of the data and were not overly dependent on a specific subset of the
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FIGURE 10

The ROC curve to verify the predictability of the machine learning

model.

data (21). The AUC value of the 10-fold cross-ROC curve was also

> 0.7, indicating good performance. This method is particularly

effective in preventing overfitting and provides confidence that

the model will generalize well to new, unseen data (22). In

addition to the calibration and verification methods mentioned

above, we introduced an innovative machine-learning algorithm

for comparison with a nomogram.

In recent years, machine learning has emerged as a crucial

tool for cancer prediction because it can learn from clinical

data and construct accurate prediction models (23). However,

the challenge with machine learning models lies in their black-

box nature, which limits their application in clinical practice

(24). XGBoost is an efficient gradient-boosting algorithm that has

shown promising results in large-scale datasets (25, 26). SHAP,

an interpretable machine-learning method, has been widely used

to elucidate the prediction outcomes of complex models (25).

SHAP assigns an importance weight to each feature, revealing

its contribution to the model’s prediction. The SHAP method

combined with the XGBoost model revealed that liver metastasis,

age, radiotherapy, and tumor stage had the most significant effects

on the model. These variables were also included in the nomogram,

demonstrating strong consistency between the machine prediction

model and the nomogram. The SHAP value effectively captured the

complex interaction effects and non-linear relationships (27). The

ROC of our machine learning model showed good performance,

with an AUC of 0.750. Additionally, the multivariate dependency

graph highlighted that the interactions between age and liver

metastasis, stage, and radiotherapy had the greatest impact on

survival prediction.

We observed disparities in the most influential variables

in both the nomogram and the machine learning models.

The nomogram model identified the stage as the foremost

determinant of survival prognosis, whereas the machine learning

model prioritized liver metastasis as a pivotal variable. SHAP is

rooted in the principles of game theory and provides a precise

quantification of each feature’s influence on the model output (27).

Consequently, the significance of staging in the nomogram model

may encompass the contribution of liver metastasis variables.

Therefore, integrating conventional techniques with innovative

machine learning approaches is crucial. Further exploration

through deep learning analysis is warranted to achieve an optimal

amalgamation of these methodologies for clinical applications.

Our study had certain limitations. The prediction model

was developed based on the retrospective data, which inevitably

introduced bias. Owing to database limitations, other variables

that may impact survival prognosis, including Eastern Cooperative

Oncology Group performance and new treatments such as targeted

therapy and immunotherapy, were not collected. These variables

should also be analyzed. The survival events in this study

considered only OS, necessitating the inclusion of cancer-specific

survival in future studies for comparative analysis. During the

variable selection process, we acknowledged that brain and bone

metastases may influence survival. However, the sample sizes

for these variables were small, resulting in an unstable model.

Incorporation of more patient data in further analyses is necessary

to enhance the robustness of the model. Given that OM is a rare

disease, accumulating a larger sample size and clinical information

is crucial for reliable model training and external validation.

Molecular pathological features, particularly genetic characteristics,

can significantly affect the survival of patients with OM. Therefore,

we aimed to combine clinicopathological features with genomic

variables to construct a more accurate prognostic prediction

model. Additionally, with advancements in artificial intelligence,

these tools can be leveraged alongside traditional methods to

develop an optimal model for predicting survival in rare diseases,

such as OM.

5 Conclusion

In conclusion, we developed a nomogram incorporating 13

significant clinicopathological variables to predict survival in

patients with OM. The synthesis of ROC and AUC values,

calibration plots, DCA, 10-fold cross-validation, and machine

learning models with SHAP values demonstrated the robust

performance of the nomogram. These findings enhance our

understanding of the prognosis of OM and assist clinicians in

making informed decisions.
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