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Background: Alzheimer’s disease (AD) is a widespread neurodegenerative

disease, often accompanied by multiple comorbidities, significantly increasing

the risk of death for patients. The age adjusted Charlson Comorbidity Index

(aCCI) is an important clinical tool for measuring the burden of comorbidities

in patients, closely related to mortality and prognosis. This study aims to use

the MIMIC-V database and various regression and machine learning models to

screen and validate features closely related to aCCI, providing a theoretical basis

for personalized management of AD patients.

Methods: The research data is sourced from the MIMIC-V database, which

contains detailed clinical information of AD patients. Multiple logistic regression,

LASSO regression, random forest, Support Vector Machine (SVM), and Extreme

Gradient Boosting (XGBoost) models were used to screen for feature factors

significantly correlated with aCCI. By comparing model performance, evaluating

the classification ability and prediction accuracy of each method, and ultimately

selecting the best model to construct a regression model and a nomogram. The

model performance is evaluated through classification accuracy, net benefit, and

robustness. The feature selection results were validated by regression analysis.

Results: Multiple models have performed well in classifying aCCI patients,

among which the model constructed using LASSO regression screening feature

factors has the best performance,with the highest classification accuracy and net

benefit. LASSO regression identified the following 11 features closely related to

aCCI: age, respiratory rate, base excess, glucose, red blood cell distribution width

(RDW), alkaline phosphatase (ALP), whole blood potassium, hematocrit (HCT),

phosphate, creatinine, and mean corpuscular hemoglobin (MCH). The column

chart constructed based on these feature factors enables intuitive prediction of

patients with high aCCI probability, providing a convenient clinical tool.

Conclusion: The results of this study indicate that the features screened by

LASSO regression have the best predictive performance and can significantly

improve the predictive ability of aCCI related comorbidities in AD patients. The

column chart constructed based on this feature factor provides theoretical

guidance for personalized management and precise treatment of AD patients.
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1 Introduction

Alzheimer’s disease (AD) is a neurodegenerative disorder

characterized by the progressive and irreversible decline in

cognitive abilities and stands as the primary cause of dementia (1–

3). The World Health Organization estimated that over 55 million

people worldwide were living with dementia, and this number

was expected to double every 20 years, reaching its peak around

2050 (4, 5). As the global population ages, AD is anticipated to

pose significant challenges to patients, families, healthcare systems,

and societies worldwide, emerging as one of the most serious and

formidable public health threats of the 21st century (1). Moreover,

as age advances, AD patients become more prone to a range

of comorbidities, including cardiovascular and cerebrovascular

diseases, diabetes, and infections (6–8). Studies had shown a link

between the presence of these comorbidities and mortality in AD

patients, with those havingmore comorbidities experiencing higher

mortality rates (9, 10).

The Charlson Comorbidity Index (CCI) is a standardized

score developed by Mary E. Charlson to measure the degree

of comorbidity, calculated through a simple weighted sum of

comorbidity item scores, and is widely regarded as the gold

standard for predicting patient prognosis in clinical research (11).

Building on the original CCI, researchers developed the age-

adjusted Charlson Comorbidity Index (aCCI), which has been

shown to closely correlate with mortality and serves as an effective

predictor of clinical outcomes across various diseases (12). Our

study employed the more comprehensive aCCI to measure the

degree of comorbidity.

With the widespread adoption of electronic health record

systems, the emergence of large medical datasets like the MIMIC-

IV database provides rich data resources and unprecedented

research opportunities for retrospective studies, enabling

researchers to conduct deeper analyses of patients’ clinical

features, disease progression, and treatment efficacy (13). In the

face of complex and large datasets, machine learning is widely

used in retrospective studies for its exceptional ability to identify

complex and non-linear relationships among numerous prognostic

variables (14).

Previous studies reported higher mortality in AD patients with

high CCI (1, 9). However, there is still a lack of research on

the factors influencing high aCCI in AD patients admitted to

the ICU. Therefore, using aCCI as the research outcome in AD

patients and identifying the factors that contribute to a high aCCI

holds significant research value. Similar to previous studies, our

research included patient demographic information, vital signs,

and rating scales (1, 9, 15). To explore additional factors, we

chose to include all laboratory test results in our analysis, rather

than selectively choosing specific tests. Confronted with numerous

factors, we employed four types of machine learning: LASSO

regression, Random Forest, Support Vector Machine (SVM), and

eXtreme Gradient Boosting (XGBoost) to identify specific disease

factors. Simultaneously, considering the verification of the machine

learning model, we also used a multivariate logistic regression

model. To fairly assess the predictive ability of the characteristic

factors identified by each model, we incorporated them into a

regression model for validation. Additionally, the final selected

regression model was used to construct a nomogram to predict

the probability of high aCCI in AD patients. Our study aimed

to identify the factors that contribute to severe comorbidities in

AD patients and to assist clinicians in developing personalized

treatments to enhance their quality of life.

2 Materials and methods

2.1 Data sources and study patients

Our study conducted a retrospective analysis using the

MIMIC-IV database. MIMIC-IV is a publicly accessible database,

meticulously curated under the supervision of the Institutional

Review Boards of the Massachusetts Institute of Technology

(MIT) and Beth Israel Deaconess Medical Center, containing

comprehensive high-quality clinical data spanning from 2008 to

2019. Diagnosis headings containing “Alzheimer’s disease” were

selected from MIMIC-IV, which included patients with ICD

versions 9 and 10. Patients younger than 18 years old or those with

an ICU stay of <24 h were excluded from the study. In our study,

507 patients diagnosed with Alzheimer’s disease(AD) who met the

inclusion criteria were gathered. The work flow of our study is

shown in Figure 1.

2.2 Patient data extraction

Based on the AD patient’s ID (subject_id), the corresponding

demographics, vital signs, laboratory test indicators, and scoring

scales were extracted from the MIMIC-IV database. Data

corresponding to AD patients were extracted from the MIMIC-

IV database using the hospitalization ID (subject_id). The

extracted data included demographics (age, gender), vital signs

[temperature, heart rate (Heartrate), respiratory rate(Resprate),

Systolic Blood Pressure (SBP), Diastolic Blood Pressure (DBP)],

laboratory test results, rating scales, and the age-adjusted Charlson

Comorbidity Index (aCCI). Laboratory tests encompassed all

relevant indicators associated with AD patients. For scoring scales,

scores recorded on the first day of admission were analyzed,

with a focus on the Sequential Organ Failure Assessment (SOFA),

Systemic Inflammatory Response Syndrome (SIRS), Logistic

Organ Dysfunction Scoring System (LODS), and Glasgow Coma

Scale (GCS).

2.3 Patient data processing

The MIMIC-IV database often presents challenges related to

missing data, which, if not appropriately handled, can lead to

significant bias in the analysis. To address this issue, variables with

missing data exceeding 40% were excluded from the analysis. For

variables with <5% missing data, imputation was performed based

on the nature of their distribution: for continuous variables with a

normal distribution, missing values were replaced by the mean of

the patient cohort, while for those with a skewed distribution, the

median was used for imputation (16). For variables with more than

5% but <40% missing data, the “mice” package in R was employed

for multiple imputation. This method addresses the uncertainty of

Frontiers inMedicine 02 frontiersin.org

https://doi.org/10.3389/fmed.2025.1497662
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Ding et al. 10.3389/fmed.2025.1497662

FIGURE 1

The workflow of our study.

missing values by imputing several plausible values for eachmissing

entry, enhancing the robustness and reliability of subsequent

analyses (17–20). To evaluate the comorbidity burden, we used

the age-adjusted Charlson Comorbidity Index (aCCI). Patients

were categorized into two groups: low comorbidity (aCCI ≤ 5)

and high comorbidity (aCCI > 5), based on previously validated

thresholds (12, 21). However, in addition to this categorical

classification, aCCI was also treated as a continuous variable

to provide a more comprehensive evaluation of its influencing

factors. This dual approach enabled both grouped comparisons

and continuous variable analysis to capture the linear relationships

between comorbidities and clinical features. A baseline table was

generated using the R “compareGroups” package to assess the

distribution of patient variables across the aCCI-low and aCCI-high

groups. Variables showing statistically significant differences (P <

0.05) between the two groups were selected for further analysis.

To explore the factors influencing aCCI, these variables were

incorporated into multivariate regression models, where aCCI was

analyzed both as a categorical and a continuous variable, providing

deeper insights into its associations with clinical features.

2.4 Feature variable filtering and
nomogram construction

The R “tidyverse” package was utilized to randomly split the

patients into training and validation sets at a 7:3 ratio. The training

set was employed to develop the machine learning model, while

the validation set was used to assess its performance. To identify

the most critical feature variables for predicting aCCI groups, our

study employed a multivariate logistic regression model alongside

three machine learningmodels: LASSO regression, Random Forest,

SVM, and XGBoost.

Before constructing the models, Variance Inflation Factor

(VIF) analysis was conducted to assess multicollinearity

among the selected variables (Supplementary Table 1). All

variables demonstrated VIF values below 10, confirming low

multicollinearity and ensuring the statistical independence of the

predictors. This step reduced potential bias and enhanced the

stability of subsequent model training.

The discriminative ability of each model was evaluated by

calculating the area under the receiver operating characteristic

(ROC) curve (AUC). Among the models, LASSO regression

achieved competitive performance, leveraging its regularization

technique to address potential overfitting and optimize feature

selection. The optimal feature variables identified from the model

with the highest AUC were then incorporated into separate

regression models for further evaluation.

The accuracy of these models was further assessed using

ROC curves and calibration curves to ensure consistency between

predicted and observed outcomes. Additionally, decision curve

analysis (DCA) was performed to evaluate the clinical net benefit

of each model, offering insights into their practical applicability in

clinical settings (22).

The variables derived from the optimal regression model

were identified as key factors influencing the occurrence of

severe comorbidities in AD patients. A predictive nomogram

was constructed using these variables, providing a visual and

interpretable tool for estimating the likelihood of patients

developing severe comorbidities. This nomogram has the potential

to assist clinicians in early identification of high-risk patients
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and facilitate personalized management strategies, ultimately

improving patient outcomes.

2.5 Statistical analysis

Statistical analysis was conducted using R version 4.3.2.

Categorical variables were expressed as counts and percentages,

with group comparisons performed using the chi-square test (χ²)

or Fisher’s exact test. Continuous variables were presented as

mean ± standard deviation (SD) for normally distributed data

and compared using one-way analysis of variance (ANOVA). For

non-normally distributed data, variables were expressed as median

(interquartile range, IQR) and analyzed using the Wilcoxon rank-

sum test. A P-value of<0.05 was considered statistically significant.

Sensitivity analyses were conducted to assess the robustness

of the results, including varying the aCCI thresholds. Interaction

effects between variables were explored using regression models

to identify any modifying factors. Benjamini-Hochberg correction

was applied to control the false discovery rate (FDR) for

multiple comparisons, with an adjusted P-value of <0.05

considered significant.

3 Results

3.1 Study data characteristics

As illustrated in Supplementary Figure 1, our study included

507 patients with Alzheimer’s disease (AD) extracted from the

MIMIC-IV database. Each patient had 509 factors collected,

and the proportion of missing data for each factor was

analyzed (Supplementary Table 2). After applying the inclusion

criteria, 52 factors were retained for further analysis. Consistent

with prior studies, an aCCI value of 5 was selected as the

threshold for grouping, categorizing 398 patients into the aCCI-

high group and 109 patients into the aCCI-low group.The

distribution of the age-adjusted Charlson Comorbidity Index

(aCCI) is shown in Supplementary Figure 2. The histogram

demonstrates a right-skewed distribution, with most patients

concentrated between scores of 5 and 10.The distribution of

key feature variables across different aCCI levels is illustrated

in Supplementary Figure 3. The boxplots highlight the varying

patterns of feature variables, such as Glucose, RDW, and

Phosphate, as aCCI increases. Baseline characteristics of the

patients stratified by aCCI grouping were generated using the

“compareGroups” package in R (Supplementary Table S2). As

shown in Table 1, AD patients in the aCCI-high group exhibited

significantly higher levels of Age, Resprate, Anion Gap, Glucose,

RDW, Alkaline Phosphatase, Potassium (Whole Blood), Urea

Nitrogen, Phosphate, and Creatinine (P < 0.05 for all), while

their MCHC, Base Excess, Hematocrit, Hemoglobin, and MCH

were significantly lower (P < 0.05 for all, adjusted using

Benjamini-Hochberg correction). These significant differences

between the two groups demonstrate that the aCCI-based

grouping is representative of clinically meaningful differences

in the patient population. The 15 significant differentiating

factors, apart from aCCI itself, were selected for inclusion in

subsequent analyses.

TABLE 1 Baseline table of di�erentiating factors between aCCI groups in AD patients.

All aCCI-low aCCI-high P-overall Benjamini-Hochberg p

n = 507 n = 109 n = 398

Age 85.00 (79.00; 89.50) 81.00 (74.00; 89.00) 85.00 (80.00; 90.00) 0.009 0.009

Resprate 18.00 (16.00; 21.00) 18.00 (16.00; 19.00) 18.00 (16.00; 21.00) 0.001 0.003

aCCI 7.00 (6.00; 8.00) 5.00 (5.00; 5.00) 7.00 (6.00; 9.00) <0.001 <0.001

MCHC 32.90 (31.80; 33.70) 33.00 (32.00; 34.30) 32.80 (31.70; 33.60) 0.032 0.034

Base excess 0.00 (−2.00; 1.00) 0.00 (−1.00; 2.00) 0.00 (−3.00; 1.00) 0.022 0.031

Anion gap 15.00 (13.00; 17.00) 14.00 (13.00; 16.00) 15.00 (13.00; 18.00) 0.016 0.026

Glucose 125.00 (102.00; 164.50) 113.00 (93.00; 134.00) 129.00 (103.25; 181.00) <0.001 <0.001

RDW 14.10 (13.30; 15.10) 13.90 (13.20; 14.60) 14.20 (13.40; 15.17) 0.003 0.007

Alkaline

phosphatase

82.00 (64.00; 111.00) 75.00 (60.00; 96.00) 84.00 (65.00; 111.00) 0.011 0.015

Potassium (whole

blood)

4.20 (3.70; 4.70) 4.10 (3.60; 4.50) 4.20 (3.80; 4.80) 0.019 0.023

Hematocrit 37.20 (33.50; 40.60) 38.90 (34.60; 41.10) 36.95 (33.32; 40.40) 0.018 0.021

Urea nitrogen 23.00 (17.00; 31.50) 19.00 (16.00; 25.00) 23.00 (17.00; 34.00) <0.001 <0.001

Hemoglobin 12.20 (11.00; 13.40) 12.70 (11.60; 13.70) 12.00 (10.70; 13.30) 0.003 0.006

Phosphate 3.40 (2.80; 3.90) 3.10 (2.60; 3.70) 3.40 (2.90; 4.00) <0.001 <0.001

Creatinine 1.00 (0.80; 1.40) 0.90 (0.80; 1.10) 1.10 (0.80; 1.40) <0.001 <0.001

MCH 30.20 (28.80; 31.50) 30.60 (29.50; 31.80) 30.10 (28.60; 31.50) 0.015 0.022
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TABLE 2 Summary of multivariate logistic regression.

Estimate Std. error Z-value P-value

Age 0.05 0.02 3.076 0.002

Resprate 0.07 0.04 1.816 0.069

MCHC 0.01 0.28 0.053 0.958

Base excess −0.03 0.04 −0.865 0.387

Anion gap −0.03 0.05 −0.594 0.552

Glucose 0.01 0.00 2.612 0.009

RDW 0.04 0.11 0.381 0.703

Alkaline phosphatase 0.01 0.00 1.609 0.108

Potassium (whole blood) 0.16 0.20 0.769 0.442

Hematocrit −0.07 0.23 −0.280 0.780

Urea nitrogen −0.01 0.01 −1.003 0.316

Phosphate 0.57 0.19 2.995 0.003

Creatinine 0.83 0.51 1.635 0.102

Hemoglobin 0.09 0.71 0.132 0.895

MCH −0.13 0.07 −1.775 0.076

3.2 Feature variable

To maintain the study’s objectivity, all patients were

randomly allocated into a training set (70%, n = 355) and a

validation set (30%, n = 152). The training set was utilized

to build models using Multivariate logistic regression,

LASSO regression, Random Forest, XGBoost, and SVM.

The Multivariate logistic regression model identified three

variables with P values < 0.05 among the 15 variables: Age,

Glucose, and Phosphate (Table 2). The ROC curve of the

Multivariate logistic regression model indicates that the AUC

in the training set is 0.776, while in the validation set, it is

0.738 (Figure 2).

In the training set, the LASSO regression model tracks the

path of coefficient changes with the regularization parameter λ

(Figure 3A), and the optimal λ value is determined through 10-

fold cross-validation (Figure 3B). The two vertical dashed lines

represent the λ value corresponding to the minimum deviation

within one standard error and the λ value that yields the

simplest model with the fewest features. We selected the λ

value corresponding to the minimum deviation (λ = 0.0133127),

resulting in 11 feature variables (Table 3). The ROC curve of the

LASSO regression model revealed that the AUC in the training set

was 0.76, while in the validation set, it was 0.757 (Figure 3C).

The Random Forest model was constructed using the training

set data. To prevent overfitting, we set the number of trees to 100,

the node size to 15, and employed sampling with replacement.

Figure 4A demonstrated that as the number of trees increased, the

error rate gradually decreased and stabilized. This indicated that

the random forest model could achieve stable classification with a

sufficient number of trees. Notably, the aCCI-high group exhibited

the lowest error rate, suggesting that the model performed best

in this group and was effective in identifying factors influencing

FIGURE 2

ROC curve of multivariate logistic regression model.

the aCCI-high group. The importance of different variables in the

Random Forest model was ranked according to their contribution

to model prediction (Figure 4B). The colors distinguished the

importance of variables between the aCCI-high and aCCI-low

groups. We explored the relationship betweenminimum depth and

variable importance (VIMP) to identify the variables that the model

considered could be excluded. The results showed that Resprate was

not considered important by the model (Figure 4C). In Figure 4D,

the ROC curve of the Random Forest model showed that the AUC

value for the training set was 0.979, while the AUC value for the

validation set was 0.761.
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FIGURE 3

Construction and validation of LASSO regression model. (A) LASSO

regression path diagram. (B) LASSO regression model

cross-validation curve. (C) LASSO regression model ROC curve.

In order to obtain a more accurate evaluation of variable

importance by the XGBoost model, we used 10-fold cross-

validation on the training set to build the model. The model used

binary logistic regression as the objective function and applied L1

and L2 regularization (alpha = 1, lambda = 10) to enhance the

model’s generalization ability. To control model complexity and

prevent overfitting, we set the number of iterations to 100, the

learning rate to 0.05, and the maximum tree depth to 4. We then

calculated the model’s scores for the importance of each variable,

ranked them, and visualized the results (Figure 5A). The results

showed that Age was the most important variable, with the highest

TABLE 3 11 feature variables and their coe�cients identified by the

LASSO regression mode.

Feature Coe�

Age 0.038958091

Resprate 0.038492811

Base excess −0.022410513

Glucose 0.004535585

RDW 0.03019722

Alkaline phosphatase 0.002674139

Potassium (whole blood) 0.05159612

Hematocrit −0.018235899

Phosphate 0.394963953

Creatinine 0.247257609

score and the greatest contribution to the model’s prediction

outcomes. Glucose and Phosphate also showed high importance,

closely following the leading variable. Other variables of high

importance included Alkaline Phosphatase, Hemoglobin, and Base

Excess. In contrast, Urea Nitrogen, Respirate, and Creatinine were

less important and had a smaller impact on the model. The ROC

curve showed that the model had an AUC of 0.964 on the training

set and an AUC of 0.709 on the validation set (Figure 5B).

In order to identify feature variables through the SVM model,

a model was constructed using the radial basis function (RBF)

kernel. Similar to LASSO regression, the model’s training data set

employed cross-validation. Figure 6A illustrated the importance

ranking of each variable in the SVM model. Phosphate emerged

as the most important variable, with the highest score, indicating

its significant contribution to the model’s predictive performance.

Other features variables included Glucose, Age, and Anion Gap,

which also demonstrated high relative importance within the

model. Base Excess and MCHC were ranked lower in importance,

suggesting they had a smaller impact on the model’s predictions.

Figure 6B showed that the SVM model performed well on the

training set (AUC = 0.927), but its performance on the validation

set was significantly lower (AUC= 0.625).

Given that the feature variables identified by each model differ,

we needed to compare the AUC of the five models on both

the training and validation sets to select the model with better

performance for determining the feature variables. From the above

results, it was observed that the Multivariate logistic regression

model and the LASSO regression model demonstrated stable and

strong performance across both the training and validation sets.

The Random Forest model performed exceptionally well on the

training set, and while its performance on the validation set did not

match that of the training set, the AUC remained comparable to

the previous two models. However, the performance gap between

XGBoost and SVM across the two data sets was more pronounced,

with the SVMmodel showing particularly noticeable discrepancies.

Therefore, we selected the results identified by the three models

of Multivariate logistic regression, LASSO regression, and Random

Forest for further analysis (Table 4).
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FIGURE 4

Construction and validation of Random Forest models. (A) Error rate as a function of the number of trees. (B) Variable importance plot. (C) Minimum

depth vs. variable importance (VIMP) plot. (D) ROC curve of the model.

3.3 Regression model

Regression models were constructed using the feature variables

of the preferred models listed in Table 4. Feature variables

included in each model for further analysis. Feature variables

included in each model for further analysis and were subsequently

named GLM, LASSO, and RF, respectively. Following this, we

conducted a comparison of the three regression models using

ROC curves, calibration curves, and DCA, evaluating their

performance from various dimensions. Figure 7A displayed the

ROC curves for the three regression models: GLM, LASSO, and

RF. Overall, the LASSOmodel performed the best among the three,

followed by the RF model, while the GLM model’s performance

was relatively poor. Figure 7B presented the calibration curves

for the GLM, LASSO, and RF models, assessing how well

the predicted probabilities matched the actual outcomes. The

calibration curve for the GLM model showed a deviation from

the diagonal, indicating a discrepancy between its predicted

probabilities and the actual probabilities. In contrast, the LASSO

model’s calibration curve was much closer to the diagonal,

reflecting more accurate predictions. Similarly, the RF model’s

calibration curve was also near the diagonal, indicating good
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FIGURE 5

Construction and validation of XGBoost models. (A) Ranking of

variable importance in the XGBoost model. (B) ROC curve of

XGBoost model.

calibration performance. Taken together, the LASSO and RF

models demonstrated better calibration accuracy than the GLM

model, with predicted probabilities aligning more closely with

actual outcomes. Figure 7C presented the DCA results for the

three models. Comparing their decision curves allowed us to

evaluate the clinical net benefits across different risk thresholds.

At most high-risk thresholds, the LASSO and RF models

demonstrated higher net benefits, indicating greater potential

for clinical application. The GLM model performed reasonably

well at some lower thresholds. However, its overall net benefit

was lower compared to the LASSO and RF models. Overall,

the LASSO and RF models provided higher normalized net

benefits across various threshold ranges, suggesting superior

utility in clinical decision-making. Combining the results from

the three evaluations, the LASSO excelled in both AUC and

calibration performance, and demonstrated a high clinical net

benefit in the decision curve analysis. In contrast, the GLMmodel’s

performance was relatively weaker across all three dimensions,

particularly in terms of AUC and calibration curve, where its

predictive ability and accuracy were inferior to those of the other

two models.

FIGURE 6

Construction and validation of SVM models. (A) Ranking of variable

importance in the SVM model. (B) ROC curve of SVM model.

3.4 Nomogram

Since LASSO demonstrated the best overall performance,

we selected the characteristic variables identified by the LASSO

regression model to develop a high comorbidity prediction

algorithm, as outlined below:

Probability of High aCCI = −4.66284947119117× Intercept

+ 0.0489336652551905× Age+ 0.0721263172679331× Resprate

−0.0119413850308944× Base Excess

+0.00852224585145184× Glucose+ 0.0351643998822672

×RDW+ 0.00608867108322709× Alkaline Phosphatase

+0.0266239100293162× Potassium(Whole Blood)

−0.0318367220265998×Hematocrit+ 0.507495078536365

×Phosphate+ 0.520868238172282

×Creatinine− 0.0920164189252346× MCH

By visualizing the above model formula, a nomogram could be

obtained. This nomogram was constructed based on the LASSO

model (Figure 8). Given the strong overall performance of LASSO,
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TABLE 4 Feature variables included in each model for further analysis.

Multivariate logistic
regression

LASSO
regression

Random
Forest

Age Age Age

Glucose Resprate Anion gap

Phosphate Base excess Hemoglobin

Glucose MCH

RDW Phosphate

Alkaline

phosphatase

Alkaline

phosphatase

Potassium (whole

blood)

Hematocrit

Hematocrit Urea nitrogen

Phosphate Glucose

Creatinine Base excess

Potassium (whole

blood)

RDW

MCHC

Creatinine

we could infer that our nomogram offers reliable performance,

aiding clinicians in making more accurate risk assessments and

treatment decisions tailored to patients’ individual characteristics.

4 Discussion

Alzheimer’s disease (AD) is a progressive neurodegenerative

disorder frequently accompanied by multiple comorbidities that

significantly impact patient outcomes and quality of life (1, 23).

While substantial research has explored the effects of comorbidities

on AD progression (9, 10, 23), less attention has been given to

identifying the factors influencing the severity of comorbidities

in these patients. Understanding these determinants is crucial for

clinicians to develop personalized prevention and management

strategies to mitigate the burden of comorbidities and enhance the

quality of care.

With the rapid advancement of electronic medical records,

large-scale datasets now allow for more robust and nuanced

analyses of patient characteristics and outcomes. Machine

learning models, with their powerful data processing and pattern

recognition capabilities, have become increasingly valuable

in personalized medicine. Utilizing data from the MIMIC-IV

database, we aimed to identify factors influencing the severity of

comorbidities in AD patients and constructed a visual predictive

nomogram to assist in clinical decision-making.

Our study analyzed data from 507 AD patients with

comorbidities. The age-adjusted Charlson Comorbidity Index

(aCCI) was selected as the measure of comorbidity burden,

dividing patients into aCCI-low and aCCI-high groups following

established methods (12). Significant differences were observed

in baseline characteristics between these groups, including age,

Resprate, MCHC, Base Excess, Anion Gap, Glucose, RDW,

FIGURE 7

Validation of three regression models. (A) ROC curves of di�erent

models. (B) Calibration curves of di�erent models. (C) Decision

curves of di�erent models.

Alkaline Phosphatase, Potassium (Whole Blood), Hematocrit, Urea

Nitrogen, Phosphate, Creatinine, Hemoglobin, and MCH, with P

< 0.05 for all. These findings suggested that the factors influencing

aCCI were among these variables.

To address missing data in the MIMIC-IV database, we

employed multiple imputation (MICE), a widely used approach for

handling missing data under the assumption of missing at random

(MAR). This method allowed us to generate plausible values
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FIGURE 8

Nomogram based on LASSO.

for missing entries, reducing the potential bias associated with

incomplete data. Importantly, we confirmed that the distributions

of key variables, including aCCI, Age, and Glucose, remained

consistent before and after imputation, supporting the validity of

this approach. While multiple imputation may introduce some

uncertainty, the use of LASSO regularization in feature selection

minimized its impact on the results. Furthermore, the model’s

stable performance in the validation set (AUC: 0.757) demonstrated

that the imputation process had a limited effect on the reliability of

the findings.

We recognize that the threshold for dividing aCCI into

low (≤5) and high (>5) groups could introduce ambiguity,

particularly for patients with scores close to the cutoff. Sensitivity

analysis indicated that slight variations in this boundary did not

significantly affect the model’s predictive performance or variable

selection, suggesting that the grouping method was robust. Future

studies could explore alternate thresholds or dynamic scoring

systems to refine risk stratification further.

To further investigate, we incorporated these variables into

both traditional multivariate logistic regression and four machine

learning models: LASSO regression, Random Forest, XGBoost,

and SVM. The dataset was randomly split into a 70% training

set and a 30% validation set. LASSO regression demonstrated

the best performance overall, filtering out 11 key feature

factors while maintaining robust interpretability. Notably, the use

of LASSO regularization effectively addressed multicollinearity

among variables. Variance Inflation Factor (VIF) analysis of the

selected features confirmed low multicollinearity (VIF < 5), which

enhanced the stability and reliability of the model.

To address the potential for multicollinearity and variable

interaction, exploratory analysis was conducted to assess

interaction terms between key variables such as Age, Glucose, and

Phosphate. The results did not identify significant interactions,

suggesting that the predictive contributions of these variables

were largely independent. Future studies could employ more

sophisticated interaction analyses or advanced methods

such as generalized additive models (GAMs) to explore these

relationships further.

Age emerged as a critical determinant across all models,

aligning with previous studies reporting a significant increase

in comorbidity burden among AD patients aged over 80 years

(24). In our study, the median age in the aCCI-low group

was 81, compared to 85 in the aCCI-high group, reflecting the

exacerbation of cardiovascular and metabolic risks with advanced

age. Respiratory rate (Resprate) was another crucial feature, as an

elevated Resprate may signal underlying cardiac insufficiency or

heart failure, conditions commonly observed in AD patients with

comorbid cardiovascular diseases (25–27).

The laboratory indicators identified by the LASSO model

provided valuable clinical insights. Base Excess, a marker of acid-

base balance, was negatively associated with aCCI, indicating

higher risks of metabolic acidosis or alkalosis in patients with severe

comorbidities (29–31). Glucose levels were positively associated

with aCCI, highlighting the compounded risks of diabetes and

cardiovascular complications in AD patients with elevated glucose

(28, 32, 33). RDW, indicative of red blood cell deformability,

was linked to increased risks of thrombosis and atherosclerosis,

further exacerbating cardiovascular burdens (34–37). Phosphate

and Alkaline Phosphatase levels were associated with kidney

dysfunction and bone fragility, conditions that increase the

likelihood of falls and fractures in elderly AD patients (38–40).

Creatinine, a marker of renal function, reflected potential renal

impairment, often comorbid with hypertension and diabetes in

AD patients (46). Anemia-related indicators, such as Hematocrit

and MCH, were negatively associated with aCCI, suggesting that

anemic conditions contribute to cardiovascular strain and overall

comorbidity risk (41–45).

To facilitate clinical application, we constructed a nomogram

based on the selected variables to estimate the probability

of high aCCI in AD patients. The nomogram’s calibration

and decision curve analyses demonstrated strong predictive

accuracy and clinical utility. This tool allows clinicians to

quickly identify high-risk patients and tailor individualized

treatment plans.

This study also has important implications for clinical practice.

By focusing on ICU patients with AD, it highlights the critical
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need for precise and efficient comorbidity burden assessment in

this high-risk population. The aCCI serves as a practical and

interpretable tool for quantifying disease complexity, enabling

better individualization of management strategies and resource

allocation in ICU settings. The identified features also provide

insights into the pathophysiological mechanisms underlying

comorbidity burden, offering potential avenues for intervention.

However, the findings may not generalize to non-ICU

populations due to the nature of the MIMIC-IV dataset. External

validation in independent cohorts, including non-ICU settings, is

necessary to confirm the robustness of the model. Furthermore,

although multiple imputation effectively addressed missing data

in this study, future work should explore alternative methods,

such as machine learning-based imputation, to enhance reliability

in datasets with different missing data mechanisms. Longitudinal

studies examining dynamic changes in aCCI over time could also

provide valuable insights into the progression and management of

comorbidities in AD patients.

Despite these limitations, this study demonstrates the potential

of integrating machine learning approaches into clinical practice.

By offering a reliable and interpretable method for evaluating

comorbidity burden, it sets the stage for more personalized and

effective management of AD patients in diverse healthcare settings.

5 Conclusions

The feature factors we identified were all closely related to the

comorbidities in AD patients. The regression model constructed

from these factors achieved an AUC of 0.762, demonstrating high

calibration accuracy and significant net benefit. The nomogram

based on this model effectively predicted the age-adjusted Charlson

Comorbidity Index in patients and had the potential to be widely

applied in clinical decision-making.
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