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Ulcerative colitis (UC) is a chronic inflammatory bowel disease with an idiopathic 
origin, characterized by persistent mucosal inflammation. Anoikis is a programmed 
cell death mechanism activated during carcinogenesis to eliminate undetected 
isolated cells from the extracellular matrix. Although existing evidence indicates 
that anoikis contributes to the modulation of immune response, the involvement of 
anoikis-related genes (ARGs) in UC pathogenesis and their interaction with infiltrating 
immune cells has not been thoroughly explored. The GSE75214, GSE92415, and 
GSE16879 datasets were acquired and integrated from the GEO database. Additionally, 
58 ARGs were identified through the GSEA database. Key anoikis-DEGs in UC 
were identified using three machine learning algorithms, including least absolute 
shrinkage and selection operator (LASSO) Cox regression, random forest (RF), and 
support vector machine (SVM). Receiver operating characteristic (ROC) analysis 
was utilized to evaluate the diagnostic accuracy of each gene. Subsequently, Single 
sample GSEA (ssGSEA) was executed to explore the relationships within immune 
cell infiltration, UC subtypes, and key anoikis-DEGs. Besides, unsupervised cluster 
analysis was conducted to categorize the UC samples into distinct subgroups, 
followed by comparing subtype differences. Finally, the upstream regulatory network 
was constructed and visualized. A comprehensive analysis of the involvement of 
ARGs in UC was performed, revealing their expression profile, correlation with 
infiltrating immune cells, and enrichment analyses. We identified five key anoikis-
DEGs (PDK4, CEACAM6, CFB, CX3CL1, and HLA-DMA) and demonstrated their high 
diagnostic accuracy for UC. Moreover, CEACAM6, CFB, CX3CL1, and HLA-DMA 
exhibited positive associations with infiltrating immune cells in UC, whereas PDK4 
displayed a negative correlation with all immune cells. Unsupervised cluster analysis 
enabled the classification of UC patients into two clusters, both of which exhibited 
distinct gene expression profiles and immune signaling pathways. Further, based 
upon the upstream regulatory network, TP53, RARB, RXRB, and CTCF potentially 
exerted regulatory functions. Our analysis identified five key anoikis-DEGs as 
characteristic biomarkers of UC. These genes were strongly associated with the 
infiltration of both innate and adaptive immune cells, as well as immune pathways. 
This study highlights the role of anoikis genes in UC pathophysiology and offers 
valuable insights for further elucidating UC pathogenesis and individualized therapy.
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1 Introduction

Ulcerative colitis (UC), a primary subtype of inflammatory bowel 
disease (IBD), exhibits continuous colonic mucosal inflammation that 
extends proximally from the rectum (1, 2). This disease affects nearly 
5 million individuals worldwide in 2023, with its global disease 
burden on the rise (3). In China, the reported incidence of UC is 3.35 
per 100,000 males and 2.65 per 100,000 females (4). Early diagnosis is 
critical for effective UC treatment, yet specific diagnostic signatures 
are lacking. At present, the biomarkers for UC include serum anti-
αvβ6 antibodies and serum oncostatin M in diagnosing, fecal 
calprotectin and serum trefoil for disease activity assessment, as well 
as whole blood transcriptomic panels and CLEC5A/CDH2 ratio for 
determining the need for escalated treatment (5). In addition, despite 
recent advancements in diagnostic and therapeutic methods, 
including surgical and immunotherapeutic strategies, the prognosis 
for UC remains unsatisfactory. A growing body of evidence has 
identified that UC is frequently driven by abnormalities in a wide 
range of immune cell types, encompassing leukocytes, macrophages, 
B cells, dendritic cells, and both regulatory and effector T cells (6, 7). 
However, the multifaceted pathophysiology and immune mechanisms 
underlying UC are not completely understood. Consequently, the 
identification of novel characteristic genes has the potential to 
accelerate the unveiling of prospective therapeutic targets, innovative 
intervention approaches, and a deeper understanding of the 
pathogenic mechanisms and etiology of UC. This, in turn, can enable 
the implementation of more successful strategies for diagnosis 
and therapy.

Anoikis, a form of programmed cell death, occurs upon the 
detachment of cells from their designated extracellular matrix (ECM). 
Its primary role lies in preventing dysplastic cell growth or improper 
matrix attachment (8, 9). Anoikis regulates anchorage-dependent 
growth and epithelial-mesenchymal transition, thus being 
indispensable for preserving tissue homeostasis and proper 
development. Additionally, it serves as a significant regulatory factor 
in the context of metastatic cancers, cardiovascular diseases, and 
diabetes. Molecular pathways and mechanisms that affect anoikis 
resistance have been revealed in recent years (8, 10). These pathways 
include a range of factors, such as growth factors, cell adhesion 
molecules (CAMs), and pathways with the capacity to induce 
epithelial-mesenchymal transitions. The complex network of 
downstream molecules includes focal adhesion kinase (11), Src kinase 
(12), mitogen-activated protein kinase (MAPK) (13), ERK1/2 (14), 
Bcl-2 family (15), PI3K/Akt (16, 17), and insulin-like growth factor 
receptors (18). Each of these pathways is crucial for preventing cell 
death and promoting cell survival. In recent years, studies have shown 
various factors influencing anoikis, comprising integrins, IGFR, 
EGFR, TGF-β, Trk, NF-κB, E-calmodulin, the Hippo pathway, eEF-2 
kinase, ROS, acidosis, hypoxia, and protective autophagy (8, 10). Cell 
death has the potential to directly or indirectly compromise barrier 
function and impede epithelial restitution in IBD. The primary 
pathological damage of UC results from dysregulated immune 
responses induced by commensal microflora. This dysregulation leads 
to the production of inflammatory cytokines, the infiltration of 
lymphocytes from the bloodstream into the inflamed bowel, and 
innate immune cell signaling (19).

Currently, therapeutic strategies for UC include anti-adhesion 
therapy (20), anti-TNF monoclonal antibodies (21, 22), anti-IL-12/

IL-23p40 antibodies (23), and JAK inhibitors (24). Therefore, anoikis 
may play a crucial role in the onset and progression of UC. Multiple 
scientific studies have robustly confirmed the integral role of anoikis 
in the pathogenesis of diverse diseases, with a particular emphasis on 
its significance in tumor immunity. These studies have explored a 
wide range of conditions, including glioblastoma (25), head and neck 
squamous cell carcinoma (26), and lung adenocarcinoma (27). A 
previous study demonstrated that nuclear MYH9 bound to the 
CTNNB1 promoter and promote CTNNB1 transcription, thereby 
conferring resistance to anoikis in gastric cancer (28). Moreover, the 
formation of a protein complex comprising Bim-EL, LC8, and 
Beclin-1 might contribute to the evasion of anoikis in inflammatory 
breast cancer (29). In another study by Jin et al., it has been verified 
that GDH1-mediated metabolic reprogramming of glutaminolysis 
promotes resistance to anoikis and tumor metastasis in LKB1-
deficient lung cancer (30). In addition, a study revealed that Aloe vera 
gel polysaccharide (AGP) induced Nrf2 activation, reduced ROS 
levels, ameliorated mitochondrial dysfunction, and alleviated anoikis 
caused by impaired-mitochondrial function of colonic epithelial cells 
to maintain intestinal barrier integrity in DSS-induced colitis mice 
(31). Despite increasing evidence indicating that anoikis contributed 
to UC progression, its predictive value and association with immune 
response regulation in UC remains unexplored. Similarly, the 
underlying mechanisms associated with anoikis in the manifestation 
and progression of UC remain unknown. Thus, a comprehensive 
study is warranted to investigate differences in immune 
characteristics between normal tissues, UC specimens, and different 
UC subtypes. This research is vital for elucidating the cellular features 
and molecular mechanisms underlying anoikis and its associated 
genes. Additionally, establishing characteristics related to anoikis can 
offer valuable insights for the individualized treatment of 
UC patients.

A thorough and multiscale bioinformatics analysis was executed 
to determine the differentially expressed genes (DEGs) in samples 
from UC patients and normal individuals, focusing on anoikis-related 
genes (ARGs) and immune infiltration profiles. Moreover, the 
enrichment analyses were performed to investigate the differences 
between UC and normal samples. Subsequently, anoikis-DEGs were 
identified to explore the association between anoikis and UC. Using 
three machine learning algorithms, we  finally obtained five risk 
signature genes for their potential to predict disease onset. Immune 
infiltration and functional enrichment analyses were also performed 
using these five key anoikis-DEGs. Simultaneously, an unsupervised 
clustering analysis and functional enrichment analysis was executed 
to distinguish differences between various clusters. Further, gene-
miRNA and gene-transcription factor regulatory network associated 
with the five risk genes were assessed. In summary, our findings offer 
a comprehensive insight into the connection between anoikis and UC, 
establishing a foundation for individualized diagnosis and 
management of UC.

2 Materials and methods

2.1 Data sources and processing

The gene expression profiling data for UC, encompassing 
GSE75214, GSE92415, and GSE16879 datasets, were retrieved from 
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the gene expression omnibus (GEO) database.1 The GSE75214 dataset 
included gene expression profiles from 97 individuals with UC and 11 
controls, while the GSE92415 dataset comprised gene expression 
profiles from 87 pre-treatment UC patients and 21 healthy individuals. 
The GSE16879 dataset featured gene expression data from 24 
pre-treatment UC patients and six control healthy volunteers.

Samples unrelated to this study were excluded, resulting in 246 
samples included: 208 UC mucosal biopsy samples and 38 normal 
samples. The merged dataset was subjected to batch correction 
utilizing the “limma” and “sva” packages (32). Principal component 
analysis (PCA) was employed to evaluate the effectiveness of batch 
effect removal and to visualize the distribution of samples from UC 
and healthy individuals. Furthermore, the merged data underwent 
normalization utilizing the R package “preprocessCore.” Subsequently, 
58 ARGs were extracted from the molecular signatures database,2 as 
illustrated in Supplementary Table 1.

2.2 Identification of DEGs and functional 
enrichment analysis

Identification of DEGs was carried out by the “limma” R package, 
ensuring the criteria of |log2 fold change (FC)| > 0.5 and adjusted 
p-value <0.05 (33). Volcano plots were created using the R packages 
“limma” and “ggplot2” to show the distribution of DEGs. The 
“ComplexHeatmap” R package was employed to visualize the top 20 
upregulated and downregulated genes. The Gene ontology (GO) and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment 
analyses were determined on the merged DEGs utilizing the R package 
“clusterProfiler” to explore differential biological pathways related to 
the signature genes. Statistically significance was defined as p < 0.05.

2.3 Identification of anoikis-DEGs in UC 
and functional enrichment analysis

The overlapping genes between the upregulated and 
downregulated DEGs of UC and ARGs were assessed via the “limma” 
R package. Additionally, the GO and KEGG pathway enrichment 
analysis was conducted to further analyze the signaling pathways of 
anoikis-DEGs. Statistically significance was defined as p < 0.05.

2.4 Differential gene expression analysis of 
ARGs between UC and healthy individuals

To present a thorough overview of the differential expression of 
ARGs in UC and healthy individuals, the differential expression levels of 
ARGs were visualized in volcano plots and heatmap using the R packages 
“limma,” “ggplot2,” and “ComplexHeatmap.” Subsequently, we explored 
the expression of 21 anoikis-DEGs in UC and normal samples. 
Simultaneously, a protein–protein interaction (PPI) network analysis was 
conducted on 21 anoikis-DEGs utilizing the STRING database (https://
string-db.org/) and displayed using the Cytoscape 3.9.0 software.

1 https://www.ncbi.nlm.nih.gov/geo/

2 https://www.gsea-msigdb.org/gsea

2.5 Identification of key Anoikis-DEGs in 
UC using machine learning

Three machine learning algorithms were utilized in this study to 
identify the key anoikis-DEGs as characteristic biomarkers in UC. The 
first algorithm employed was the least absolute shrinkage and 
selection operator (LASSO) logistic regression by using the R package 
“glmnet” (34). LASSO was selected for its ability to perform both 
variable selection and regularization, which helps identify important 
genes while reducing overfitting, especially in high-dimensional 
datasets. To ensure robustness and avoid overfitting of the model, 
we employed 10-fold cross-validations to determine the parameter λ. 
According to the optimal λ value and the corresponding coefficients, 
nine genes were obtained. The second algorithm was the random 
forest (RF) algorithm, assessed utilizing the R package “randomForest” 
to grow a forest consisting of 500 trees with default settings (35). RF 
algorithm, an ensemble learning method, was chosen for its robustness 
and ability to construct multiple decision trees and aggregate their 
predictions to improve accuracy and prevent overfitting. Using the RF 
algorithm, the top 10 genes with the highest importance were selected 
for downstream analysis. Finally, the support vector machine (SVM) 
algorithm was utilized, with the analysis conducted using the R 
package “kernlab” (36). The SVM algorithm can rank features based 
on recursion to avoid overfitting, and 13 genes were obtained through 
this approach. The five characteristic biomarkers for diagnosis were 
finally identified as the common core genes among the three 
algorithms. Furthermore, the five key anoikis-DEGs’ interactions were 
illustrated using the “chordDiagram” R package. Subsequently, the 
ROC curves and the area under the curve (AUC) were obtained 
utilizing the R package “pROC.”

2.6 Validation of the key anoikis-DEGs in 
colitis animal model

Animal experiments were conducted in accordance with the 
ethical requirements and approved by the Tongji University Animal 
Ethics Committee. The C57BL/6 male mice were randomly allocated 
into normal control and colitis groups. The Control healthy mice were 
provided normal water. The colitis model was induced by 
administering 3.5% dextran sulfate sodium (DSS, Yeasen 
Biotechnology, 60316ES76, China) for 7 days, followed by 3 days of 
regular drinking water. Then, the mice colon tissues were obtained for 
RNA extraction to quantify the gene expression of the key anoikis-
DEGs using Quantitative Real-time PCR (qPCR). Tissue total RNA 
was extracted using Trizol reagent (Invitrogen, 15,596,018, 
United  States) and reverse to cDNA using an Evo M-MLV kit 
(Accurate Biology, AG11705, China). The Primer sequences were 
obtained from PrimerBank3 and synthesized at Sangon Biotech 
(Shanghai, China). qPCR was performed using the SYBR Green Pro 
Taq HS premix qPCR (Accurate Biology, AG11701, China) on a 
SLAN-96S Real-Time PCR System. The results were replicated three 
times, and the levels of target genes were normalized to GAPDH and 
analyzed utilizing the 2−(⊿⊿Ct) method. CEACAM6 is not present in 
rodents, and H2-DMa is orthologous to human HLA-DMA. Thus, 

3 https://pga.mgh.harvard.edu/primerbank/
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we analyzed the expression of four key anoikis genes: PDK4, H2-DMa, 
CX3CL1, and CFB. The following is a list of the primer sequences 
(5′-3′):

PDK4-F AGGGAGGTCGAGCTGTTCTC.
PDK4-R GGAGTGTTCACTAAGCGGTCA.
H2-DMa-F CTCGAAGCATCTACACCAGTG.
H2-DMa-R TCCGAGAGCCCTATGTTGGG.
CX3CL1-F ACGAAATGCGAAATCATGTGC.
CX3CL1-R CTGTGTCGTCTCCAGGACAA.
CFB-F GAGCGCAACTCCAGTGCTT.
CFB-R GAGGGACATAGGTACTCCAGG.
GAPDH-F TGGCCTTCCGTGTTCCTAC.
GAPDH-R GAGTTGCTGTTGAAGTCGCA.

2.7 The immune infiltration characteristics 
in UC samples and the association between 
key anoikis-DEGs and infiltrating immune 
cells

Single sample GSEA (ssGSEA) is an extension of the GSEA 
method that enables the assessment of infiltrated immune cells and 
the activity of specific immune factors (37). ssGSEA was performed 
to measure the correlation coefficients between immune infiltration 
cells using the “GSVA” R package. Pearson’s correlation coefficient 
analysis was utilized to investigate the association between immune 
infiltrating cells. Heatmaps were generated using the R package 
“ggplot2.” Simultaneously, the “ggplot2” package was utilized to 
display immune cell infiltration as box plots in UC and healthy 
volunteers, with Pearson’s correlation coefficient evaluating 
relationships between different infiltrating immune cells. The 
association between the key anoikis-DEGs and immune infiltrating 
cells was assessed utilizing Pearson’s analysis and visualized in Lollipop 
plots using the R package “ggplot2.”

2.8 Correlation of key anoikis-DEGs with all 
UC genes and GSEA analysis

Next, the correlation of the key anoikis-DEGs with all UC genes 
was assessed, and a heatmap was utilized to display the 50 leading 
positively correlated genes. Additionally, Reactome pathway analysis 
was performed using GSEA for each diagnostic marker utilizing the 
R package “clusterProfiler” to explore the top  20 associated 
biological pathways.

2.9 Identification of anoikis-related 
subtypes in UC and functional enrichment 
analysis

To explore the functional role of ARGs in UC, unsupervised 
cluster analysis was performed utilizing the R package 
“ConsensusClusterPlus” as per the key anoikis-DEGs (38). Moreover, 
the differential expression of key anoikis-DEGs among different 
subtypes were explored. Moreover, a heatmap was generated utilizing 
the R package “pheatmap” to demonstrate the association between 
clinical features, gene expression, and subtypes.

Three gene sets (“h.all.v7.5.1.symbols.gmt,” “c2.cp.kegg.
v7.5.1symbols,” and “c2.cp.reactome.v7.5.1.symbols”) were acquired 
from the MSigDB database4 as input files for gene set variation analysis 
(GSVA) (39). Further, pathway enrichment analysis was performed to 
identify distinct pathways associated with different subtypes.

2.10 Differential gene expression analysis 
and functional annotation of UC subtypes

To assess the reproducibility of the data, PCA was utilized to 
examine the overall distribution and determine the reproducibility of 
the data across subtypes. Additionally, a volcano plot was generated 
for visualizing the DEGs in distant subtypes. Enriched GO terms and 
KEGG pathways within the differential subtypes were analyzed. 
Furthermore, the correlation between the top five KEGG pathways 
and the DEGs in the distinct subtypes was established.

2.11 Regulatory network of TFs and 
miRNAs associated with the key 
anoikis-DEGs

Transcription factors (TFs) and microRNAs (miRNAs) are pivotal 
regulators of gene regulations, functioning at the transcriptional and 
posttranscriptional levels, respectively. To explore TF- and miRNA-
mediated gene interactions, the RegNetwork database5 was utilized to 
predict potential upstream miRNAs and TFs (40). Regulatory network 
of miRNAs and TFs were constructed based on key Anoikis-DEGs 
using Cytoscape 3.9.0 software.

2.12 Statistical analysis

Data analyses were performed utilizing R 4.3.3 and related R 
packages. GraphPad Prism 9.3.0 (GraphPad Software, Inc., La Jolla, 
CA, United States) was used for statistical analysis. All data are shown 
as mean ± standard deviation (SD). Differences between two groups 
were assessed using the t-test. The correlation between the two 
variables was determined by using the Pearson product–moment 
correlation coefficient. p < 0.05 indicated statistical significance.

3 Results

3.1 Data processing and identification of 
DEGs in UC individuals

To examine the biological role of ARGs in UC progression, the 
expression data of GSE75214, GSE92415, and GSE16879 datasets 
was firstly integrated. Tissues from different platforms exhibited 
distinct clustering patterns prior to batch effect removal 
(Figure 1A). The batch effects were effectively removed from the 

4 https://www.gsea-msigdb.org/gsea/msigdb/

5 https://regnetworkweb.org/
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GEO datasets, resulting in an integrated dataset comprising 208 UC 
samples and 38 control samples (Figure  1B). Next, the data 
underwent normalization using the R software package 

“preprocessCore” (Figures  1C,D). We  obtained 2,744 DEGs 
differentiating UC from normal tissues, comprising 1,577 
upregulated and 1,167 downregulated genes, as illustrated by the 

FIGURE 1

Identification of DEGs associated with UC. (A,B) Principal component analysis (PCA) of three datasets before (A) and after (B) batch effect removal. 
(C,D) Combined data normalized before (C) and after (D). (E) The volcano plot illustrates the upregulated and downregulated DEGs associated with 
UC. Horizontal coordinates represent log2FC, and vertical coordinates represent -log10 (adj.P.Val). Red nodes represent upregulated DEGs, blue nodes 
represent downregulated DEGs, and gray nodes denote genes that do not exhibit significant differential expression. (F) Heatmap displays the top 20 
upregulated and downregulated DEGs in UC. Red signifies upregulated gene expression, and blue signifies downregulated gene expression.
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FIGURE 2

Functional enrichment analyses of DEGs in UC. (A–C) GO analysis reveals the top 20 enriched categories for biological processes (BPs) (A), cellular 
components (CCs) (B), and molecular functions (MFs) (C). (D) The top 20 KEGG pathway analysis.

volcano plot (Figure  1E) and the top  20 genes that have been 
upregulated and downregulated illustrated in a heatmap 
(Figure 1F).

3.2 Functional enrichment analysis of DEGs

To elucidate the underlying mechanisms and roles of these DEGs 
in UC, we carried out GO and KEGG pathway analyses. The GO 
enrichment analysis indicated these genes significantly involved in 
pathways such as cell adhesion, cytokine production, plasma 
membrane, and extracellular matrix (Figures 2A–C). Furthermore, the 
KEGG enrichment analysis demonstrated that the DEGs were 

predominantly enriched in multiple inflammatory response-related 
pathways, including the cytokine-cytokine receptor interaction, TNF 
signaling pathway, Th17 cell differentiation, and B cell receptor 
signaling pathway (Figure 2D).

3.3 Identification of anoikis-DEGs in UC 
and functional enrichment analysis

To ascertain the role of ARGs in UC, the overlap between anoikis 
genes and DEGs in UC was initially identified. By intersecting the 
upregulated and downregulated DEGs with anoikis, 19 upregulated 
anoikis-DEGs (HLA-DMA, CFB, CD44, ITGA5, VCAM1, STAT1, 
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PIK3R3, CCL20, NOS2, IRF1, CX3CL1, SIK1, CXCL10, CAV1, 
CEACAM6, MMP2, MX1, LTA, and SNAI2) and two downregulated 
genes (PDK4 and DAPK2) in UC were identified (Figures  3A,B). 
Subsequently, we  conducted GO and KEGG enrichment analyses 
utilizing the 21 anoikis-DEGs. The GO term analysis highlighted that 
anoikis-DEGs exhibited enrichment in BPs, including cytokine-
mediated signaling pathway, anoikis, regulation of cell–cell adhesion, 
and regulation of anoikis (Figure  3C). For CCs, enrichment was 
observed in the secretory granule membrane, focal adhesion, external 
side of the plasma membrane, and cell-substrate junction (Figure 3D). 
For MFs, the enriched functions included cytokine receptor binding, 
signaling receptor activator activity, receptor ligand activity, and G 
protein-coupled receptor binding (Figure  3E). KEGG analysis 
demonstrated anoikis-DEGs exhibited enrichment in the TNF 
signaling pathway, Chemokine signaling pathway, and Toll-like 
receptor signaling pathway (Figure 3F).

3.4 Differential gene expression analysis of 
ARGs between UC and healthy individuals

To evaluate the expression profiles of ARGs in UC and healthy 
individuals, we performed differential gene expression analysis. The 
volcano plot in Figure 4A illustrated the upregulation of 19 anoikis-
DEGs and the downregulation of two genes in UC patients. 
Moreover, Figure 4B presented a heatmap displaying the differential 
expression of ARGs between UC groups and healthy control. Next, 
we compared the expression of these 21 anoikis-DEGs between UC 
patients and healthy individuals. Specifically, PDK4 and DAPK2 
demonstrated relatively low expression in UC. In contrast, the other 
19 genes (CEACAM6, CFB, HLA-DMA, CX3CL1, etc.) showed 
significant elevation in UC compared with normal samples 
(Figure 4C). Moreover, a PPI network was created to explore the 
relationship between anoikis-DEGs (Supplementary Figure  1). 
Among these, CXCL10, VCAM1, CCL20, STAT1, and CX3CL1 
highlighted their interaction with other anoikis-related proteins. The 
PPI network highlights critical immune and inflammatory pathways, 
particularly involving VCAM1 and CXCL10, providing insights into 
the molecular mechanisms that may potentially contribute to 
UC pathogenesis.

3.5 Key anoikis-DEGs identification 
through machine-learning

Three machine-learning algorithms were employed to identify key 
anoikis-DEGs as characteristic biomarkers of UC from a set of 21 
anoikis-DEGs. The LASSO Cox regression analysis demonstrated that 
nine genes were associated with UC, namely HLA-DMA, CFB, CCL20, 
CX3CL1, SIK1, CAV1, CEACAM6, PDK4, and DAPK2 (Figure 5A). 
The RF algorithm ranked the importance scores of signature genes 
and identified 10 genes, including CFB, HLA-DMA, CD44, 
CEACAM6, PDK4, VCAM1, CX3CL1, CAV1, STAT1, and IRF1 
(Figure 5B). In the case of SVM outcomes, 13 signature genes were 
identified, namely ITGA5, HLA-DMA, CX3CL1, CD44, PDK4, 
VCAM1, STAT1, CFB, SIK1, CEACAM6, DAPK2, PIK3R3, and CCL20 
(Figure 5C). Subsequently, after intersecting of the three machine 
learning results, five key anoikis-DEGs, namely PDK4, HLA-DMA, 

CEACAM6, CX3CL1, and CFB were identified (Figure  5D). 
Additionally, a correlation analysis was conducted on these five key 
anoikis-DEGs. Except for PDK4, which exhibited a negative 
correlation with the other four genes, all the other genes showed 
positive correlations with each other (Figure 5E). Subsequently, ROC 
analysis was carried out to assess the predictive value of these genes. 
ROC curves are commonly used to assess the performance of risk 
prediction models and the AUC quantifies this discriminative ability, 
with higher AUC values indicating better model performance. 
Moreover, an AUC curve that closely follows the top-left corner of the 
plot indicates higher accuracy, reflecting a model with strong 
predictive capability. In Figure 5F, the results indicated that each of the 
five genes exhibited relatively high predictive values (AUC values 
≥0.921). Thus, these genes can serve as biomarkers for early diagnosis, 
disease monitoring, or evaluation the therapeutic effects. By 
conducting further research on the functions and mechanisms of 
these genes, we  can gain a deeper understanding of the 
pathophysiological process of UC and provide clues for the 
development of new treatment approaches. By using the DSS-induced 
mouse colitis model, we aimed to substantiate the critical role of key 
anoikis genes in active UC. Because the CEACAM6 gene is not present 
in rodents, and H2-DMa is orthologous to human HLA-DMA, 
we  ultimately analyzed the expression of four key anoikis genes: 
PDK4, H2-DMa, CX3CL1, and CFB in UC and normal samples 
(Figure  5G). The qPCR results showed an increase in H2-DMa, 
CX3CL1, and CFB in the DSS group, while PDK4 was decreased, 
consistent with the results from UC patients in Figure 4C.

3.6 The immune infiltration characteristics 
in UC samples and the association between 
key anoikis-DEGs and infiltrating immune 
cells

To determine if UC patients exhibited altered immune system 
activity, an assessment of the infiltration and correlations of 23 
distinct immune cell subtypes in UC was conducted. Figure 6A 
depicts multiple correlations among the infiltrating immune cells 
in UC. A significant synergistic effect was observed between 
activated B cell, activated CD4 cell, activated CD8 cell, activated 
dendritic cell, eosinophil, gamma delta T cell, macrophage, mast 
cell, monocyte, natural killer T (NKT) cell, natural killer (NK) cell, 
neutrophil, plasmacytoid dendritic cell (pDC), regulatory T cell 
(Treg), type 1 T helper (Th1) cell, and type 2 T helper (Th2) cell. 
Moreover, activated dendritic cell, macrophage, monocyte, 
neutrophil, pDC, and Th1 cell exhibited synergism with Th17 cell. 
In contrast, a competitive effect was observed between CD56dim NK 
cells and most other immune cells. Subsequently, the immune 
infiltration analysis was performed and compared between the UC 
and normal groups. A significant elevation of 22 immune cell 
subtypes was observed in the immune cell infiltration within UC 
group (Figure 6B). These immune cell types included activated B 
cell, activated CD4 cell, activated CD8 cell, activated dendritic cell, 
CD56bright NK cell, eosinophil, gamma delta T cell, immature B cell, 
immature dendritic cell, MDSC, macrophage, mast cell, monocyte, 
NKT cell, NK cell, neutrophil, plasmacytoid dendritic cell, 
regulatory T cell, T follicular helper cell, Th1 cell, Th17 cell, and Th2 
cell. These cell types were remarkably abundant in the UC samples. 
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FIGURE 3

Identification of anoikis-differentially expressed genes in UC and functional enrichment analysis. (A) Venn diagram demonstrates the overlapping genes 
between upregulated DEGs and anoikis-related genes. (B) Venn diagram demonstrates the overlapping genes between downregulated DEGs and 
anoikis-related genes. (C) GO-BP enrichment analysis of anoikis-DEGs. (D) GO-CC enrichment analysis of anoikis-DEGs. (E) GO-MF enrichment 
analysis of anoikis-DEGs. (F) KEGG pathway enrichment analysis of anoikis-DEGs.
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Furthermore, lollipop charts present the associations between the 
five key anoikis-DEGs and immune cell infiltration (Figure 6C). 
CEACAM6, CFB, CX3CL1, and HLA-DMA exhibited positive 
associations with most of the immune cells. In contrast, PDK4 
demonstrated a negative correlation with all immune cells.

3.7 Correlation of five key anoikis-DEGs 
with all UC genes and GSEA analysis

The correlations between five key anoikis-DEGs and all merged 
genes were investigated, and the top 50 positively correlated genes 

FIGURE 4

Expression of anoikis-related genes in UC and healthy individuals. (A) Volcano map of anoikis-related genes between individuals with UC and healthy 
controls. (B) Heatmap depicts the expression profiles of anoikis-related genes between individuals with UC and healthy controls. (C) The bar plot 
demonstrates the differential expression of anoikis-related genes between UC patients and healthy controls in the merged dataset. ***p < 0.001, 
****p < 0.0001.
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FIGURE 5

Machine learning algorithms for identifying the key anoikis-DEGs. (A) LASSO Cox regression analysis. Vertical dashed lines are plotted at the optimal 
lambda value. (B) Random forest algorithm ranks the importance of anoikis-DEGs. (C) SVM-RFE algorithm for signature gene selection. (D) Venn 
diagram displays the overlapping genes between LASSO Cox regression, SVM-RFE algorithms, and random forest method. (E) The chord diagram 
shows the correlations between the five key anoikis-DEGs. (F) ROC curves of the five key anoikis-DEGs display their diagnostic value. (G) qPCR analysis 
validation of the key anoikis-DEGs in the mouse model of UC (n = 6 for each group). **p < 0.01, ***p < 0.001, ****p < 0.0001.
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FIGURE 6

Analysis of immune infiltration characteristics in UC samples and the correlation between key Anoikis-DEGs and infiltrating immune cells. (A) Correlation 
analysis among 23 immune cells. The size and color of the circles indicate the correlation coefficient, with blue and red colors representing positive and 
negative correlation, respectively. The circle size is proportional to the correlation coefficient value. (B) Boxplots illustrate the variations in infiltrated 
immune cells between UC and healthy individuals. (C) Lollipop charts present the correlations between the five key anoikis-DEGs genes and immune 
cell infiltration. The size and color of the circles demonstrate the correlation coefficient, with purple and green colors representing the p-value and the 
circle size indicating the correlation coefficient value. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, ns: no significance.
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FIGURE 7

Construction of anoikis-related subtypes and gene expression profiles in UC. (A) Unsupervised clustering analysis at k = 2. The consensus matrix 
showed the best performance, indicating that the optimal number of clusters was 2. (B) Differences in the expression of the five key anoikis-DEGs 
between the two subgroups. (C) Heatmap of the expression of five key anoikis-DEGs and clinical profiles of subgroups in UC. Red and blue colors 
demonstrate positive and negative associations, respectively. ***p < 0.001.

were visualized in Supplementary Figure 2. Moreover, the Reactome 
pathway enrichment analyses of the five key anoikis-DEGs were 
conducted utilizing GSEA to identify significant biological signatures, 
and the top 20 pathways were presented (Supplementary Figure 3). 
For each key anoikis-DEGs, the top  20 pathways had the same 
adjusted p-value, which indicates that, statistically, they are equally 
important. In UC, the Reactome pathways most positively associated 
with CEACAM6 included the ER-phagosome pathway, antigen 
processing-cross presentation, asparagine N-linked glycosylation, and 
transport to the Golgi and subsequent modification. The Reactome 
pathways most positively associated with CFB were immunoregulatory 
interactions between a lymphoid and a non-lymphoid cell, interferon 
alpha/beta signaling, integrin cell surface interactions, and antigen 
processing-cross presentation. The top positively affected Reactome 
pathways of CX3CL1 included immunoregulatory interactions 
between lymphoid and non-lymphoid cells, interleukin-4 and 
interleukin-13 signaling, interferon alpha/beta signaling, and integrin 
cell surface interactions. The significantly enriched pathways of HLA-
DMA included immunoregulatory interactions between a lymphoid 
and a non-lymphoid cell, cytokine signaling in immune system, 
signaling by interleukins, and interleukin-4 and interleukin-13 

signaling. Most pathways positively related to PDK4 included the 
citric acid (TCA) cycle and respiratory electron transport, peroxisomal 
lipid metabolism, pyruvate metabolism and TCA cycle, and 
other pathways.

3.8 Construction of anoikis-related 
subtypes and gene expression profiles in 
UC

The 208 UC samples were classified as per the expression profiles 
of the five key anoikis DEGs utilizing an unsupervised clustering 
analysis. Various values of k were tested, varying from 2 to 9, and it 
was found that when k = 2, the consensus matrices showed the best 
performance, indicating that the optimal number of clusters was 2 
(Figure  7A). Differences in the five key anoikis-DEGs expression 
between the two groups were observed. Specifically, higher expression 
of HLA-DMA, CEACAM6, CX3CL1, and CFB and lower expression 
of PDK4 were observed in cluster A (Figure  7B). Furthermore, a 
heatmap demonstrated the relationships among the clinical features, 
expression of the five key anoikis-DEGs, and subtypes (Figure 7C).
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3.9 Functional enrichment analysis 
between UC different subtypes

We subsequently conducted pathway enrichment analysis to 
investigate whether distinct pathways were perturbed in patients with 
different subtypes. The KEGG, Hallmark, and Reactome pathway 
analyses were performed to uncover the underlying pathways that 
differentiate cluster A from cluster B (Figure 8). Our findings revealed 
that these subtypes enriched in distinctive KEGG pathways. Cluster 
A displayed enhanced activation in antigen processing and 
presentation, intestinal immune network for IgA production, 
cytokine-cytokine receptor interaction, cell adhesion molecules, 
NOD-like receptor signaling pathway, Toll-like receptor signaling 
pathway, chemokine signaling pathway, and NK cell-mediated 
cytotoxicity. Furthermore, specific enrichment of tyrosine metabolism 
was observed in cluster B. In cluster A, Hallmark gene sets associated 
with the following pathways were upregulated: IL-6/JAK/STAT3 
signaling, IL2/STAT5 signaling, apoptosis, TNF-α signaling via 
NF-κB, reactive oxygen species pathway, and mTORC1 signaling. In 
contrast, bile acid metabolism, oxidative phosphorylation, and 
adipogenesis were upregulated in cluster B. Reactome analyses 
indicated that antigen presentation: folding assembly and peptide 
loading of class I  MHC, chemokine receptors bind chemokines, 
interferon signaling, and TNFR2 non-canonical NF-κb pathway were 
activated in cluster A. Taken together, these results suggest that 
different UC subtypes are regulated by distinct immune pathways.

3.10 Differential gene expression analysis 
and functional enrichment between UC 
subtypes

The distinct distribution of subsets was visualized through PCA 
to account for the differences between cluster A and B subtypes 
(Figure 9A). Moreover, a differential gene analysis comprising 579 
genes of the two subtypes was conducted, presented as a volcano 
plot (Figure 9B). The GO enrichment analysis highlighted that the 
DEGs were primarily linked to pathways such as cytokine-mediated 
signaling pathway, leukocyte cell–cell adhesion, cell chemotaxis in 
BP, external side of plasma membrane, secretory granule membrane, 
collagen-containing extracellular matrix in CC, receptor ligand 
activity, signaling receptor activator activity, immune receptor 
activity, cytokine activity, and cytokine receptor activity in MF 
(Figure  9C). KEGG analysis indicated enrichment in cytokine-
cytokine receptor interaction, cell adhesion molecules, chemokine 
signaling pathway, NOD-like receptor signaling pathway, TNF 
signaling pathway, IL-17 signaling pathway, and inflammatory 
bowel disease (Figure  9D). Moreover, Figure  9E illustrated the 
relationship between the top five KEGG pathways and 
differential genes.

3.11 Regulatory network of TFs and 
miRNAs associated with the key 
anoikis-DEGs

To examine the potential upstream regulators of the five key 
genes, the RegNetwork database was utilized to extract relationships 

between upstream miRNAs and TFs likely to bind to these five key 
genes (Supplementary Figure 4). The results revealed a multitude of 
miRNAs and TFs implicated in the modulation of these diagnostic 
genes. TP53, RARB, RXRB, and CTCF were identified as regulators of 
multiple genes. Especially, CTCF is critically involved in regulating 
CFB, CXCL3, HLA-DMA, and CEACAM6.

4 Discussion

UC has emerged as a global health concern due to its high 
prevalence in developed nations and a significant rise in occurrence 
in developing countries (3, 41). Pathogenesis of UC is associated with 
disrupted intestinal barriers, imbalance of the gut microbiome, and 
subsequent dysregulated mucosal immune responses to gut 
commensal bacteria. At present, the primary treatment for moderate 
and severe UC is anti-TNF therapy, leading to a substantial 
improvement in treatment outcomes (41). Nevertheless, many patients 
remain unresponsive to anti-TNF therapy and develop colitis-
associated colorectal dysplasia or cancer, warranting restorative 
proctocolectomy. Therefore, thoroughly exploring the potential 
mechanisms of UC and discovering new biomarkers that can aid in 
the development of novel UC treatment strategies are imperative. 
Considerable efforts from researchers have been directed toward 
investigating novel diagnostic techniques and therapeutic approaches 
with the aim of improving early diagnosis and treatment of 
UC. Anoikis fundamentally represents a form of programmed cell 
death that shares similarities with classical apoptosis (9). This process 
can manifest through two distinct pathways akin to classic apoptosis. 
One is the extrinsic pathway, initiated by death receptors located on 
the cell surface, while the other is the intrinsic pathway, which involves 
mitochondria-mediated mechanisms (Supplementary Figure  5). 
Nevertheless, the underlying mechanisms through which anoikis 
regulates UC remain in need of further exploration.

We thoroughly investigated the differential gene profiles between 
208 UC samples and 38 control samples obtained from the GEO 
datasets. Moreover, three machine learning algorithms, including 
LASSO, RF and SVM, were employed to examine the involvement of 
ARGs in UC. The 2,744 DEGs between UC and healthy tissues 
exhibited enrichment in cytokine-cytokine receptor interaction, TNF 
signaling pathway, and Th17 cell differentiation pathways (Figure 2D). 
Furthermore, 21 dysfunctional ARGs were identified among UC 
individuals. This discovery underscores the plausible significance of 
anoikis in the progression of UC. Among them, PDK4 and DAPK2 
exhibited relatively low expression levels in UC. In contrast, the other 
19 genes, such as CEACAM6, CFB, HLA-DMA, CX3CL1, and others 
were notably enhanced in UC compared to normal samples 
(Figure 4C).

Recently, utilization of machine learning in diagnosing UC 
through the screening of key genes and immune cells has been 
widely used. This is attributed to its superior predictive 
performance, reduced error rates, and enhanced reliability (42, 43). 
In this study, five key anoikis-DEGs, PDK4, HLA-DMA, CEACAM6, 
CX3CL1, and CFB were identified as characteristic biomarkers of 
UC using LASSO, RF, and SVM algorithms (Figure 5). These five 
signature genes displayed strong diagnostic values (all AUC values 
≥0.921). Therefore, these five specific genes possess predictive value 
for the occurrence of UC.
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FIGURE 8

Identification of biological functional characteristics in different clusters of UC. The heatmap shows the top 20 significant KEGG, HALLMARK, and 
Reactome pathways between two clusters of UC separately.
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FIGURE 9

Differential gene expression analysis and functional annotation of UC subtypes. (A) Principal component analysis (PCA) to visually represent the 
distribution of the two subtypes. (B) Volcano diagram of 579 differentially expressed genes of the two subtypes, with red, blue, and gray dots 
representing upregulated, downregulated, and no significant difference, respectively. (C,D) GO and KEGG enrichment analyses. (E) Relationship 
between the top five KEGG pathways and differential genes.
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Several researches have shown the participation of some of 
these key diagnostic genes in the pathogenesis of UC. For example, 
pyruvate dehydrogenase kinase isozyme 4 (PDK4) is crucial for 
regulating both glucose and fatty acid metabolism as well as 
maintaining homeostasis. Cyclosporine A is reported to facilitate 
neutrophil glycolysis and the TCA cycle by suppressing Sirtuin 6 
(SIRT6) and promoting PDK4, ultimately alleviating clinical 
symptoms in severe UC (44). Our results demonstrate a negative 
association between PDK4 and neutrophil count in UC (Figure 6). 
The carcinoembryonic antigen-related adhesion molecules 
(CEACAM) are expressed on various cell types, comprising 
epithelial cells, neutrophils, and T cells (45). It is implicated in 
several processes, including proliferation, cell adhesion, 
differentiation, and tumor suppression. CEACAM6 is expressed 
on granulocytes and monocytes, and its expression is highly 
enhanced in individuals with Crohn’s disease (CD), another 
chronic intestinal inflammatory disorder (46–48). A transgenic 
CEABAC10 mouse model infected with adherent-invasive 
Escherichia coli (AIEC) and expressing human CEACAM6 
demonstrated increased proinflammatory cytokine IL-6 and IL-17 
levels, reduced anti-inflammatory cytokine IL-10 levels, and 
histopathological damage to the gut mucosa (46). Meanwhile, 
blocking CEACAM6 with monoclonal antibodies reduced AIEC 
colonization and the inflammatory response. This suggests that 
CEACAM6 could be  a potential treatment target for CD. The 
chemokine fractalkine (CX3CL1) is synthesized as a type 
I transmembrane protein (49). Vascular endothelial cells express 
CX3CL1, which is upregulated in response to proinflammatory 
cytokine stimulation. The CX3CR1, a receptor for fractalkine, is 
highly expressed on monocytes/macrophages, cytotoxic 
lymphocytes, and dendritic cells. The CX3CL1-CX3CR1 pathway 
is critically involved in gastrointestinal mucosal immunity. 
CX3CL1 is significantly upregulated in the mucosal epithelia and 
vascular endothelium of patients with active CD (50). Moreover, 
in a transfer IBD model, the anti-CX3CL1 monoclonal antibodies 
effectively mitigated the reduction in body weight, alleviated 
diarrhea, and reduced colon thickness. The gene Complement 
Factor B (CFB) encodes a secreted protein that plays a role in 
activating the alternative pathway of complement and is expressed 
primarily by the liver and mononuclear phagocytes (51, 52). The 
complement system is essential for pathogen lysis, opsonization, 
inflammation, and immune clearance. Previous research revealed 
that both CFB mRNA and protein exhibited elevated expression 
levels in the colonic mucosa of UC patients, indicating its 
involvement in the inappropriate activation of complement system 
(53). This activation contributes to chronic inflammation, 
resulting in active UC. Hence, the key anoikis-DEGs, PDK4, 
CEACAM6, CX3CL1, and CFB are closely related to immune cell 
infiltration and inflammatory pathways.

The primary pathological damage in UC arises from 
dysregulated immune responses, which leads to the production of 
inflammatory cytokines and the activation of immune cell 
signaling. These key anoikis genes are deeply involved in 
inflammatory processes and associated with the pathology of UC, 
particularly CEACAM6 and CX3CL1. In the future, therapies 
targeting key anoikis-DEGs, especially blocking CEACAM6 and 
CX3CL1-CX3CR1 pathway with monoclonal antibodies could 

effectively improve UC pathology by ameliorating the 
inflammatory response. Additionally, the current biomarkers for 
UC included serum anti-αvβ6 antibodies and serum oncostatin M 
for diagnosis, fecal calprotectin and serum trefoil for assessing 
disease activity, as well as whole blood transcriptomic panels and 
CLEC5A/CDH2 ratio for determining the need for escalated 
treatment (5). The diagnostic and prognostic accuracy is often 
limited by factors such as variability in disease stage or response 
to treatment. However, the ARGs have considerable advantages as 
biomarkers for UC. CEACAM6 has been associated with the 
activation of inflammatory pathways and immune cell migration 
(45). Elevated levels of CEACAM6 have been associated with 
chronic inflammation and could serve as a more specific marker 
for immune dysregulation in UC compared to serum oncostatin 
M. CX3CL1, as a chemokine involved in immune cell trafficking, 
plays a crucial role in gastrointestinal mucosal immunity (50). It 
is significantly upregulated in active UC and could serve as a 
novel marker for UC and immune response regulation, 
complementing biomarkers like fecal calprotectin. CFB has been 
identified as a key component in the complement system (51, 52). 
Elevated expression of CFB in the colonic mucosa of UC patients 
suggests its involvement in immune activation and could serve as 
an early indicator of UC onset or exacerbation, in contrast to the 
more general serum trefoil factors used for disease activity 
assessment. PDK4 plays a role in metabolic regulation and cell 
survival (44). Its downregulation is associated with inflammation 
and immune cell infiltration, suggesting that it may serve as a 
marker for UC progression and tissue damage, potentially 
complementing whole blood transcriptomic panels used for 
determining UC severity. By focusing on these key ARGs, 
we  highlighted their potential roles as specific and reliable 
biomarkers for UC, particularly in identifying disease activity, 
immune dysregulation, and the need for targeted therapeutic 
interventions. These ARGs can provide a more targeted approach 
to managing UC, improving diagnostic accuracy, and guiding 
clinical decisions. Of note, DSS-induced colitis mouse model was 
constructed to demonstrate that the expression of key anoikis 
genes, namely H2-DMa, CX3CL1, and CFB were significantly 
upregulated, while PDK4 was evidently downregulated. These 
results are in accordance with the previous results. However, 
additional researches are necessary to reveal the underlying 
mechanisms of HLA-DMA in UC. In summary, the studies 
involving these key anoikis-DEGs validate the reliability of our 
screening outcomes.

UC is characterized by a persistent chronic inflammatory 
triggered by an overactive immune response against gut bacteria or 
dietary antigens (3). This abnormal immune response involves both 
innate and adaptive immune cells, playing pivotal roles in the 
development and escalation of UC. Among these, innate immune cells 
such as dendritic cells, neutrophils, and macrophages have a 
substantial effect in the pathogenesis of UC. Additionally, innate 
lymphoid cells, which have garnered increased attention recently, also 
contribute to the disease. Simultaneously, the adaptive immune 
response mechanisms encompass various types of cells, including 
cytotoxic T lymphocytes, Tregs, and different subsets of helper T 
lymphocytes (Th), such as Th1, Th2, Th9, Th17, and Th22 (7). A recent 
study revealed increased abundances of IL1B+ macrophages and 
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monocytes, IL17A+ CD161+ effector memory T cells, and IL17A+ 
regulatory T cells in colonic mucosa samples from UC patients (54). 
Additionally, a significant accumulation of CD11b+ B cells has been 
observed in the intestinal lamina propria and Peyer’s patches in both 
mouse models with colitis induced by dextran sulfate sodium and 
individuals with UC. The adoptive transfer of CD11b+ B cells 
successfully ameliorated colitis symptoms and showed therapeutic 
benefits (55). In this research, we analyzed the immune cell infiltration 
and found higher enrichment of activated dendritic cells, 
macrophages, neutrophils, multiple T cells (activated CD4, activated 
CD8, gamma delta T, NKT, Treg, Th1, Th2, and Th17 cells), and B cells 
(activated and immature B cells) in UC compared to normal group. 
Further, our results showed that among the key anoikis-DEGs, 
CEACAM6, CFB, CX3CL1, and HLA-DMA exhibited a positive 
association with immune cells, while PDK4 exhibited a negative 
association with immune cells (Figure 6C). These findings deepen our 
understanding of immune dysregulation and immune cell 
involvement in UC.

The enrichment analysis revealed the involvement of five key 
anoikis genes in immunoregulatory interactions between lymphoid 
and non-lymphoid cells, interferon alpha/beta signaling, interleukin-4 
and interleukin-13 signaling, and antigen processing-cross 
presentation, among others (Supplementary Figure  3). Using the 
clustering algorithm, patients were classified into two clusters 
according to the five key anoikis genes (Figure  7A). HLA-DMA, 
CEACAM6, CX3CL1, and CFB exhibited high expression levels in 
cluster A, whereas PDK4 displayed relatively low expression in cluster 
A (Figure 7B). Moreover, the relationship among the clinical profiles, 
five key anoikis gene expression, and subtypes was visualized using a 
heatmap (Figure 7C). To better understand the differences between 
UC subtypes, the underlying pathways were analyzed, revealing that 
the two subtypes displayed distinct pathways (Figure 8). Additionally, 
the interaction network among these characteristic genes, miRNA, 
and TFs were explored (Supplementary Figure 4), providing insights 
into the upstream signaling pathways for our subsequent research. In 
the future, we  will persist in exploring the potential mechanisms 
underlying UC by conducting molecular biology experiments.

Nevertheless, this research has some limitations. Initially, this 
research relied on a publicly available dataset, and it is crucial to 
emphasize that these findings generated using bioinformatics 
techniques require further validation to ensure their reliability. 
Furthermore, it is essential to highlight that the expression levels of 
the above genes among individuals from distinct regions or racial 
backgrounds remain unclear. More in vitro and in vivo studies are 
needed to fill these knowledge gaps and understand how these crucial 
anoikis genes are linked to different immune signaling pathways in 
UC. These experiments will provide deeper insights into the potential 
mechanisms underlying the correlation of PDK4, HLA-DMA, 
CEACAM6, CX3CL1, and CFB with the infiltration of immune cells 
in UC, helping to establish a more comprehensive understanding of 
the disease.

5 Conclusion

This research offers a thorough examination of the involvement of 
ARGs in UC, marking the first instance of revealing the expression 

profiles of ARGs in UC and their association with immune cells 
infiltration. Machine learning algorithms and unsupervised clustering 
analysis based on ARGs were employed to identify five signature 
genes: PDK4, HLA-DMA, CEACAM6, CX3CL1, and CFB. These genes 
are critically involved in immune cell infiltration and immune 
signaling pathways, showing a considerable diagnostic value. The 
results offer insights into the classification of UC patients into two 
clusters, each regulated by distinct pathways. Our findings have the 
potential to be a valuable reference, offering deeper insights into the 
underlying mechanisms of anoikis in UC. They could serve as a 
foundation for the development of innovative strategies in drug 
screening, personalized treatment, and immunotherapy for 
individuals with UC.
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