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Introduction: The aim of this study is to construct and validate new machine 
learning models to predict pneumonia events in intensive care unit (ICU) patients 
with acute brain injury.

Methods: Acute brain injury patients in ICU of hospitals from January 1, 2020, 
to December 31, 2021 were retrospective reviewed. Patients were divided into 
training, and validation sets. The primary outcome was nosocomial pneumonia 
infection during ICU stay. Machine learning models including XGBoost, 
DecisionTree, Random Forest, Light GBM, Adaptive Boost, BP, and TabNet were 
used for model derivation. The predictive value of each model was evaluated 
using accuracy, precision, recall, F1-score, and area under the curve (AUC), and 
internal and external validation was performed.

Results: A total of 280 ICU patients with acute brain injury were included. Five 
independent variables for nosocomial pneumonia infection were identified 
and selected for machine learning model derivations and validations, including 
tracheotomy time, antibiotic use days, blood glucose, ventilator-assisted 
ventilation time, and C-reactive protein. The training set revealed the superior 
and robust performance of the XGBoost with the highest AUC value (0.956), 
while the Random Forest and Adaptive Boost had the highest AUC value (0.883) 
in validation set.

Conclusion: Machine learning models can effectively predict the risk of 
nosocomial pneumonia infection in patients with acute brain injury in the ICU. 
Despite differences in populations and algorithms, the models we constructed 
demonstrated reliable predictive performance.
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Introduction

Acute brain injury (ABI) encompasses a range of neurological 
disorders that can result in acute functional deficits, including 
ischemic or hemorrhagic stroke, subarachnoid hemorrhage from 
aneurysms, and traumatic brain injury, causing approximately 12 
million deaths annually (1, 2). Due to the uncertain long-term 
functional prognosis of ABI, patients often have prolonged hospital 
stays, and the majority require endotracheal intubation for airway 
protection, along with mechanical ventilation and intracranial 
pressure reduction. Additionally, ABI is associated with immune 
system alterations mediated through inflammation and the autonomic 
nervous system, which may increase susceptibility to infections during 
and after hospitalization (3–5). In ABI patients who suffer from 
nosocomial infections, a common source of infection is the respiratory 
system, including ventilator-associated pneumonia and hospital-
acquired pneumonia. Studies have shown that nosocomial pneumonia 
significantly prolongs patients’ hospital stay and increases mortality 
and disability rates (3, 6).

Studies have indicated a significant association between the 
severity of ABI, chest trauma, smoking history, substance abuse, as 
well as interventions such as transfusion, sedation, and the need for 
tracheostomy, with the risk of nosocomial pneumonia (7–11). Given 
that nosocomial pneumonia can be  considered a continuum of a 
single disease, describing its epidemiology and influencing factors is 
clinically valuable (12, 13). This can aid in better formulating 
preventive and management measures for nosocomial pneumonia in 
clinical practice. Existing pneumonia prediction scoring tools in 
clinical practice, such as CPIS score, A2DS2 score, and AIS-APS score, 
have certain limitations, primarily due to underutilization of 
classification information, leading to information loss (14–16).

Recently, artificial intelligence (AI) has rapidly developed in the 
field of medicine, with machine learning being the most widely used 
AI method. Machine learning models generate personalized 
probabilities of events for patients. Additionally, ML models can 
capture complex non-linear relationships in medical data, making full 
use of clinical information (17). However, there is currently no 
effective tool for rapidly predicting the occurrence of nosocomial 
pneumonia in ICU patients with ABI. This study aims to collect 
factors related to the occurrence of nosocomial pneumonia in 
neurosurgical ICU patients with ABI through retrospective analysis, 
and ultimately construct a predictive model for nosocomial 
pneumonia in ICU patients with ABI.

Materials and methods

Study setting

The patients admitted to the Neurosurgery Departments of 
Jiangsu Provincial People’s Hospital and Benq Hospital from January 
1, 2020, to December 31, 2021 were selected as the training set. To 
validate the model’s generalization ability, patients from three 
healthcare systems, including Suqian First People’s Hospital, Nanjing 
Jiangning Hospital, and Jiangsu Provincial People’s Hospital, were 
selected as the external validation set. This study obtained approval 
from the Institutional Review Board of the research center. Given the 
retrospective design of this study, the requirement for obtaining 

informed consent from patients was waived. This study was reported 
in accordance with the Transparent Reporting of a Multivariable 
Prediction Model for Individual Prognosis or Diagnosis (TRIPOD) 
reporting guideline (18).

Inclusion and exclusion criteria

Patients were included if they met the following criteria: (1) aged 
between 18 and 80 years old; (2) admitted to the Neurosurgery ICU 
with ABI, including cerebral hemorrhage, trauma, vascular disease, or 
tumor; (3) hospital stay longer than 48 h; (4) received standard 
treatment during hospitalization, including surgical and conservative 
treatment. Patients with the following characteristics were excluded: 
(1) occurrence of pulmonary infection within 48 h of ICU admission 
or hospitalization; (2) patients who did not receive standardized 
postoperative treatment; (3) patients with immunodeficiency diseases; 
(4) patients with severe chronic heart, lung, kidney, or other organ 
diseases. Severe chronic heart disease included end-stage heart failure, 
severe cardiomyopathies, and complex congenital heart diseases that 
demand continuous medical support and substantially affect the 
patient’s physiological function and prognosis; (5) patients with 
concomitant malignant tumors in other organs; (6) patients for whom 
data were unavailable.

Data collection

Collect demographic characteristics, vital signs, ventilator 
parameters, sputum culture results, blood test results, imaging 
findings, treatment, and prognosis data from the hospital electronic 
medical record system for ICU patients with acute brain injury, 
encompassing 61 dimensions. Nosocomial infections are defined as 
those that occur more than 48 h after hospital admission, and the 
diagnosed pneumonia based on clinical presentation, blood-related 
examinations, vital signs, radiological examinations, and 
sputum culture.

Statistical analysis

We used SPSS 26.0 and Python 3.7 for data analysis. Data cleaning 
was performed, including the removal of variables not included in the 
statistical analysis, missing values (with a missing rate exceeding 80%), 
and continuous values containing character groups. Subsequently, 
duplicate data entries were removed, and the cleaned data were 
exported. For variables with a missing rate of less than 80%, we used 
the Multivariate Imputation by Chained Equations (MICE) algorithm 
for imputation. MICE is a multiple imputation method that iteratively 
models each variable with missing values as a function of the other 
variables in the dataset. This approach allows us to capture the 
complex relationships between variables, which is essential in our 
medical dataset. By using MICE, we aimed to generate more accurate 
imputations and preserve the data’s underlying structure. After 
imputation, the dataset was further processed for subsequent analysis. 
The training set were randomly divided into training subset and 
internal validation subset at a ratio of 7:3. Out of the total 280 patients, 
196 patients were assigned to the training set, and 84 patients were 
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included in the validation set. Continuous variables that followed a 
normal distribution were presented as mean ± standard deviation, 
while those not following a normal distribution were presented as 
median and interquartile range. Categorical variables were presented 
as counts and proportions. Independent sample t-tests were used to 
compare normally distributed continuous variables, Mann–Whitney 
U tests were used for non-normally distributed continuous variables, 
and chi-square tests were used for comparisons between categorical 
variables. A p-value <0.05 was considered statistically significant.

Subsequently, the selected variables were used to build seven 
machine learning models, including the XGBoost model, DecisionTree 
model, Random Forest model, Light GBM model, Adaptive Boost 
model, BP model, and TabNet model. Selecting these models owing 
to their unique advantages in handling complex non-linear 
relationships within medical data. Ensemble models are well-equipped 
to capture interactions among multiple variables, which is crucial 
when predicting nosocomial pneumonia in ICU patients with 
ABI. Receiver operating characteristic (ROC) curves were plotted, and 
the area under the curve (AUC) was calculated. Furthermore, the 
performance of each model was evaluated by comparing their 
accuracy, precision, recall, and F1-score on both the internal validation 
subset and external validation set.

SPSS 26.0 was employed for initial data exploration and basic 
statistical tests, while Python 3.7 was used for data cleaning, machine-
learning model construction, and performance evaluation. The pandas 
library in Python was crucial for data manipulation tasks. For building 
the machine-learning models, we relied on several libraries. The scikit-
learn library was extensively used. The XGBoost model was 
implemented using the xgboost library, which offers efficient 

algorithms for gradient-boosting. The DecisionTree model was built 
using the DecisionTreeClassifier class from scikit-learn, and the 
Random Forest model was created using the RandomForestClassifier 
class in the same library. The Adaptive Boost model was implemented 
using the AdaBoostClassifier class from scikit-learn. The Light GBM 
model was built with the lightgbm library. The BP model was 
implemented using the Keras library, which is a high-level neural 
network API running on top of TensorFlow. The TabNet model was 
created using the pytorch-tabnet library designed for tabular data. For 
performance evaluation, functions from scikit-learn were used to 
assess performance evaluation.

Results

This study included a total of 280 ABI patients, and the baseline 
characteristics of the patients are shown in Table  1. A total of 67 
patients with nosocomial pneumonia, while the remaining 213 
patients without nosocomial pneumonia. There were no significant 
differences between groups for age (p = 0.899), sex (p = 0.176), history 
of heart disease (p = 0.208), and patients received chemotherapy or 
immunosuppressive therapies (p = 0.074). However, we  noted 
significant differences between groups for smoking history (p = 0.046), 
diabetes (p < 0.001), and stroke history (p = 0.012).

A total of 2,953 data points were collected from 280 patients, 
including 24 qualitative features and 35 quantitative features 
(Appendix). Fifty-nine variables were analyzed through correlation 
heatmap analysis and random forest-based feature selection. The most 
significant predictors were subsequently entered into multiple logistic 

TABLE 1 The baseline characteristics of included patients.

Variables Nosocomial pneumonia P-value

Yes (n = 67) No (n = 213)

Age 60.15 52.16 0.899

Sex (%) 0.176

  Male 44 158

  Female 23 55

Smoking history 0.046

  Yes 16 79

  No 51 134

Diabetes <0.001

  Yes 14 12

  No 53 201

Heart disease 0.208

  Yes 5 8

  No 62 205

Stroke 0.012

  Yes 8 8

  No 59 205

Chemotherapy or immunosuppressive therapies 0.074

  Yes 1 0

  No 66 213
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regression modeling. Pearson correlation heatmap analysis was used 
for correlation analysis, revealing that the duration of tracheostomy 
was the most significant associated factor for pneumonia occurrence 
in ABI patients (Figure  1). In addition, the results of the Light 
Gradient Boosting Machine algorithm showed that the top  20 
important indicators were tracheostomy duration, duration of 

antibiotic use, blood sugar, age, duration of mechanical ventilation, 
CRP, GCS score, body temperature, lymphocyte percentage, 
lymphocyte count, gastric tube, albumin, PPi, intraoperative 
hypothermia, total protein, erythrocyte count, average hemoglobin 
concentration, hematocrit, operation time, and mean corpuscular 
volume (Figure 2).

FIGURE 1

Pearson correlation heatmap between variable.

FIGURE 2

Variable importance of features included in the machine learning algorithm for prediction of nosocomial pneumonia in ABI patients.
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Through the cross-validation accuracy curve, it can be observed that 
when the number of features is 5. It should be noted that while the 
out-of-Bag (OOB) error score was relatively high at this point, our 
objective was to find the optimal number of features for overall model 
performance. The OOB error is just one of the many factors to consider. 
By examining the OOB error in combination with other performance 
metrics such as accuracy, precision, recall, F1-score, and AUC, we aimed 
to select a feature set that would provide the best generalization and 
predictive ability for the model. A slightly higher OOB error might 
be tolerated if the model shows superior performance in other aspects, 
which is crucial for practical application in predicting nosocomial 
pneumonia in ICU patients with ABI. Employing a stepwise method, 
with 5 features including tracheostomy time, duration of antibiotic use, 
blood sugar level, duration of mechanical ventilation, and CRP were 
applied to establish prediction model (Figure  3). Among the seven 
machine-learning algorithms evaluated, the XGBoost and Light GBM 
models demonstrated relatively high AUC values, indicating their strong 
discriminatory power in predicting nosocomial pneumonia in ICU 
patients with ABI (Table 2 and Figure 4). The external validation set 
found XGBoost showed highest precision (0.96), while Random Forest 
and Adaptive Boost models showed highest Light GBM (AUC: 0.883) 
(Table 2 and Figure 5). These high-performing models based on AUC 
values can potentially play a crucial role in clinical decision-making. A 
model with a high AUC can assist clinicians in early identification of 
patients at high risk of nosocomial pneumonia, enabling timely 
intervention and potentially improving patient outcomes.

Model visualization

Leveraging an XGBoost-based diagnostic model, our data 
platform conducts daily predictions of infection risk (Figure 6). 

Although we cannot provide a direct link to the platform due to 
privacy and security reasons, the platform functions in a manner 
similar to the interactive capabilities of the ‘shiny’ package in R 
software. Users input the five key parameters: tracheostomy time, 
duration of antibiotic use, blood glucose levels, the length of time 
on ventilator support, and the CRP value. The platform then 
processes these inputs using the underlying XGBoost-based 
algorithm. The output is presented in a dynamic way. A pie chart 
shows the real – time distribution of incidence probabilities, giving 
users an immediate understanding of the patient’s risk status. 
Additionally, a trend chart is available for each patient, which can 
be used to track the progression of the predicted risk over time. 
This visualization aims to assist clinicians in making more 
informed decisions regarding patient care.

Discussion

Currently, clinicians typically rely on clinical, radiological, 
and laboratory indicators to diagnose pneumonia and initiate 
empirical antibiotic therapy (19). However, early pneumonia is 
insensitive, radiological radiation causes some harm to patients, 
and clinical diagnosis of pathogenic microorganisms has some lag. 
Existing scoring systems do not cover all individual factors of 
patients and have low accuracy. Considering the impracticality of 
existing prediction models and the flexibility of machine learning 
methods in selecting predictive variables and transformation 
algorithms. This study employed machine learning to construct a 
predictive model for nosocomial pneumonia infection in ABI 
patients in the ICU. The study included 280 patients from multiple 
hospitals for model construction and validation. The results 
revealed that among the machine learning models constructed 

FIGURE 3

Accuracy chart of out-of-pocket data.
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based on tracheostomy time, duration of antibiotic use, blood 
sugar level, duration of mechanical ventilation, and CRP, the 
XGBoost model exhibited the best overall performance. It 
achieved a precision of 98% and an AUC of 95.6% in predicting 
postoperative pneumonia in ABI patients. Similarly, in the 

external validation set, we observed the highest precision with the 
XGBoost model.

Several studies have already constructed a prediction model for 
pneumonia in patients with brain injury using a machine learning 
approach (20, 21). Zheng et  al. (20) identified 468 patients with 
spontaneous intracerebral hemorrhage (sICH) and identified six 
independent variables, including nasogastric feeding, airway support, 
unconscious onset, surgery for external ventricular drainage, larger 
sICH volume, and ICU stay, and the prediction model constructed 
based on these variables could effectively predict stroke-associated 
pneumonia in patients with sICH. Lee et  al. (21) identified 5,754 
hospitalized stroke patients, and found random survival forest model 
showed superior discriminative ability for predicting post-stroke 
pneumonia. However, there are currently no studies that have 
constructed predictive models for nosocomial pneumonia infection 
in ABI populations in the ICU. Therefore, we adopted a machine 
learning approach to construct a predictive model for nosocomial 
pneumonia infection in ABI populations in the ICU, which can 
manage missing information without the need for imputation or 
preprocessing and has strong clinical applicability.

To further evaluate the performance of our proposed machine-
learning models, we compared them with existing clinical tools, namely 
CPIS, A2DS2, and AIS-APS scores. With a cut-off value of CPIS ≥ 3, in 
critically ill patients, the AUC of CPIS for predicting ventilator-associated 
pneumonia was found to be 59% (22). The AUC of the A2DS2 model for 
predicting stroke-associated pneumonia was 85% (23). At the same time, 
the AUC of the AIS-APS score for predicting ischemic stroke-associated 
pneumonia was 87% (24). The optimal model constructed in this study 
had a higher AUC than the previous prediction models in both the 
training set and the validation set, highlighting the potential advantages 
of our machine-learning-based approach in predicting nosocomial 
pneumonia in ICU patients with ABI.

The constructed prediction model based on tracheostomy time, 
duration of antibiotic use, blood sugar level, duration of mechanical 
ventilation, and CRP showed high predictive performance. The 
potential reasons for this could explained by: (1) long-term 
endotracheal intubation and mechanical ventilation may lead to 
respiratory mucosal injury and inflammatory responses, thereby 
affecting local immune function, weakening the clearance ability 
against pathogenic microorganisms, and increasing the likelihood of 
infection occurrence (25); (2) long-term use of antibiotics may lead to 
bacterial resistance to drugs and cause a series of adverse reactions, 
such as disruption of intestinal flora balance, liver and kidney damage, 

TABLE 2 The predictive performance among the constructed models.

Algorithmic Training set Validation set

Precision Recall 
rate

F1-score AUC Precision Recall 
rate

F1-score AUC

XGBoost 0.98 0.96 0.97 0.956 0.96 0.96 0.96 0.820

Decision tree 0.91 0.88 0.89 0.878 0.92 0.92 0.92 0.700

Random Forest 0.96 0.92 0.94 0.918 0.94 0.94 0.94 0.883

Light GBM 0.98 0.95 0.96 0.950 0.95 0.95 0.96 0.758

Adaptive Boost 0.96 0.91 0.93 0.913 0.93 0.93 0.93 0.883

BP network 0.86 0.81 0.83 0.815 0.84 0.84 0.85 0.758

TabNet 0.90 0.84 0.86 0.841 0.88 0.88 0.89 0.674

FIGURE 4

Receiver operating characteristic (ROC) curve and AUC among the 7 
algorithm models.

FIGURE 5

Receiver operating characteristic curve and AUC among the external 
validation set.
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thereby increasing the risk of infection (26); (3) high blood sugar may 
lead to immune suppression and exacerbate inflammation, which can 
reduce the body’s ability to clear pathogens, trigger the release of 
inflammatory mediators, increase inflammation in lung tissues, and 
thus provide an optimal environment for bacterial infection (27); (4) 
various factors related to mechanical ventilation, such as positive 
end-expiratory pressure (PEEP), tidal volume, and FiO2 levels, can 
contribute to lung injury and inflammation, further predisposing 
patients to ventilator-associated pneumonia (28); and (5) elevated 
levels of CRP often reflect the inflammatory status of the body. The 
exacerbation of pulmonary inflammation may lead to tissue damage 
in the lungs and provide a favorable environment for the growth of 
pathogenic microorganisms, thereby increasing the risk of nosocomial 
pneumonia (29).

The results of this study found that the XGBoost model had the 
best performance in predicting nosocomial pneumonia infection 
among ABI patients in the ICU. The XGBoost model is commonly 
used for data mining. It is less prone to overfitting on limited datasets 
and has lower processing requirements compared to deep learning 
methods, yet it performs well under various variable conditions (30). 
Compared to deep learning models, our study objectives and dataset 
do not require the extraction of larger datasets. This also explains why 
the XGBoost model is most suitable. Combining the results of this 
study, a data platform based on the XGBoost diagnostic model can 
be  constructed. Patient basic information, along with parameters 
including tracheostomy time, duration of antibiotic use, blood sugar 
level, duration of mechanical ventilation, and CRP, are input into the 
platform card. Through the platform calling the algorithm interface, 
diagnostic results can be  displayed on the platform, showing the 
probability of occurrence in real-time, making the diagnosis more 
intuitive and better guiding clinical treatment.

Several shortcoming of this study should be mentioned. Firstly, 
this study was retrospectively designed, and the research results 
may be affected by recall bias and confounding bias. Secondly, the 
definition of nosocomial pneumonia varies across different research 

centers, which may affect the predictive ability of the constructed 
prediction models. Thirdly, not all variables are balanced across all 
research centers, which may introduce bias into the results. 
Although consistent results were obtained based on these 
unbalanced variables, the impact of heterogeneity should not 
be underestimated.

Conclusion

This study derived a predictive model for nosocomial pneumonia 
infection in ICU patients with ABI using machine learning techniques 
from multiple centers, and conducted multiple validations to obtain 
effective and robust confirmation. The results indicate that machine 
learning-based models can more accurately predict the risk of 
nosocomial pneumonia infection in ICU patients with ABI, aiding in 
the early identification and intervention of nosocomial pneumonia 
infection. It should be noted that our study has limitations related to 
the relatively small dataset size in the context of having over 50 
variables. A small dataset may increase the risk of overfitting, as the 
machine-learning models may adapt too closely to the specific features 
of this limited sample, leading to poor generalization to new data. 
Moreover, it may not fully represent the entire spectrum of variability 
in the population of ICU patients with ABI, thus potentially limiting 
the generalizability of our findings. To address these limitations, future 
research could consider expanding the sample size. Multi-center 
studies could be conducted to gather a larger and more heterogeneous 
dataset, which would likely improve the stability and generalizability 
of the predictive models.

Data availability statement

The raw data supporting the conclusions of this article will 
be made available by the authors, without undue reservation.

FIGURE 6

The diagnosis model of XGBoost is used to predict the infection risk.
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