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Background: Sepsis-associated kidney injury (SAKI) is a prevalent complication 
in intensive care unit (ICU) patients with sepsis. Diagnosis currently relies on 
clinical assessment, urine output, and serum creatinine levels, yet effective 
clinical treatments remain scarce. Our objectives are to explore prospective, 
targeted medications for the treatment of septic kidney injury and to employ 
bioinformatics to identify key genes and pathways that may be implicated in the 
pathogenesis of SAKI.

Methods: We utilized the GEO database for differential gene screening. Related 
genes of septic kidney injury were identified through Pubmed2Ensembl, followed 
by annotation and visualization of gene ontology biological processes and 
KEGG pathways using DAVID. Protein–protein interactions were analyzed with 
the STRING database, and hub genes were identified using Cytoscape software. 
Candidate genes were further validated through Metascape. The CTD database 
was employed to uncover the relationship between hub genes and acute kidney 
injury (AKI). CIBERSORT was applied to evaluate the infiltration of immune cells 
and their association with hub genes. Hub genes were experimentally verified 
through qPCR detection. Lastly, the Drug–Gene Interaction Database (DGIdb) 
was utilized to identify drug–gene interactions.

Results: Six genes, including TNF, CXCL8, IL-6, IL-1β, IL-2, and IL-10, were 
associated with three major signaling pathways: the COVID-19 adverse outcome 
pathway, an overview of pro-inflammatory and pro-fibrotic mediators, and the 
interleukin-10 signaling pathway. Additionally, 12 targeted drugs were identified 
as potential therapeutic agents.
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Introduction

Sepsis-associated acute kidney injury (SAKI) is a common 
complication of sepsis, accounting for 26 to 50% of all acute kidney 
injuries (AKI) (1). It is characterized by a high mortality rate, poor 
prognosis, and poses a significant threat to patient survival. AKI is an 
independent risk factor for increased mortality in sepsis patients, with 
the mortality rate of SAKI patients reaching up to 70% (2). Even if 
patients survive, the risk of developing residual chronic kidney disease 
(CKD) is significantly increased, imposing a substantial economic 
burden on society and patients’ families. In clinical practice, especially 
for patients with AKI in the ICU, it is crucial to have biomarkers that 
can predict disease progression and severity.

Recent studies have primarily discovered biomarkers through wet 
experiments, with a notable lack of bioinformatics methods. However, 
emerging research indicates that certain drug ingredients can be used 
to treat SAKI, as they can influence related pathways involved in 
SAKI. For example, flavonoid fisetin has been shown to alleviate kidney 
inflammation in SAKI mouse models (3). A previous study identified 
NOX4 as a potential therapeutic target in SAKI (4). However, these 
study relied solely on wet experiments without employing 
bioinformatics methods, which may limit the comprehensiveness of 
the findings. Additionally, several miRNAs are implicated in the 
pathogenesis of SAKI and are expected to serve as potential therapeutic 
targets (5). Exploring the connections between SAKI targets and 
related miRNAs could help identify key genes involved in the 
condition. Despite these findings, the currently recommended 
treatment strategy for SAKI remains primarily symptomatic and 
supportive, with no specific treatments available for SAKI patients. The 
etiology of SAKI is complex and not yet fully understood, involving 
multiple factors. A deeper understanding of the pathogenesis of SAKI 
is essential to identify new therapeutic targets and strategies. Therefore, 
identifying key genes of SAKI and searching for effective biomarkers 
are crucial for early diagnosis, prevention, and intervention of SAKI.

Text mining of biomedical literature is a valuable technique for 
generating novel hypotheses, as it can reveal previously unknown 
associations between genes and diseases (6). Given the exponential 
growth of information that surpasses manual management 
capabilities, text mining techniques have become essential in life 
sciences. Particularly, they are instrumental in electronic drug 
discovery processes, including drug target identification and 
pharmacogenomics (7). By integrating text mining with other 
analytical technologies, researchers can identify new gene candidates 
and potential applications for existing medications. The use of Gene 
Ontology (GO) cell signaling pathway maps aids in pinpointing target 
genes or regulators that are amenable to targeting. This is achieved by 
assessing the connections among a set of genes within a network of 
protein interactions, which can help in prioritizing genes for further 
study. This approach highlights that genes with high connectivity tend 
to cluster together within the network (8). Once the target genes are 
identified, drug–gene interaction analysis is conducted to develop 
potential drug candidates (9).

Our study aims to identify potential genes and medications for the 
treatment of SAKI by leveraging text mining, functional and signaling 
pathway analysis, and database analytic techniques. Our approach 
began with a comprehensive analysis of publicly available gene 
expression datasets related to SAKI. Initially, we  compiled a 
preliminary list of relevant genes to explore potential therapeutic 

agents for septic kidney injury. Subsequently, we generated a list of 
high-priority target genes by integrating extensive data on these genes 
through functional and signaling network enrichment analysis. This 
was followed by the use of protein–protein interaction networks to 
further refine the gene selection. Finally, the examination of drug–
gene interaction data led to the identification of potential drug 
candidates. Our findings provide a foundation for future research 
endeavors and may offer a basis for the development of new targeted 
therapeutic approaches as potential treatments for SAKI.

Methods and materials

Data sources

A gene expression profile associated with septic kidney injury 
(GSE94717) was obtained from the Gene Expression Omnibus (GEO) 
database, which is publicly accessible at http://www.ncbi.nih.gov/geo. 
This dataset can be freely downloaded by esearchers and the general 
public for further analysis. Microarray platform GSE242059 miRNA 
expression profile for GPL16791 (Affymetrix Human Gene 1.0 ST 
Array), which includes human kidney tissue samples. The data can 
be  downloaded online by the general audience. GSE232404 was 
obtained from the GEO database, used for immune cell 
infiltration analysis.

Identification of differentially expressed 
genes

The gene expression dataset GSE94717, related to SAKI, was 
downloaded from the GEO database.1 The data was analyzed online 
using GEO2R, where it was divided into SAKI and sepsis-non AKI 
and normal groups. The criteria for identifying differentially expressed 
genes (DEGs) were set with a p-value less than 0.05 and a log-fold 
change greater than 1 or less than −1.

Text mining

In this research, we employed pubmed2ensembl2 for text mining 
purposes. We  specified “Homo sapiens” as the target species and 
utilized the search term “septic kidney injury.” The process involved 
selecting options such as “Search PubMed ID,” “Search up to 100,000 
document IDs,” and applying the “MEDLINE PubMedID filter” to 
compile a comprehensive gene list.

GO biological process and KEGG pathway 
analyses

DAVID (Database for Annotation, Visualization, and 
Integrated Discovery)3 is a powerful resource that facilitates the 

1 https://www.ncbi.nlm.nih.gov/geo

2 http://pubmed2ensembl.ls.manchester.ac.uk/

3 http://david.ncifcrf.gov
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transition from raw data collection to the extraction of biological 
insights, particularly for genome-scale datasets (10). This 
integrated approach has proven advantageous in interpreting 
high-throughput experimental data. In our study, the genes 
identified through text mining were imported into DAVID for 
further analysis. We  utilized various annotation categories, 
including KEGG pathway, GO Molecular Function, GO Cellular 
Component, and GO Biological Process, to analyze the gene set 
with “Homo sapiens” specified as the organism of interest. To 
adjust the p-values and control for multiple testing, we employed 
the “hypergeometric” statistical test and applied the false 
discovery rate (FDR) correction method.

Protein–protein interactions

The STRING database4 aims to compile a comprehensive map of 
all known and predicted protein interactions, encompassing both 
functional and physical associations (11). In our analysis, we utilized 
the STRING database to explore the network of protein–protein 
interactions for the genes identified in the previous phase. We selected 
“multiple proteins” from the menu bar on the left and specified “Homo 
sapiens” as the organism of interest. We set the confidence level to 
medium, corresponding to a score of 0.400, to ensure a balance 
between the number of interactions and their reliability. This approach 
allowed us to construct a network that visualizes the complex 
interactions among the target genes.

Following the construction of the protein–protein interaction 
network, we proceeded to analyze and visualize this network using 
Cytoscape software. Cytoscape is a powerful tool that provides a visual 
representation of the integration between genotype, biological 
networks, and gene expression data (12). To identify core functional 
modules within the network, we employed the Molecular Complex 
Detection (MCODE) plugin within Cytoscape (13). This plugin 
facilitated the identification of densely connected regions within the 
network, which are often indicative of biologically significant 
interactions. Through this process, we were able to pinpoint the hub 
genes that play central roles in the network.

Functional enrichment of hub genes

Metascape5 is a web-based portal designed to offer experimental 
biologists a comprehensive resource for annotating and analyzing 
gene lists. This platform integrates over 40 distinct knowledge sources 
into a single gateway, combining feature-rich interactome analysis, 
gene annotation, and member search capabilities. Metascape also 
facilitates the comparison of datasets from multiple, diverse 
experiments, enhancing the ease of data interpretation. The platform’s 
rapid, one-click analysis interface generates interpretable outputs, 
significantly streamlining the user experience (14). In our analysis, 
we  set the cutoff value at a p-value of less than 0.05 to identify 
significant results.

4 http://stringdb.org

5 https://metascape.org

Prediction of the target miRNAs of the 
DEGs

To predict the target miRNAs of the identified hub genes, 
we utilized five reputable online miRNA databases: miRWalk, miRDB, 
TargetScan, DIANA-micro, and miRcode. Subsequently, 
we constructed a visual mRNA-miRNA co-expression network using 
Cytoscape software, which visualized the interactions between the 
mRNAs and miRNAs. For a miRNA to be considered a target, it had 
to be listed in at least four of the consulted databases.

The association between screened hub 
genes and AKI

The Comparative Toxicogenomics Database (CTD)6 is a valuable 
resource that provides comprehensive information on the relationships 
between chemicals, genes, and diseases (15). In our study, we utilized 
the CTD database to explore the association between the identified 
hub genes and the risk of AKI.

Immune infiltration analysis

The CIBERSORT package was employed to estimate the immune 
cell composition within the samples. This algorithm utilizes gene 
expression arrays in conjunction with predefined immune feature 
matrices to calculate the relative proportions of 22 distinct immune 
cell subpopulations. The dataset used is GSE232404. To compare the 
differences in immune cell infiltration between patients with SAKI 
and normal samples, we used the “immuneconv” in the R package to 
perform this analysis and utilized the ggplot2 package in the R 
programming language for data visualization.

Quantitative real-time PCR

Total RNA was extracted from SAKI mouse (established using 
cecal ligation and puncture) (16) kidney tissue using the RNeasy Mini 
Kit (QIAGEN) according to the manufacturer’s protocol. The quantity 
and purity of RNA were assessed using a NanoDrop  2000 
spectrophotometer (Thermo Fisher Scientific) and by calculating the 
260/280 nm absorbance ratio. Only samples with a ratio between 1.8 
and 2.1 were used for subsequent analysis. The reverse transcription 
of RNA to complementary DNA (cDNA) was performed using the 
High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems) 
in a 20 μL reaction volume, containing 1 μg of total RNA, according 
to the supplier’s instructions. The reaction was incubated at 25°C for 
10 min, followed by 37°C for 120 min, and finally heated to 85°C for 
5 min to inactivate the enzyme. Quantitative real-time PCR was 
conducted using the StepOnePlus Real-Time PCR System (Applied 
Biosystems) with gene-specific primers and the PowerUp SYBR Green 
Master Mix (Thermo Fisher Scientific). Each reaction contained 2 μL 
of cDNA, 10 μL of 2× PowerUp SYBR Green Master Mix, 0.5 μM of 

6 http://www.ctdbase.org
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each primer, and nuclease-free water to a final volume of 20 μL. The 
thermal cycling conditions were as follows: an initial denaturation at 
95°C for 2 min, followed by 40 cycles of 95°C for 15 s and 60°C for 
1 min. A melting curve analysis was performed at the end of each PCR 
to confirm the specificity of the amplification. The relative expression 
levels of target genes were calculated using the 2 CT−∆∆  method, 
normalizing to the endogenous control gene, β-actin, which exhibited 
stable expression across all samples. Each sample was analysed once 
with three independent biological replicates per group to ensure 
stability and reproducibility of results, and non-template controls were 
included in each run to monitor potential contamination.

Drug–gene interactions

The Drug Gene Interaction Database (DGIdb)7 is a 
comprehensive resource that consolidates information on drug–gene 
interactions from multiple sources (17). In our analysis, we applied 
the following specific filters to ensure the reliability and relevance of 
the identified drug–gene interactions: ① “Remove NA from 
interaction types” to exclude undefined interaction types, ② “Set the 
query score value to >4” to ensure high confidence in the gene-drug 
associations, ③ “Set the interaction score as >2” to prioritize strong 
interactions. We then imported the hub genes identified from our 
Cytoscape analysis into DGIdb. Through this process, we were able 
to identify specific medications with potential therapeutic effects for 
septic kidney injury.

Statistical analysis

We conducted statistical analyses using the stats package in the R 
programming language (version 4.1.0). To compare continuous 
variables between groups, we employed Student’s t-test. The results are 
presented as the mean ± standard deviation (SD) or standard error of 
the mean (S.E.M.). Statistical significance was determined at a 
threshold of p-values less than 0.05, with the following notation for 
significance levels: ***p < 0.001, **p < 0.01, and *p < 0.05.

Results

Identification of differentially expressed 
genes

We began by normalizing the Sepsis Kidney Injury (SKI) dataset, 
GSE94717, which consists of six sepsis kidney injury tissue samples, 
six sepsis non-kidney injury tissue samples, and three healthy tissue 
samples. The identification of DEGs was based on criteria of “p < 0.05 
and a log-fold change greater than 1 or less than −1.” Utilizing 
GEO2R, we performed differential gene expression analysis on the 
GSE94717 dataset to identify DEGs between the SAKI group and the 
non SAKI and normal group. The volcano plot of multiple 
comparisons shows that there are upregulated and downregulated 

7 http://www.dgidb.org

differentially expressed genes between healthy and SAKI populations, 
but unfortunately, there are no statistically significant differentially 
expressed genes between the non SAKI and SAKI groups. The 
subsequent circle chart shows 81 differentially expressed genes. Box 
plot displays detailed information of GSM sequence as shown in 
Figure 1.

Results of text mining

Using pubmed2ensembl, we searched the entire database, then 
culminating in a refined list of 71 genes, which are detailed in Table 1.

Results of GO biological process and KEGG 
pathway analyses

The GO biological processes of the 71 genes were analyzed using 
DAVID, revealing terms that were highly enriched and closely related 
to the pathology of renal injury in sepsis. To ensure that the 
annotations selected were most relevant to the pathology of renal 
injury in sepsis, we  applied a stringent corrected cut-off value of 
p  = 0.01. The five most enriched biological process annotations 
included: response to extracellular space (p_adj = 2.69 × 10−23), 
extracellular region (p_adj = 9.73 × 10−15), lipopolysaccharide (p_
adj = 5.45 × 10−11), hormone activity (p_adj = 1.73 × 10−10), 
extracellular exosome (p_adj = 2.25 × 10−9). Other significantly 
enriched biological processes included positive regulation of 
interleukin-8 production, regulation of insulin secretion, response to 
activity, negative regulation of lipid storage, positive regulation of 
neuroinflammatory response, positive regulation of tyrosine 
phosphorylation of STAT protein, and positive regulation of T-helper 
1 cell cytokine production. These findings are visualized in Figure 2 
and detailed in Table 2.

During the KEGG pathway enrichment analysis, we  set the 
adjusted p-value (pval_adj) cutoff at 0.05 to identify significantly 
enriched pathways. The top five most significantly enriched pathways 
included: AGE-RAGE signaling pathway in diabetic complications 
(p_adj = 1.82 × 10−7), malaria (p_adj = 1.82 × 10−7), African 
trypanosomiasis (p_adj = 1.17 × 10−5), Chagas disease (p_
adj = 2.59 × 10−5), rheumatoid arthritis (p_adj = 1.39 × 10−4). These 
pathways are visualized in Figure 2 and detailed in Table 2.

Results of protein–protein interactions

The protein–protein interaction network for the 28 target genes 
was analyzed using the STRING database, resulting in the 
identification of 24 associated genes, as depicted in Figure 3. The 
interaction data was exported from STRING in “.tsv” (tab-separated 
values) format and imported into Cytoscape. We  applied the 
“MCODE” application in Cytoscape to configure a K-Core of 4, using 
the default settings for all other parameters. MCODE was also utilized 
to filter out two significant modules from the network. Module 1 was 
particularly noteworthy, comprising seven genes: TNF, CXCL8, IL-6, 
IL-1β, IL-18, IL-2, and IL-10, as shown in Figure 4. Consequently, 
these seven genes from Module 1 were selected for further research 
(see Table 3).
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Function analysis of hub genes

The functional annotation obtained from Metascape indicates that 
the core gene primarily influences several critical pathways, including 

the COVID-19 unfavorable outcome pathway, an overview of 
pro-inflammatory and pro-fibrotic mediators, and interleukin-10 
signaling, as illustrated in Figure 5.

Construction of mRNA-miRNA 
co-expression networks

MicroRNAs (miRNAs) are known to regulate gene expression by 
binding to the 5′ or 3′ untranslated regions (UTRs) of target mRNAs, 
playing a significant role in the development of septic kidney injury. 
Through the prediction of four target miRNA clusters that specifically 
express hub genes, we  utilized five online miRNA databases and 
identified 56 target miRNAs and 62 mRNA-miRNA pairs. Subsequently, 
we constructed a co-expression network between miRNA and mRNA 
using Cytoscape, which is visualized in Figure 6.

FIGURE 1

Analysis of DEGs. (A) Volcanic maps of normal group and SAKI group. (B) Volcanic maps of SAKI group and sepsis not AKI group. (C) Venn diagram. 
(D) Box plot.

TABLE 1 These 71 genes were related to septic kidney injury.

Results of text mining

IL-10, REN, SELP, CRP, S100A6, PHGDH, SST, GC, F3, CEP70, IL-1β, IL1R1, 

UROD, IL-18, LEP, SLC17A5, NOVA2, NOS1, G6PD, SERPINE1, MPO, LPO, 

GSTA1, AK1, COIL, EPO, LRSAM1, PAH, AMBP, NKRF, NPHS1, TSC22D3, 

GPT, PIK3C2A, THBD, CDKN2A, CST3, EDN1, PRL, ICAM1, AGT, APC, MB, 

RAPGEF5, IL-6, CPQ, PPP3CA, GAS6, AQP2, NOS2, C16orf82, IL-2, TNF, 

ENO1, POMC, GUSB, PTH, CXCL8, RETN, ALB, RRBP1, B2M, GGT1, PLAT, 

GTPBP4, AVP, SERPINF2, TJP, ELANE, PRTN3, VWF
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The interaction between hub genes and 
AKI based on the CTD database

We utilized the CTD to assess the association between selected 
central genes and AKI, aiming to identify genes that may play a 
significant role in AKI. Figure 7 illustrates that there are five hub 
genes that target both AKI and immune system diseases. Among 
these, TNF has the highest inference score, suggesting the 

strongest relationship with AKI and a pivotal role in the immune 
system. Additionally, IL-1β and IL-6, which are typical 
pro-inflammatory cytokines, score relatively high and are crucial 
in regulating inflammatory responses. While CXCL8 and IL-10 
have lower scores, their contributions to AKI and the immune 
system are still considerable; CXCL8 is primarily involved in 
neutrophil recruitment, and IL-10 functions as an anti-
inflammatory cytokine.

FIGURE 2

Enrichment analysis of genes in SAKI (David). GO_biological processes, GO_cellular component category, GO_molecular function analysis and KEGG 
pathway analysis.

TABLE 2 Significantly enriched GO terms and KEGG pathways of genes.

Category Term Description Count p-value

BP GO:0002237 Response to molecule of bacterial origin 15 2.22 × 10−13

BP GO:0032103 Positive regulation of response to external stimulus 14 1.76 × 10−12

BP GO:0032496 Response to lipopolysaccharide 14 2.35 × 10−12

CC GO:0034774 Secretory granule lumen 11 3.64 × 10−9

CC GO:0060205 Cytoplasmic vesicle lumen 11 6.22 × 10−9

CC GO:0031983 Vesicle lumen 11 6.41 × 10−9

MF GO:0048018 Receptor ligand activity 17 3.36 × 10−13

MF GO:0005179 Hormone activity 10 1.12 × 10−11

MF GO:0002020 Protease binding 8 1.28 × 10−8

KEGG hsa04933 AGE-RAGE signaling pathway in diabetic complications 9 6.48 × 10−9

KEGG hsa05144 Malaria 6 4.72 × 10−7

KEGG hsa05142 Chagas disease 7 2.32 × 10−6
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Immune cell infiltration in SAKI

Numerous studies have established a strong correlation between 
renal tissue injury, patient prognosis, and outcomes with the presence 
and activity of immune cells. Utilizing the CIBERSORT algorithm, 
we analyzed the distribution of 22 immune cell subtypes in renal 
tissues. As depicted in the box plot of Figure 8, there is an increased 
presence of neutrophils, B cells, M0 macrophages, CD4 T cell memory 
activated and γδ T cells in the glomerular tissue of SAKI patients. 
Conversely, a decreased presence of CD4 T cell memory resting, NK 
cells, and CD8 T cells was observed. Furthermore, the genes CXCL8, 
IL-1β, TNF, IL-6, and IL-10 were found to be significantly upregulated, 
suggesting their involvement in key biological processes and immune 
responses associated with SAKI.

Quantitative real-time PCR of differentially 
expressed genes

We compared the identified genes and assessed their expression 
levels using real-time fluorescence qPCR, as shown in Figure 9. In the 
CLP-induced sepsis kidney injury model, the IL-2 gene exhibited low 
expression, whereas the CXCL8, IL-1β, TNF, IL-6, and IL-10 genes 
demonstrated high expression levels. The expression levels of IL-18 
did not show statistical significance.

Results of drug–gene interactions

The drug–gene interactions of TNF, CXCL8, IL-6, IL-1β, IL-2 and 
IL-10 were analyzed using the DGIdb. After reviewing the literature, 
we identified 12 candidate medications with therapeutic potential for 
septic kidney injury, which are listed in Table 4.

Discussion

SAKI is one of the earliest and most common comorbidities in 
patients with severe sepsis. Elevated serum creatinine levels or reduced 
urine output are diagnostic criteria for septic kidney injuries, 
irrespective of the underlying cause or subsequent complications. 
While these diagnostic techniques are beneficial, they have limitations 
that underscore the necessity for enhanced strategies to treat septic 
kidney damage (18). However, research on pharmacological 
interventions as adjunctive treatments for SAKI remains limited. Our 
study identified six key genes associated with SAKI: TNF, CXCL8, 
IL-6, IL-1β, IL-2, and IL-10. These genes are involved in critical 
signaling pathways, including the COVID-19 adverse outcome 
pathway, pro-inflammatory and pro-fibrotic mediator pathways, and 
the IL-10 signaling pathway. Known to play a key role in the 
pathogenesis of SAKI, these genes are expected to serve as potential 
therapeutic targets. The potential drug candidates identified in this 

FIGURE 3

PPI network. The protein–protein interaction network of the 28 targeted genes was produced using STRING with a medium confidence score of 
0.400. Connecting line color indicates the types of interaction evidence, with the confidence score set at 90%.
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study, such as TNF inhibitors (e.g., golimumab and placulumab), IL-6 
inhibitors (e.g., siltuximab, olokizumab, clazakizumab, PF-04236921, 
sirukumab, and ELSILIMOMAB), IL-1β inhibitors (e.g., canakinumab 
and rilonacept), and an IL-10 inhibitor (SCH-708980), offer promising 
avenues for targeted therapies. These drugs have shown efficacy in 
treating other inflammatory conditions and could be repurposed for 
the treatment of SAKI. For instance, TNF inhibitors have been 
successfully used in treating rheumatoid arthritis and other 
inflammatory diseases, suggesting their potential for mitigating the 
inflammatory response in SAKI (19). However, clinical translation 
requires validation in trials and addressing SAKI’s complex 
pathophysiology. Our findings lay a foundation for future research 
and targeted therapies, emphasizing the need for biomarker 
development and combination treatments.

The GO annotation analysis of DEGs indicates that these genes 
are primarily enriched in collagen-containing extracellular matrix, 
cytokine production regulation, and immune response processes. 
These findings are highly consistent with the characteristics of septic 
kidney injury, such as the deposition of circulating immune 
complexes, induction of glomerular cell proliferation, excessive 
production of extracellular matrix (ECM), secretion of inflammatory 
cytokines, and infiltration of multiple immune cells (20). Additionally, 
the KEGG pathway analysis revealed that pathways related to malaria, 
and rheumatoid arthritis were significantly enriched, further 
confirming the important role of immune response and inflammation 

in the occurrence and development of septic kidney injury. 
Subsequently, a protein–protein interaction (PPI) network was 
constructed to identify six hub genes, namely TNF, CXCL8, IL-6, 
IL-1β, IL-2, and IL-10. The enrichment analysis of these hub genes 
demonstrated that they are highly correlated with the adverse outcome 
pathway of COVID-19, the overview of pro-inflammatory and 
pro-fibrotic mediators, and the interleukin-10 signaling pathway. 
These results highlight the potential involvement of these hub genes 
in the pathogenesis of septic kidney injury and suggest their potential 
as therapeutic targets.

Patients with COVID-19 exhibit a spectrum of disease severity, 
from those with mild upper respiratory symptoms or asymptomatic 
to those with severe lung injury requiring hospitalization, and 
potentially progressing to hyperinflammation and acute respiratory 
distress syndrome (ARDS) (21, 22). During a COVID-19 infection, 
viral particles infect adjacent uninfected cells as they traverse the 
respiratory system, triggering a cytokine storm that initiates a robust 
immunological response. This cascade can lead to alterations in 
immune cells, particularly lymphocytes, causing the immune system 
to become dysregulated (23). Consequently, the reduction in 
circulating lymphocytes may serve as a diagnostic biomarker for the 
severity of SARS-CoV-2 infection (24). Prior research has indicated 
that pro-inflammatory cytokines such as IL-1β, IL-6, IL-12, IFNγ, 
IL-10, and MCP1, as well as cytokines like TNFα, IL-15, and IL-17, 
are associated with lung injury and inflammation in SARS-CoV and 

FIGURE 4

Gene module. Significant gene module (K-core 4). The yellow ones are the hub genes.
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MERS-CoV infections, respectively. Notably, elevated levels of 
cytokines such as MCP1, IP10, IFNγ, and IL-1β can elicit Th1 
responses in T cells, and the severity of the illness may be linked to 
this cytokine storm (25). Kidney damage is one of the many 
downstream consequences, primarily caused by inflammatory 
dysregulation, with the likelihood of direct kidney injury increasing 
in proportion to the severity of the inflammatory response. The 
inflammatory cytokines generated along the COVID-19 adverse 
outcome pathway may be associated with septic kidney injury linked 
to this pathway. By examining the target genes IL-1β, IL-10, IL-6, and 
TNF, we  can confirm that their primary biological function is to 
regulate inflammation, thereby influencing SAKI. These target genes 
are also involved in the COVID-19 adverse outcome pathway. Our 
analysis, building on previous studies, further confirms that IL-1β, 
IL-10, IL-6, and TNF are key inflammatory cytokines associated with 
this pathway, suggesting that targeting these cytokines with specific 
drugs may provide novel therapeutic strategies for SAKI.

Renal fibrosis, characterized by the accumulation of scarring 
within the renal parenchyma, represents the common end-stage in the 
progression of most CKD. In the context of CKD, the uncontrolled 
deposition of fibrotic matrix leads to the destruction of the kidney’s 
structural integrity, reduction in blood supply, and impairment of 
organ function. This fibrotic process diminishes the tissue’s capacity 
for repair, ultimately culminating in kidney failure (26). Signaling 
pathways that are essential for kidney development, such as the Wnt, 
Hedgehog (Hh), and Notch pathways, also play a pivotal role in renal 
fibrosis. For instance, the renal tubule-specific ablation of β-catenin 
has been shown to exacerbate the severity of AKI (27). In CKD, renal 
tubular cells are subjected to a sustained activation of the Wnt/β-
catenin pathway due to the upregulation of various Wnt ligands (28). 
This prolonged activation can result in mesenchymal fibrosis and 
epithelial dedifferentiation, driven by the continuous stimulation of 
epithelial β-catenin (29). Fibroblasts and peri-mesenchymal cells are 
additional key targets of Wnt ligands, underscoring the critical role of 
Wnt ligands in paracrine signaling between mesenchymal 
myofibroblasts and damaged epithelial cells. Notably, Wnt1, released 
by renal tubules, is sufficient to induce interstitial fibrosis 
independently (30).

Our data indicate that the target genes IL-1β, IL-6, CXCL8, and 
TNF are implicated in SAKI. These genes are integral components of 
the pro-inflammatory and pro-fibrotic mediator signaling pathway, 

which has been previously implicated in kidney damage. IL-1β is a 
crucial cytokine in the immune system that plays a significant role in 
inflammatory responses, particularly in SAKI. The mechanisms of 
action of IL-1β in SAKI include the following five aspects: activation 
of the inflammatory response, damage to renal endothelial function, 
promotion of tubular injury, induction of immune response 
dysregulation, and impact on renal hemodynamics (31). Research has 
shown that IL-1β levels are typically elevated in sepsis patients, and its 
levels are positively correlated with the severity of SAKI. Experimental 
studies have demonstrated that inhibiting IL-1β function or blocking 
its receptors can provide renal protection, reducing the incidence of 
SAKI. IL-6 also plays an important role in SAKI, primarily by 
regulating the inflammatory response, affecting renal microcirculation, 
and promoting tubular injury, thereby exacerbating renal failure (32). 
Excessive activation of IL-6 is closely associated with immune 
dysfunction and kidney damage in sepsis. Laboratory studies have 
shown that inhibiting IL-6 production or its signaling pathway can 
alleviate the occurrence and progression of SAKI. TNF is a key 
pro-inflammatory cytokine in sepsis and is significantly involved in 
SAKI by inducing inflammatory responses, endothelial damage, and 
tubular cell injury (33). TNF not only exacerbates kidney damage by 
enhancing the immune response but may also worsen sepsis 
progression by promoting immunosuppression. CXCL8, as a key 
pro-inflammatory chemokine, plays an important role in sepsis-
related acute kidney injury. By promoting the chemotaxis and 
activation of neutrophils, CXCL8 exacerbates renal inflammation and 
microcirculatory disorders, leading to tubular injury and functional 
failure (34). IL-1β, IL-6, and TNF are established as pro-inflammatory 
cytokines, while the expression of CXCL8 is linked to epithelial 
β-catenin (35, 36). Our qPCR analysis reveals that the relative mRNA 
expression level of CXCL8 is significantly elevated in the cecal ligation 
and puncture (CLP) group compared to the sham-operated group. 
CXCL8 is instrumental in the recruitment and activation of 
neutrophils, which are pivotal in inflammation and fibrosis (37). The 
pro-inflammatory cytokines IL-1β, IL-6, and TNF are also key players 
in this process. Our study, in conjunction with existing research, 
demonstrates that these target genes can modulate inflammation and 
fibrosis through their influence on pro-inflammatory and pro-fibrotic 
mediators during kidney injury. Our findings corroborate the 
association between these biological processes and the genes IL-1β, 
IL-6, CXCL8, and TNF, suggesting that a potential therapeutic strategy 

TABLE 3 The details of module 1 genes.

Gene symbol Full name Function

IL-2 Interleukin-2 A cytokine in the immune system, facilitating various aspects of immune response. An pro-inflammatory 

cytokine

IL-10 Interleukin-10 A cytokine with pleiotropic effects in immune regulation and inflammation. An anti-inflammatory cytokine

IL-6 Interleukin-6 A versatile cytokine that plays a crucial role in immune regulation, inflammation, acute phase response, 

hematopoiesis, metabolism, and chronic inflammatory diseases. An pro-inflammatory cytokine

IL-18 Interleukin-18 A cytokine involved in the regulation of immune responses. An pro-inflammatory cytokine

IL-1β Interleukin-1β A cytokine in the immune system that mediates a wide range of inflammatory responses. An pro-inflammatory 

cytokine

TNF Tumor necrosis factor A central cytokine in the immune system that regulates inflammation, induces apoptosis, stimulates the acute 

phase response, and has various effects on immune cells and blood vessels. An pro-inflammatory cytokine

CXCL8 C-X-C motif chemokine ligand 8 A key chemokine in the immune system, primarily responsible for the recruitment and activation of neutrophils
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may involve the identification of drugs that specifically target these 
cytokines to mitigate SAKI.

IL-10 is a cytokine with potent anti-inflammatory properties that 
plays a crucial role in infection control by suppressing the immune 
system’s response to infections, thereby protecting the host from 
excessive immune-mediated damage (38). IL-10 is expressed by a 

variety of immune cells, including B cells, TReg cells, CD8+ T cells, 
and subsets of TH1, TH2, and TH17 cells (39–41). Additionally, 
innate immune system cells such as mast cells, eosinophils, 
neutrophils, natural killer cells (NK), dendritic cells (DC), and 
macrophages also produce IL-10. IL-10 suppresses the proliferation of 
TH1-type responses by acting on DCs and macrophages (42, 43), but 

FIGURE 5

The function analysis of hub genes (p < 0.05). The functions of hub genes were mainly enriched in COVID-19 adverse outcome pathway, overview of 
pro-inflammatory and pro-fibrotic mediator and interieukin-10 signaling.

FIGURE 6

Construction of mRNA-miRNA co-expression networks. The mRNA-miRNA co-expressed network was constructed by Cytoscape.
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it has the opposite effect on TH2 cells and allergic reactions. 
Furthermore, IL-10 stimulates mast cells and enhances the function 
of B, NK, and CD8+ T cells (44). Toll-like receptor 2 (TLR2) agonists 
promote the production of IL-10 through antigen-presenting cells 
(APCs) (45, 46). Following TLR ligation, both pro-inflammatory 
cytokines and IL-10 are produced via Toll/IL-1 receptor (TIR) 
domain-containing adapter molecules, such as myeloid differentiation 
primary response protein 88 (MYD88) and TIR domain-containing 
adapter protein-inducible IFNβ (TRIF; also known as TICAM1) (47, 
48). IL-10 also activates a critical survival pathway composed of PI3K 
and its downstream substrates AKT/PKB and P70S6K. Moreover, 
IL-10 inhibits the activation of the p38/MAPK (mitogen-activated 
protein kinase) pathway, which is necessary for the translation of TNF.

The IL-10 signaling pathway includes the p38/MAPK pathway 
and the PI3K-AKT signaling pathway (49). Research has indicated 
that the IL-10 signaling pathway is involved in and influences 

FIGURE 7

Recognization of potential crucial genes related to AKI by CTD database. (A) The interaction of hub genes and AKI, (B) The interaction of hub genes 
and immune system diseases.

FIGURE 8

The difference in infiltrating immune cells between SAKI and the normal group. The SAKI group is represented in red, while the normal group is 
represented in green. (ns: no statistical difference,* < 0.05, ** < 0.01, and *** < 0.001).

FIGURE 9

Results of quantitative real-time PCR experiments for the hub seven 
genes (n = 3). CLP, SAKI group; sham, control group; ns: no statistical 
difference, * < 0.05, ** < 0.01, and *** < 0.001.
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SAKI. Concurrently, IL-10 can affect SAKI, suggesting that IL-10 
participates in and leads to the impact of these two signaling pathways 
on the anti-inflammatory response, thereby affecting the condition of 
SAKI. This demonstrates that IL-10 target genes can influence the 
occurrence of SAKI through the IL-10 signaling pathway. The potent 
anti-inflammatory properties of IL-10 can be harnessed to treat acute 
inflammatory diseases related to sepsis.

To date, no research has definitively confirmed the correlation 
between IL-2 and SAKI. The role of IL-2 in sepsis is complex and 
dualistic. In the early stages of sepsis, IL-2 enhances T cell proliferation 
and activation, promotes the immune response, and aids in clearing 
infections. However, an excessive immune response may lead to renal 
immune damage, exacerbate inflammation, and result in renal failure. 
During the immunosuppressive phase of sepsis, a deficiency in IL-2 
may worsen immune suppression and increase the risk of secondary 
infections. Therefore, the role of IL-2  in SAKI needs to 
be comprehensively considered for its dual impact on the immune 
system and carefully evaluated in clinical treatment.

The CTD database results showed that TNF, IL-10, IL-1β, and 
IL-6 exhibited high scores in AKI, reflecting the close relationship 
between these key genes and the occurrence and development of 
AKI. Given that IL-6, TNF, and IL-10 were found to be implicated in 
this pathway in our investigation, a potential treatment strategy could 
involve identifying medications that specifically target these 
cytokines. This approach aligns with the understanding that targeting 
IL-10 and related cytokines may offer new therapeutic avenues for 
managing SAKI, as suggested by the research and clinical 
observations summarized in the provided sources.

TNF-targeting medications, such as placulumab and golimumab, 
are monoclonal antibodies designed to target and neutralize TNF, 
thereby reducing inflammation. Golimumab, approved for conditions 
including rheumatoid arthritis, psoriatic arthritis, ulcerative colitis, 
non-radiographic axial spondyloarthritis, ankylosing spondylitis, and 
juvenile idiopathic arthritis, exemplifies the clinical utility of such 
agents (50). In contrast, placulumab remains in the realm of scientific 
investigation and is not yet clinically available. Our study suggests that 
TNF-targeting drugs may hold potential for the treatment of SAKI, as 
inflammation is a known exacerbating factor in such cases.

IL-6 inhibitors, including siltuximab, olokizumab, clazakizumab, 
PF-04236921, sirukumab, and elsilimomab, represent another class of 
therapeutics with demonstrated efficacy in conditions like Castleman 
disease and rheumatoid arthritis (51–55). Our research indicates that 
these IL-6 inhibitors could also be therapeutically beneficial in SAKI, 
given their established anti-inflammatory effects. IL-1β inhibitors, 
such as rilonacept and canakinumab, have shown promise in reducing 
lung cancer incidence and mortality, as well as in the treatment of 
autoinflammatory relapsing fever syndrome and Still’s disease (56). 
Our study supports the notion that these inhibitors could positively 
influence the treatment of SAKI by modulating inflammatory 
responses. SCH-708980, an IL-10 inhibitor, is currently in scientific 
research phases. While it has the potential to enhance immune 
responses and aid in clearing infections, which could benefit SAKI, its 
use may also intensify inflammatory responses, necessitating cautious 
consideration in treatment strategies. MicroRNAs (miRNAs), small 
non-coding RNAs that regulate protein production by interacting with 
mRNAs, have been implicated in the pathogenesis of SAKI (57, 58). 
Our study identified miR-105, miR-3063-3p, and miR-297bc-3p as 
potential therapeutic targets for SAKI. However, the roles and 
mechanisms of other miRNAs in SAKI require further investigation 
to elucidate their relationship with the pathophysiology of the 
condition and to inform clinical treatment strategies.

It is important to acknowledge the limitations of this study. 
Firstly, the sample size is inadequate. While our study has identified 
several potential hub genes and drug–gene interactions through 
robust bioinformatics approaches, the relatively small sample size 
used in our analyses may limit the generalizability of our findings. 
The dataset GSE94717, which we  utilized for differential gene 
expression analysis, included a limited number of samples (six SAKI 
samples, six sepsis samples, and three healthy controls). This small 
sample size may affect the statistical power of our analyses and the 
ability to detect subtle differences or interactions among genes and 
drug targets. Secondly, additional basic and clinical research is 
essential to substantiate the findings and explore the underlying 
molecular mechanisms. Although bioinformatics analysis can 
provide valuable information for target screening, these targets still 
need to be validated in the laboratory. Common validation methods 
include: gene knockout or overexpression: knocking out or 
overexpressing candidate genes through mouse models, cell lines, or 
CRISPR technology to study their effects on disease models. Gene 
editing technology: utilizing CRISPR-Cas9 technology to validate the 
function of targets, such as studying the role of the gene or protein in 
diseases. RNA interference and antibody technology: using siRNA, 
shRNA, or antibodies to inhibit targets and observe their therapeutic 
effects in cell or animal models. In our study only the target genes 
were detected using PCR and we  recognise that additional 
experimental validation, such as protein expression analysis or 
functional studies, would help to confirm the role of these genes in 
septic kidney injury, but given the funding constraints we  were 
unable to complete these experiments at this stage. Therefore, we urge 
caution in interpreting our results and suggest that further 
experimental studies are needed to fully validate the functional 
significance of the identified genes. Thirdly, the genetic data used in 
CIBERSORT analysis may not fully capture the complexities of 
phenotypic plasticity, heterotypic cell–cell interactions, and disease-
induced interference, potentially leading to overestimation or 
underestimation of certain immune cell types, despite the method’s 

TABLE 4 Candidate drugs targeting genes for septic kidney injury.

Number Drug Gene Query 
score

Interaction 
score

1 Golimumab TNF 21.52 4.55

2 Placulumab TNF 12.91 2.73

3 ABX-IL8 CXCL8 8.61 2.21

4 Siltuximab IL-6 17.22 9.89

5 Olokizumab IL-6 17.22 9.89

6 Clazakizumab IL-6 12.91 7.42

7 PF-04236921 IL-6 8.61 2.47

8 Sirukumab IL-6 4.3 2.47

9 Elsilimomab IL-6 4.3 2.47

10 Canakinumab IL-1β 25.82 10.03

11 Rilonacept IL-1β 8.61 3.34

12 SCH-708980 IL-10 4.3 3.64
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relatively low estimation bias compared to other approaches. Fourth, 
there are limitations in translating our findings to clinical applications 
and validating the proposed drug candidates. Although potential 
target genes and drugs were identified through bioinformatics 
analysis, these findings have not yet been validated in clinical trials, 
leaving their efficacy and safety in actual treatments uncertain. 
Additionally, the process of translating drugs from the laboratory to 
clinical application is complex and time-consuming, requiring 
multiple phases of clinical trials and regulatory approvals. Therefore, 
further research and validation are necessary to confirm the clinical 
applicability and therapeutic potential of these drug candidates. 
Finally, it should be noted that the database used for human samples 
in our study was derived from peripheral blood, whereas the mouse 
experiments analyzed renal tissues. There may be  differences in 
immune cell composition and function between these two types of 
samples. While our analyses provide valuable insights into the 
molecular mechanisms of septic kidney injury, the differences in 
tissue sources may affect the direct comparability and extrapolation 
of our findings. Future studies are needed to bridge the gap between 
blood and kidney tissue findings and to ensure that insights derived 
from one tissue type can be reliably applied to the other.

Conclusion

In the present study, we  proposed a methodology to identify 
potential genes and pharmacological agents associated with septic 
kidney injury. Our investigation led to the identification of 12 
potential medications targeting six genes, the majority of which have 
not been explored in the context of septic kidney injury. These findings 
provide a foundation for future research endeavors and may pave the 
way for the development of novel targeted therapeutics as potential 
treatments for septic kidney damage.
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