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Introduction: The liver is one of the vital organs of human body that performs

some of the most crucial biological processes such as protein and biochemical

synthesis, which is required for digestion and cleansing. A large number of

patients are su�ering from liver disease and hence it has become a life-

threatening issue around the world. Annually, around 2 million people die

because of liver disease, this accounts for around 4% of all deaths, due to

factors like obesity, undiagnosed hepatitis, and excessive alcohol consumption.

These factors accumulate and deteriorate the liver condition. Immediate action is

necessary for timely diagnosis of the ailment before irreversible damage is done.

Methods: The work aims to evaluate some of the traditional and prominent

machine learning algorithms, namely, Logistic Regression, K-Nearest Neighbor,

Support Vector Machine, Gaussian Naïve Bayes, Decision Tree, Random Forest,

AdaBoost, Extreme Gradient Boosting, and Light GBM for diagnosing and

predicting chronic liver disease. Also, real-world datasets often have imbalanced

class distributions, causing classifiers to perform poorly, leading to low accuracy,

precision, recall values and high misclassification. The Indian Patient Liver

Disease (ILPD) datasets also face an imbalance issue. This work presents two

hybrid models, namely SMOTEENN-KNN and SMOTEENN-AdaBoost, which can

robustly handle the problem of imbalance in real-world datasets, in addition

to improving the accuracy of liver disease prediction. We have also designed a

hybrid model which involves the combination of Recursive Feature Elimination

(RFE) for feature selection, SMOTE-ENN to tackle the problem of data imbalance

and Ensemble learning for enhanced predictions.

Results: The research work also proposed Hybrid Ensemble model on the ILPD

and BUPA Liver Disorder Dataset. For the ILPD dataset, the model achieves an

overall accuracy of 93.2% whereas for the BUPA dataset, the model attains an

accuracy of 95.4%. The Brier Score loss for ILPD dataset is 0.032 and 0.031 for

the BUPA Liver Disorder Dataset.

Discussion: The research work highlights the potential of data balancing

techniques and Ensemble models to improve predictive accuracy in liver disease

diagnosis.
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imbalanced data, SMOTE, SMOTE-ENN, SMOTE-Tomek, logistic regression, SVM,
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1 Introduction

Every year, liver disease causes 2 million fatalities, or 1 out

of every 25 deaths around the world, accounting for 4% of

all deaths (1). Liver cancer, the 16th most frequent cause of

death worldwide, and cirrhosis, currently the 11th most frequent

cause of death worldwide, account for 3.5% of all fatalities

worldwide, with cirrhosis-related complications, viral hepatitis

(2), and hepatocellular cancer causing one million cases each

(3). Cirrhosis is a disorder that harms the liver by scarring

and inflicting damage; the serious side effects that can result

from it include liver failure, hemorrhage, infections, and cancer.

Alcohol misuse, viral hepatitis, fatty liver disease (4), autoimmune

illnesses, and hereditary conditions are only a few of the causes of

cirrhosis. Figure 1 shows the percentage of deaths due to multiple

liver diseases.

The liver, a wedge-shaped organ, is the second-largest organ

in the human body, after the skin, and is located in the upper

right abdominal cavity. It is also the body’s largest gland, secreting

hormone-like substances. The liver performs more than 500

functions in the human body, and it maintains most of the

organs that are essential to life. We used the Indian Patient

Liver Disease dataset for this study. The dataset we select is

unbalanced, to evaluate real-world performance, as actual data is

normally unbalanced. The imbalance class must be handled prior

to obtaining the dataset and training any model that implements a

machine learning (ML) algorithm since the classification methods

assume that the majority and minority classes are balanced.

1.1 Challenges in liver disease detection

• Many people do not experience many symptoms until their

illness has progressed, at which point the medication may

be useless.

• Due to the limited awareness about liver disease and

its symptoms.

• Due to the scarcity of centers that have proper clinical

experience and provide the necessary laboratory skills to

diagnose liver disease.

20.74% 
Acute 

Hepa!!s 

Liver Cancer 

70.87% 

8.38% 

FIGURE 1

Percentage of deaths due to multiple liver diseases.

• Liver disease is often overlooked in primary care, and liver

function tests (LFTs) are frequently ordered in basic care to

assess liver health.

To detect liver illness early, machine learning algorithms can be

used to reduce the risk of complications, ultimately enhancing the

patient survival rates and minimizing subsequent issues.

1.2 Problem with the traditional method in
detecting liver disease

The conventional techniques for identifying liver disease

include tests for liver function, which are specific blood

examinations used to detect liver disease. The additional blood

tests may be used to check specific genetic or hepatic issues.

Imaging examinations, including magnetic resonance imaging

(MRI), computed tomography (CT) scan, and ultrasound, are

utilized to demonstrate liver damage. To evaluate for liver

disease, a biopsy of the liver can be performed. A liver

biopsy is an intrusive procedure that can end in hemorrhage,

biliary peritonitis, and pneumothorax, among other problems.

CT scan, MRI, and ultrasound are some imaging tests that can

show liver damage; however, however, these tests are expensive.

Non-invasive techniques, including clinical prediction scores,

elastography, and ultrasonography, have been used as alternatives

to liver biopsies.

In the traditional approach, the patient had to consult

a doctor to undergo certain liver function tests, blood tests,

imaging tests, such as MRI and CT scans, and have a tissue

sample checked. Then the doctor integrates qualitative and

quantitative information from the multiple tests to diagnose and

recommend the treatment. In recent years, artificial intelligence

and machine learning techniques have emerged and advanced

the extraction process of relevant information from vast and

complex clinical datasets. Additionally, researchers studying in

this domain have shown that various machine learning models

or hybrid models (5) can be relevant for predicting the risk of

liver disease. These algorithms can help detect early liver disease,

which, in turn, helps to initiate treatment in the early stages of

the disease.

However, the majority of real-world datasets are imbalanced.

The imbalanced dataset presents various problems while predicting

liver patients. Therefore, the imbalanced dataset must be addressed

to achieve more accurate results. The Indian Patient Liver Disease

(ILPD) dataset has a significantly imbalanced class distribution,

where the majority class (liver disease) is substantially more

prevalent than the minority class (no liver disease). Traditional

ML models, such as logistic regression, decision trees, or support

vector machine (SVM), tend to favor the majority class, leading to

poor performance in predicting the minority class. This may lead

to low recall and F1-score for the minority class (non-liver disease

patients) as well as poor generalization to unseen data, particularly

for minority cases.

The ILPD dataset contains noise in features, such as outliers in

enzyme levels or misclassified labels. Due to this, many traditional

ML models, such as K-nearest neighbors (KNN) and logistic
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regression, are sensitive to noise, leading to biased predictions and

reduced accuracy.

Traditional models are often optimized for accuracy,

which is not suitable for imbalanced datasets, as accuracy

can be misleading, as it may reflect correct predictions for

the majority class while ignoring poor performance on the

minority class.

1.3 Problem with imbalanced datasets

An imbalanced dataset is any classification dataset with

uneven class proportions. It can be problematic if not addressed

properly. The following problems are associated with machine

learning algorithms that use classification and are applied to

imbalanced datasets:

• These classification algorithms perform better for the majority

class and worse for the minority class.

• Thus, there exists a bias toward the majority class, and the

algorithm ultimately overlooks the minority class.

• The minority class is often poorly classified, resulting in a high

misclassification rate.

• Misleading accuracy score and suboptimal

model performance.

1.4 Major contributions of the study

• A comprehensive review of the relevant literature existing in

this domain has been discussed.

• An extensive review of the ML models that we have

implemented, as well as all the balancing techniques used,

is discussed.

• The implemented traditional ML models, as well as hybrid

models incorporating all the balancing techniques mentioned

earlier in this article, are discussed.

• Next, a comparative analysis of all implemented traditional

ML models and hybrid models is given.

• After that, the hybrid ML models, Synthetic Minority

Oversampling Technique-Edited Nearest Neighbors

(SMOTE-ENN)–KNN and SMOTE-ENN-AdaBoost, are

suggested, which are quite effective in liver disease detection

as well as for imbalanced datasets.

• A hybrid model, which involves the combination of Recursive

Feature Elimination (RFE) for feature selection, SMOTE-ENN

to address the problem of data imbalance, and ensemble

learning, is implemented and analyzed on the ILPD dataset.

This hybrid ensemble model outperforms other state-of-the-

art studies and achieves an accuracy score of 93.2%, Brier score

loss of 0.032.

• The proposed hybrid ensemble model is also implemented

on the BUPA Liver Disorders Dataset, and comparable

results with the ILPD datasets are achieved to ensure the

generalizability of the proposed model.

1.5 Organization of the article

Section 1, “Introduction,” discusses the liver disease statistics,

challenges in liver disease detection, and problems with imbalanced

datasets. Section 2, “Literature Review,” elaborates on the previous

research study in this domain by numerous researchers. Section

3, “Methodology and Implementation,” details the workflow of

the complete system of liver disease prediction that we have

used, and describes the implemented models and the balancing

techniques employed. Section 4, “Results and Analysis,” discusses

the results obtained from implementing traditional models and

hybrid models. In this study, we have conducted a comparative

analysis of the implemented models based on evaluation metrics,

such as recall, precision, accuracy, F1-score, and receiver operating

characteristic (ROC) curve–area under the curve (AUC) scores.

Section 5, “Conclusion,” summarizes the key points discussed in

this article and talks about the importance and future scope of

the research.

2 Literature review

A considerable amount of research is being carried out on liver

disease prediction, which is of paramount importance in today’s

scenario, and is discussed in Table 1. Supervised and unsupervised

machine learning models and algorithms for the prediction of liver

disease risk are studied, and a comparative analysis is performed

(6, 7). Among the most influential studies in ML with reference

to this topic can be attributed to Mondal et al. (8) used different

classification algorithms, including logistic regression, KNN, and

SVM for liver disease prediction. The comparative analysis of the

aforementioned algorithms has been compiled, on the basis of

accuracy, calculated using a confusion matrix. The KNN model

shows an accuracy of 73.97%, the logistic regression model has an

accuracy of 73.97%, and the SVMmodel has an accuracy of 71.97%.

Singh et al. (9) incorporate the detection of the presence of liver

disease using the logistic regression algorithm. The preprocessing

methodologies, such as the removal of duplicate values, null values,

dealing with categorical data using encoding methods, and scaling

features, have been used. The dataset is partitioned 80% for training

the model and 20% for testing the model. The final accuracy score

achieved in this model is 0.859649. It proposes to improve the

accuracy further.

Keerthana et al. (10) use various MLmodels for predicting liver

disease. They have designed a system in which the patient will have

to submit the report of the blood tests performed, after which the

system employs the model that is most accurate for predicting if

liver disease is present in the patient. The Python1 programming

language has been used, and the Sklearn library was instrumental in

the construction of the machine learning models, which use SVM,

Naïve Bayes, KNN, and artificial neural network (ANN). They

found that SVM provided the most accurate result (11). Rakshith

et al. (12) studied various ML models, including logistic regression,

KNN, decision tree, random forest, gradient boost, XGBoost, and

light GBM, concluding that the LGBM algorithm would deliver the

1 https://www.python.org
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TABLE 1 Previous studies in liver disease detection.

Author Dataset
employed

Methodology Preprocessing Classification
algorithm

Balancing
techniques
used

Evaluation
metrics

Result Nutshell of the article

Singh et al.

(9)

IPLD 1. Data selection

2. Preprocessing

3. Feature selection

4. Data transformation

5. Model selection

6. Evaluation

Data cleaning: filling

missing values;

transforming nominal

attributes to

binary attributes

Logistic regression (LR),

SVM, and KNN

None Confusion on

matrix, specificity,

and sensitivity

LR: 73.97%

KNN: 73.97%

SVM: 71.79%

This study compares LR, KNN, and

SVM for liver disease prediction.

Accuracy scores and a confusion matrix

are used to compare algorithms. LR and

KNN have the highest accuracy,

indicating their suitability for liver

disease prediction.

Keerthana

et al. (10)

ILPD Data selection, data

preprocessing, model

implementation, and

result analysis

Handling null values and

duplicate values

Logistic regression None Confusion on

matrix, ROC score,

and ROC curve

LR: 85.96% This study uses machine learning’s

logistic regression method for the

detection of liver disease, suggesting

that further improvement in accuracy

can be obtained by decision trees and

KNN algorithm.

Rakshith

et al. (12)

ILPD 1. Building and raining

the system [Dataset

-> Feature selection

-> Classification

algorithm -> build

model]

2. Testing the model

Entering the details

and prediction

Handling null values,

duplicate values, and

missing values

KNN, SVM, Naïve Bayes

(NB), and ANN

None Accuracy,

confusion matrix

SVM: 100%

KNN: 70%

NB: 55.56%

ANN: 99.9%

This study predicts liver disease risk

using ML techniques. The system uses a

trained model for predicting the risk of

liver disease. The most accurate model,

SVM, achieved 100%

accuracy on a dataset, indicating that it

can predict liver disease risk with 90%

or more accuracy.

Arbain

et al. (13)

ILPD 1. Data

collection/selection

2. Data preprocessing

3. Implement the

decision tree

algorithm

4. Evaluation

compare performance

Data cleaning (locates

and fixes errors or

discrepancies in

the data). Waikato

environment for

knowledge analysis

(WEKA), a data mining

tool, is used.

LMT, J48 (22),

random tree (RT), RF,

REPTree, decision

stump, and Hoeffding

Tree

None Accuracy, mean

absolute error

(MAE), Precision,

Recall, F-score,

Kappa statistics,

and runtime

Decision stump, RT,

Hoeffding, and LMT

Tree have the accuracy

rates of 70.67%, 69.47%,

69.75%, and 69.30%. J48

has the worst accuracy

of 65.69%.

This study compares decision tree

algorithms for the diagnosis of liver

disease, assessing various techniques

and finding the most relevant one.

Decision stump has the highest accuracy

of 70.67%.

Fernando

et al. (14)

ILPD The dataset is partitioned

into testing and training

sets, with each model

trained and tested.

The dataset is converted

using an argument

parser to convert class

label information

into numbers.

Random forest (RF),

multilayer perceptron

(MLP),

KNN, and SVM

None Accuracy Accuracy: RF: 69%

KNN: 67%

SVM: 74%

MLP: 68%

The accuracy reports for

all ML approaches

are similar.

The ILPD was analyzed using four ML

approaches: RF, SVM, KNN, and MLP.

The SVM approach was found to be the

best-fitting model, outperforming all

others. Comparative analysis

highlighting the importance of

understanding prediction and model

performance.

Mostafa

et al. (16)

Data collected

(24) from the

University of

California

Irvine Repository.

1. Data collection

2. Data Cleaning and

Preprocessing

3. Risk factor

determination

4. Classification

4. Trained model

5. Evaluation

• Data visualization

• Imputing missing

values using MICE

• PCA to

minimize dimensionality.

RF, SVM, and ANN SMOTE Accuracy, precision,

sensitivity,

F-1-score,

specificity, and

ROC analysis

RF had the highest

sensitivity (0.9904) and

accuracy (98.14%), while

SVM performed better in

terms of running time.

ANN showed

poor performance.

The study demonstrates that ML

algorithms can detect liver disease in

blood donors with high accuracy using

correlations with risk factors. SVM and

RF outperform ANN. AUC–ROC and

cross-validation pair t-tests confirm the

result.

(Continued)
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TABLE 1 (Continued)

Author Dataset
employed

Methodology Preprocessing Classification
algorithm

Balancing
techniques
used

Evaluation
metrics

Result Nutshell of the article

Nahar and

Ara (17)

ILPD 1. Dataset selection

2. Preprocessing

3. Data transformation

4. Data mining

5. Interpretation and

evaluation

6. Knowledge discovery

• Data visualization

• Handling missing

values and detecting

the possible outliers.

Random forest (RF),

KNN, logistic regression

(LR), and auto neural

(AaN)

Random

Sampling

Accuracy, ROC

train chart, and

index

Accuracy: KNN: 99.794%

0.845 ROC train chart.

Auto neural: 99%, LR

with backward

selection: 99.764%

This study used four classification

algorithms to predict liver disease. RF

provided the best classification results,

but it was overfitting and thus making it

unsuitable. KNN outperforms all the

implemented algorithms.

Veeranki

and

Varshney

(19)

Behavioral risk

factor

surveillance

system

(BRFSS) 2015;

Heart Disea se

Health

Indicators Dataset

1. Data selection

2. Data preprocessing

3. Balancing techniques

4. Model

implementation

5. Result analysis

Dealing with missing

values and null values

KNN, Gaussian NB,

decision tree (DT)

XGBoost, light gradient

boosting (LGB) machine,

AdaBoost, and random

forest (RF)

ROS, SMOTE

ADASYN,

random

undersampling

(RUS)

SMOTE-

Tomek,

and SMOTE-

ENN

Accuracy, precision,

sensitivity,

Matthews

correlation

coefficient (MCC)

score, F1-score,

specificity, and

ROC analysis

RF has high accuracy

(0.90) for all sampling

method except RUS.

XGBoost, LGB, and

AdaBoost showed above

0.92 performance for the

cluster

centroid algorithm.

Random forest has the highest accuracy

among the sampling techniques used,

except the RUS method. SMOTE-

Tomek, SMOTE-ENN hybridrandom

sampling methods, and cluster centroid

method have higher accuracies as

compared to 0.90 for DT, XGBoost,

LGBM,

AdaBoost, and RF. Tomek link

algorithm has the lowest MCC value.

Gupta et al.

(23)

ILPD 1. Data collection

2. EDA

3. Preprocessing

4. Feature selection

5. Classification using

ML

6. Performance evaluation

• Imputation of

• missing values

• Dummy encoding

• Elimination of

• duplicate values

• Outlier detection, and

elimination

• Resampling

Logistic regression (LR),

decision tree (DT),

KNN, RF, gradient

boosting (GB), XGBoost,

light GBM

SMOTE Deviance, Akaike

information

criterion (AIC),

pseudo R2,

accuracy, ROC,

precision, AUC,

recall, specificity,

F1-score, kappa

statistic,

cross-entropy

LR: 57%, NB: 54%

DT: 61 RF: 63 XGBoost:

60%

AdaBoost: 62%

LGBM: 63%

KNN: 57%

This study examines ML algorithms for

predicting liver disease. RF, LGBM, and

AdaBoost algorithm provided better

accuracy than other classification

algorithms, indicating that light GBM is

suitable for predicting liver disease.

Kumar

et al. (25)

BCD, ILPD,

CKD, CHD,

and Pima

IndiansDiabetes

1. Data

collection/selection

2. Data preprocessing

3. Balancing techniques

4. Implement ML

algorithm

5. Evaluation

6. Compare performance

Data cleaning, data

transformation, and

missing value imputation

LR, KNN, DT, SVM, and

artificial neural network

(ANN)

Undersampling,

random over

sampling,

SMOTE

SVM-SMOTE

ADAS YN,

SMOTE-ENN,

and SMOTE-

Tomek

Confusion matrix,

accuracy, recall,

precision, F1-score

SMOTE-ENN+ KNN

model gives the best

result for all datasets

with an accuracy of more

than 90%. SMOTE with

LR has the highest

accuracy of 99.2%, over

the CHD dataset.

The study evaluates six classifiers with

respect to seven class balancing

techniques on five imbalanced clinical

datasets. SMOTE-ENN balancing

method outperforms all other methods,

with KNN providing the highest

precision, accuracy, F1-score, and recall.

KNN–SMOTE-ENN is most suitable for

detecting liver disease, diabetes, and

coronary heart disease.

Kumar

et al. (26)

ILPD 1. Data collection

2. Preprocessing

3. Data visualization

4. Model

implementation

5. Evaluation metrics

result analysis

• Data cleaning

• Data visualization

Logistic regression (LR),

KNN, DT, SVM, Naïve

Bayes (NB), and RF

None Accuracy, precision

score, recall score,

F1-score, and

specificity

• Accuracy: LR: 75%

NB: 53%

• Precision: LR: 91%

NB: 36%

• Sensitivity: SVM: 88%

KNN: 76%

• F1-score: LR: 83%

and NB: 53%.

• Specificity: DT: 48%

LR: 47%.

This study evaluates the performance of

six ML algorithms (LR, KNN, RF, DT,

SVM, and NB) in predicting chronic

liver disease, and finding high accuracy

rates. The LR classification technique is

found to be more effective than other

classifiers.
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maximum accuracy for predicting liver disease. They balanced their

dataset using SMOTE and various classifiers, base, and advanced

algorithms. Random forest, AdaBoost, and LGBM models give

better accuracy than other classification models.

Arbain et al. (13) investigated data mining algorithms for

the prediction of liver disease using the technique of random

sampling of imbalanced data. RF, despite providing the best

classification results, is overfitted due to insufficient data. KNN

outperforms other algorithms, such as LR, auto neural, and

RF, with an accuracy rate of 99.794%, and a 0.845 ROC train

chart. Fernando et al. (14) found that the ensemble classifiers,

such as random forest, AdaBoost, and XGBoost, outperform

base classifiers most likely due to their inherent behavior of

the ensemble principle (15). Decision tree and KNN classifiers

showed good performance, and the Gaussian Naïve Bayes classifier

showed the least performance. Random forest algorithm showed

an accuracy of above 90% in all sampling techniques. The

hybrid methods SMOTE-Tomek and SMOTE-ENN performed

best. Mostafa et al. (16) compared binary classifier machine

learning algorithms, RF, SVM, and ANN. Machine learning

techniques enhance inference-based diagnosis by incorporating

risk factors for predicting liver disease. RF and SVM showed better

performance than ANN, but SMOTE oversampled the minority

group. The study suggests using multinomial classification

instead of binary classification to compare performance and

understand interpretability.

Nahar et al. (17) compared numerous decision tree algorithms

(18) [e.g., logistic model tree (LMT), random tree, J48, random

forest, REPTree, decision stump, and Hoeffding Tree] to diagnose

liver disease and tried to find the model that performed best in the

decision tree classification. The results reveal that decision stump

has an accuracy of 70.67%, which is the highest among all the

implemented algorithms. Veeranki and Varshney (19) focused on

classifying the genetic data of liver patients from those without liver

disease. The study uses four ML techniques: random forest (RF),

multilayer perceptron (MLP) model (20), KNN, and SVM. The

dataset is converted using an argument parser. The results show

that the SVM approach secures 74% accuracy, RF: 69%, KNN: 69%,

andMLP: 68%. They conclude that the SVM approach is the best fit

model for liver disease prediction (21). Rahman et al. (22) evaluated

the comparative performance of six ML models (LR, KNN, DT, RF,

SVM, and NB) in the prediction of liver disease. The accuracy of

thementioned techniques was assessed using various techniques for

measurement. The results revealed that LR obtained the maximum

accuracy at 75%, while KNN, DT, RF, SVM, and NB achieved the

lowest accuracy at 53%.

The other most influential study is ascribed to Gupta et al.

(23). They used seven balancing techniques, namely under-

sampling, various techniques, including random oversampling,

Adaptive Synthetic Sampling (ADASYN), SMOTE, SMOT-

ENN, SMOTE-Tomek, and SVM-SMOTE, were implemented

along with six disease prediction models: logistic regression,

SVM, decision tree, KNN, and ANN. These models were

evaluated on five different prominent clinical datasets, namely,

the Pima Indians Diabetes Database, ILPD, bacterial cell death

(BCD), congenital heart disease (CHD), and chronic kidney

disease (CKD). Notably, KNN–SMOTE-ENN achieved the

maximum accuracy, precision, recall, and F1-score across the

various ML techniques, outperforming other approaches on the

BCD dataset.

3 Methodology and implementation

3.1 Dataset description

There are 167 records of non-liver patients and 416 records

of liver patients in the Indian Liver Patient Dataset (ILPD). The

information was gathered in northeastern Andhra Pradesh, India.

Patients are classified as either liver patients or not by the class

label. The dataset includes 142 records of female patients and 441

records of male patients. On the basis of the presence of various

chemical compounds in the human body (bilirubin, proteins,

albumin, and alkaline phosphatase [Alkphos]) as well as tests

such as SGPT (alanine aminotransferase or ALT), (GOT (aspartate

aminotransferase or AST), it is possible to predict if the person

is a patient, that is, whether he or she has to be diagnosed. Age,

sex, total bilirubin, direct bilirubin, alkaline phosphatase, AST, ALT,

albumin, globulin ratio (A/G), and total proteins are the 11 dataset

attributes (ILPD).

The “Albumin_and_Globulin_Ratio” has null values, for which

we have taken the mean of this attribute and replaced all null values

with this mean. We checked for duplicate values. Since there is no

unique patient identifier against each observation, and since it is

highly improbable that two subjects have the same exact feature

values, we can conclude that the records are possibly duplicates.

The correlationmetrics shown in Figure 2 is used to summarize

a large dataset and to find the correlation among different features

of the dataset. The matrix has rows and columns. Every cell in

the matrix shows correlation coefficient. The coefficient value of

1 indicates strong correlation, 0 represents a neutral relation. The

correlation matrix allowed us to identify features that were strongly

correlated with the target variable (liver disease diagnosis) and

prioritize them for inclusion. It helps to detect multicollinearity

among independent variables. For example, features such as total

bilirubin and direct bilirubin showed a very high correlation (r >

0.9), and we retained only one of them to avoid redundancy. It helps

remove features with negligible correlation to the target variable

(correlation coefficient < 0.1); for example, age, total proteins, etc.

are unlikely to contribute significantly to the prediction task.

We selected relevant features using these criteria to ensure

that the input data provided meaningful information for the

machine learning models while avoiding overfitting caused by

redundant features. The correlation matrix is used to get a better

understanding of the dataset as it makes visualization easier.

3.2 Traditional methodology

The traditional methodology to design any ML model for the

prediction of liver disease is displayed in Figure 3 includes the

following steps. First, the dataset is fetched, and data preprocessing

is performed, which is then followed by data visualization. Then the

partition of the dataset into train and test data is done, after which

the model is trained on the training data, and the trained model is
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FIGURE 2

Correlation matrix.

FIGURE 3

Workflow of the previous followed methodology.

now tested on the test data. Finally, evaluation of the implemented

model is performed (27, 28).

We employed grid search with 5-fold cross-validation for all

classifiers to identify the optimal set of hyperparameters. The

dataset was divided into 5 folds, with four used for training and

one for validation in each iteration. This process was repeated for

each fold, and the average performance across folds determined the

best hyperparameter combination.

3.3 Proposed methodology and ML models

The dataset we select is imbalanced. If the models are

implemented without handling the imbalanced dataset, then the

implemented models will be biased toward the majority, and

some models may be overfitted. First, it is needed to balance the

dataset. Multiple balancing techniques are used on 9 classification

techniques. The balancing techniques and classification techniques
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FIGURE 4

Prediction system for liver disease dataset.

are mentioned in the following subsection, and the proposed

methodology is displayed in Figure 4.

i. Dataset collection: selecting or collecting the data of liver

patients for selecting meaningful records to obtain and

analyze the productive information by performing various

data mining techniques. The dataset contains both numeric

and categorical features such as age, sex, liver function tests

(e.g., bilirubin, SGOT, SGPT, etc.), and the target variable

indicating whether the patient has liver disease (Label: 1 for

liver disease, 2 for no disease).

ii. Data preprocessing: it is a critical phase in the data mining

process. It includes the cleaning as well as processing of the

raw data so that it can be analyzed. Some common data

preparation steps are listed as follows:

• Data cleaning: the data might have some missing and

irrelevant parts. Data cleaning is performed to handle such

discrepancies in data.

• Missing data: when some data is missing in the dataset,

then those values must be handled either by ignoring the

tuples or filling in the missing values. We addressed missing

data during preprocessing by removing rows with missing

values and imputing missing values using the mean or median

(depending on the feature type) to prevent bias during model

training. We used isnull() to find missing values, and then

we calculated each attribute’s percentage of null values. After

that, we filled in the missing values by the particular attribute’s

mean and median of available values.

• Feature encoding: categorical features, such as sex,

were encoded into numerical values (e.g., male =

1; female = 2) to ensure they could be processed by

machine learning algorithms.

• Noise detection and removal: prior to applying balancing

techniques, noise in the dataset was detected and

removed. This involves:

– Outlier detection: identifying and handling outliers using

the Z-score method. Outliers that may distort model

training were either removed or capped.

– Duplicate removal: identifying and removing duplicate

records in the dataset to avoid biased model learning.

Handling noise at this stage helps ensure that the

dataset used for balancing and training the models

is of higher quality, ultimately leading to more

robust model predictions.

iii. Balancing the imbalanced dataset: since the dataset suffers

from class imbalance, data balancing techniques were applied

to generate synthetic samples for the minority class.

iv. Feature normalization: After applying the balancing

techniques, the features were normalized using the

StandardScaler from scikit-learn.2 This step ensures that

each feature has a mean of 0 and a standard deviation of 1,

which is crucial for algorithms sensitive to feature scaling

(e.g., KNN, logistic regression, SVM).

v. Feature selection: The initial set of features, including age,

sex, various liver function test results (e.g., bilirubin, SGPT,

SGOT, etc.), was used for training the models. A heatmap of

feature correlations was generated to assess the importance

of each feature. The features that were highly correlated

with each other were considered for removal to reduce

redundancy and improve model performance. First, the

2 https://scikit-learn.org
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correlation matrix is calculated for all features in the dataset.

This matrix quantifies the pair-wise relationships between all

features using the Pearson’s correlation coefficient (for linear

relationships) and Spearman’s rank correlation coefficient (for

non-linear relationships). Then, a threshold value is set to

determine the acceptable level of correlation. Feature pairs

with a correlation coefficient above this threshold (in absolute

value) are considered highly correlated. For each pair of

highly correlated features, one of the features is selected

for removal.

vi. Model selection and training: Various machine learning

models, K-nearest neighbors (KNN), AdaBoost, logistic regression,

support vector machine (SVM), random forest, XGBoost,

lightGBM, and Gaussian Naïve Bayes were implemented to classify

liver disease status.

vii. Cross-validation: For each model, 5-fold cross-validation

was applied to assess model performance robustly, ensuring that

the model is not overfitting to the training data.

viii.Hyperparameter tuning:Hyperparameters for eachmodel

were optimized using techniques such as grid search and random

search. Key hyperparameters for each model, such as the number

of estimators for ensemble methods (random forest, AdaBoost, and

XGBoost), regularization strength for logistic regression, kernel

type for SVM, and learning rate for AdaBoost, were tuned to

maximize the models’ performance.

3.4 Handling the imbalanced dataset

Handling imbalanced datasets using different balancing

techniques. Mainly, three methods are employed to handle

imbalanced classes in a classification dataset.

• Undersampling.

• Oversampling.

• Hybrid sampling (a combination of both oversampling

and undersampling).

The process of addressing class imbalance, specifically in the

minority class, in machine learning is referred to asOversampling.

In this, we increase the number of samples in the minority class

by introducing synthetic data. By doing so, it helps to obtain a

more balanced representation of both theminority and themajority

classes. Some oversampling methods involve duplicating existing

samples, while others generate synthetic samples using various

strategies. The use of oversampling techniques can enhance the

performance of ML techniques.

The following oversampling techniques are used in this study:

➢ Upsampling: it is the process of randomly duplicating

minority samples in the training dataset until the classes are

balanced equally. This can be performed for all classes or

just the classes that are underrepresented. The advantage of

upsampling is that it does not exclude any data, which is

important if your data is limited. It duplicates the already

existing samples, which may lead to overfitting of the

classification algorithms.

Pseudo code:

Input: The original train data

1. Choose an instance (xi) from the original train data.

2. Duplicate the instance at random in the minority classes.

3. Repeat this procedure till the required threshold

is attained.

4. End

Output: Balanced version of the train data

➢ SMOTE: (Synthetic Minority Oversampling Technique) the

primary use of this technique is for the balancing of data by

synthesizing supplementary samples for the minority class.

It randomly selects an instance from the minority class,

identifies the nearest neighbors of the instance, and generates

a synthetic instance by connecting them in the feature space.

This technique involves the addition of new information to

the data.

Pseudo code:

Input: M(samples of the minority class); N(synthetic sample

amount); the number of k-nearest neighbors for i in range(N):

x= random.sample(M)//generating random sample

neighbors= k-nearest-neighbors(x)

y= random.sample(neighbors)

sample= x+ (y - x) ∗ random.uniform(0, 1) T.add(sample)

Output: T synthetic minority class samples

➢ ADASYN (Adaptive Synthetic Sampling) (29): this algorithm

is based on SMOTE but with a specific focus on generating

more examples for samples of the minority class, which

have been deemed complex to learn. It seeks to alleviate

class imbalance by generating synthetic samples based on the

number of examples of the majority, for the minority class,

in its nearest k-neighbors. This is achieved through linear

interpolation between existing minority class samples.

The technique of balancing both classes by eliminating the

majority class samples is known as undersampling. This technique

mainly focuses on the majority class.

There is a possibility that we will lose data that is important to

the dataset. As a result, this leads to a decrease in the performance

of ML models. When the ratio of majority to minority classes is

high, there is a chance that it will result in insufficient data for

analysis. Additionally, as these techniques remove the majority

class samples, the original randomness of the dataset is lost.

Consequently, the resulting samples may not accurately represent

the original target distribution.

The approach of combining oversampling with undersampling

is known as hybrid sampling. Oversampling expands the

data size through the addition of synthetic data, whereas

undersampling reduces data points that cause loss. A hybrid

approach combines both the oversampling technique and the

undersampling technique, enhancing their strengths, as well as

reducing their drawbacks.
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➢ SMOTE-Tomek: Smote (Oversampler) + Tomek

Links (Undersampler).

SMOTE’s capacity for generating synthetic data for minority

classes is combined with the ability of Tomek Links to remove

majority class data that is closest to minority class data in this

method. It can be used as an undersampling methodology to

balance the dataset and remove the majority as well as the minority

class samples.

TOMEK: given two samples that belong to different classes, Ei

and Ej. The distance between Ei and Ej is d(Ei, Ej ). This tuple is a

Tomek Link if there are no samples El, such that either d(Ei, El) or

d(Ej, El) is less than d(Ei, Ej).

Pseudo code:

1. (Starting of SMOTE) From the minority class, choose

random data.

2. The relative distance from the randomly selected data and its

nearest k-neighbors is computed

3. Choose a random value in the range (0, 1) and multiply it by the

estimated distance.

4. We obtain a simulated sample. Include this simulated sample in

the minority class.

5. Steps 2 to 4 are repeated until the required proportion of the

minority class is reached (conclusion of the SMOTE method).

5. (The start of Tomek links) Selection of the randomized majority

class data.

7. Find the nearest neighbors of the randomized data. If it is

minority class data, that is, Tomek Link is created, then remove

the Tomek Link. (End)

➢ SMOTE-ENN (30): Smote (Oversampler)

+ ENN (Undersampler)

SMOTE increases the minority class samples at random

by replicating them. The ENN stands for Edited Nearest

Neighbor. First, it identifies the nearest k-neighbors of

every data point and determines whether the majority class

and observation class are the same. If they are not, both

the k-nearest neighbor and observation are removed from

the dataset. This method thus integrates both SMOTE for

generating synthetic samples for the minority class, as well as

ENN for eliminating majority class andminority class samples

that are close.

Pseudo code:

1. (StartSMOTE) From the minority class, choose random data.

2. The relative distance from the randomly selected data and its

nearest k-neighbors is computed.

3. Choose a random value in the range (0, 1) and multiply it by the

estimated distance.

4. We obtain a simulated sample. Include this simulated sample in

the minority class (end SMOTE).

5. (Beginning of ENN) The number of closest neighbors, k (k = 3

by default).

6. Find the nearest k-neighbor of the data point among all other

data points in the observations.

7. The majority class of the nearest k-neighbors is returned.

8. If the majority class calculated and the observation class are not

the same, both the k-nearest neighbor and the observation are

removed from the dataset.

9. Steps 5–8 are repeated till the required proportion of all the

classes is attained (End).

3.5 Model building and implementation

Train the model based on Classification Machine

Learning Algorithms:

1. Logistic regression: the aim is the prediction of the probability

of occurrence of a class label by analyzing the relationship

between the independent and dependent variables sets. A

sigmoid function is used for the estimation of the probability

of a class label. The hyperparameters tuned included the

regularization strength (C) and penalty (L1, L2).

2. Support Vector Machine (SVM): the aim of the SVM is the

identification of a boundary or hyperplane that can differentiate

classes. This boundary is chosen to maximize the margin,

which represents the displacement between the boundary and

its nearest observations. These observations, or data points, are

known as support vectors, and they have an important role in

defining the hyperplane. In a two-dimensional (2D) space, the

hyperplane is essentially a line that divides the 2D plane into

two sections, where both classes are located on opposing sides.

We optimized the kernel type (linear, rbf), the regularization

parameter (C), and the kernel coefficient (gamma) for the

rbf kernel.

3. Random forest: also called random decision trees, is an

ensemble learning technique. On each unique subset of the

dataset, multiple decision trees are created, and through voting

or averaging, their predictions are combined. Random forest

uses multiple trees to increase the accuracy and avoid overfitting

by considering predictions from each decision tree, resulting in

a final output based on majority vote. The number of estimators

(n_estimators) was tuned along with the maximum depth of

trees (max_depth). “max_depth”: 5, “min_samples_split”: 2,

“n_estimators”: 100

4. KNN algorithm: (k-nearest neighbors) it is a supervised, non-

parametric ML technique utilizing proximity to classify/predict

the cluster of individual data points. Data points that are near

each other are considered similar, and this creates clusters

based on these similar features. KNN also excels in capturing

local relationships between data points, which is particularly

useful in distinguishing between healthy and diseased liver

conditions based on feature similarity. We tuned the number

of neighbors (n_neighbors) along with the distance metric

(euclidean, manhattan).

5. AdaBoost: (Adaptive Boosting) it is a boosting algorithm that

integrates multiple weak models, creating a robust final model.

AdaBoost is known for its ability to focus on misclassified

instances, iteratively improving the classification performance

by emphasizing difficult cases. The preferred estimator used

with AdaBoost is decision trees, particularly decision stumps,

which are decision trees with only one level (one split). In
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this technique, all data points are initially assigned equal

weights, while higher weights are given to wrongly classified

data points. These higher-weighted data points gain increased

importance in training the subsequent models. The process

continues iteratively until the model achieves a lower error.

We optimized the number of estimators (n_estimators) and the

learning rate (learning_rate).

6. XGBoost: (Extreme gradient boosting) it is a supervised ML

technique, employing boosting for the creation of accurate

models. It builds multiple weak models sequentially to achieve

this. Initially, the model is trained, and then subsequent models

attempt to correct the errors made by their predecessors. This

process continues until the entire training dataset is correctly

predicted or a maximum number of models is reached. We

tuned the n_estimators, learning rate, and the maximum depth

(max_depth) of trees.

7. Decision tree algorithm: it is a non-linear supervised ML

technique used for classification as well as regression tasks. It

divides the data into subdatasets recursively based on features

and creates a tree-like structure. It selects the best feature for

splitting the data at every tree-node. This process is continued

until the result is further improved by splits or the pre-defined

depth of the tree is reached. The decision boundaries for

classification are represented by the final leaves of the tree. The

hyperparameters included max_depth, min_samples_split, and

the criterion (gini, entropy).

8. Gaussian Naïve Bayes: it is a classification methodology that

uses a Gaussian distribution and a probabilistic approach. It

is a specialized version of Naïve Bayes designed for scenarios

where the features have continuous values, meaning they

follow a Gaussian/normal distribution. Although this model

has fewer hyperparameters, the variance smoothing parameter

(var_smoothing) was optimized.

9. Light GBM (Gradient boosting machine): it is a gradient-

boosting framework, which is available as open-source. It makes

use of decision trees for the improvement of model efficiency

and reduction of memory utilization. In contrast to XGBoost,

where decision trees were built one level at a time, light GBM

takes a leaf-wise approach. It also uses histogram binning

of continuous features, which provides more speed-up than

traditional gradient boosting. The hyperparameters optimized

included the number of leaves (num_leaves), max_depth, and

the learning rate.

Training the model on the ML algorithms discussed

above, and then evaluating their performance using accuracy

metrics, recall score, precision score, AUC-ROC, and F1

score (31). Because accuracy alone is not a good metric for

imbalanced datasets.

➢ Confusion metrics: a useful tool for summarizing the results

of an ML algorithm/model when tested on a test dataset. It

is predominantly used for the evaluation of the efficacy of

models that are supposed to predict category labels for input

cases. During the testing phase, the matrix displays the counts

of true positives (TP), false positives (FP), true negatives (TN),

and false negatives (FN) generated by themodel as represented

in Table 2.

TABLE 2 Confusion metrics.

Predicted value

Has
liver disease

Does not have
a liver disease

Actual

value

Have

liver disease

True positive (TP) False negative (FN)

Does not have a

liver disease

False positive (FP) True negative (TN)

➢ Accuracy: the correctly classified observations or data points

in a dataset, expressed as a percentage.

Accuracy=
TP+ TN

TP+ TN+ FP+ FN

➢ Precision: (True positives/all predicted positives). It is a

measure of a classifier’s performance that tells how many

positive predictions made by the model (classifier) are actually

correct. It is a measure of the model’s exactness. The lower

precision values indicate that a high number of False Positives

are there.

Precison=
TP

TP+FP

➢ Recall: (True positives/-all actual positives). It is used to

measure the proportion of actual positive labels. It is ameasure

of the completeness of a model. A low recall implies a large

presence of false negatives.

Recall=
TP

TP+ FN

➢ F1 score: it serves as a weighted average of the precision

and the recall. The F1-score is essential to restore the balance

between the precision and recall.

F1 Score=
2 ∗ Recall× Precision

Recall+ Precison

➢ AUC_ROC: as the receiver operating characteristic (ROC)

area under the curve (AUC) increases, the performance in

terms of classification and differentiating between the positive

class and the negative class improves.

The ROC–AUC is represented when AUC equals 1, which

indicates the model correctly differentiates all the positive and

negative class points. The ideal ROC curve is shown in Figure 5.

A numerically greater value on the x-axis corresponds to a greater

proportion of false positives as opposed to true negatives, while
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FIGURE 5

Ideal ROC curve.

TABLE 3 Accuracy of models on training and testing data.

Model Train accuracy (%) Test accuracy (%)

Logistic regression 72.36 71.05

SVM 70.39 73.68

Random forest 100 77.19

KNN 80.70 64.91

Decision tree 100 57.01

AdaBoost 81.79 71.92

XGBoost 100 72.80

Light GBM 100 69.2

Gaussian Naïve Bayes 57.89 51.75

that on the y-axis corresponds to a greater proportion of true

positives as opposed to false negatives. When the AUC becomes 0,

all positives are predicted as negatives, and vice versa. For values of

the AUC in the range (0.5, 1), the model is capable of separating

positive class from negative class points. When AUC equals 0.5,

the classifier fails at predicting classes for the data points, making

random predictions.

4 Results and analysis

This section discusses the results we got from the implemented

hybrid models, as well as a comprehensive comparative exploration

of the performance of the models. It also shows the workflow

of the system using the traditional approach and the results

we get using the traditional approach (i.e., without handling an

imbalanced dataset).

4.1 Using traditional ML models

Table 3 shows the result we got after implementing traditional

ML algorithms such as SVM, Gaussian Naïve Bayes, logistic

regression, AdaBoost, random forest, XGBoost, light GBM, KNN

and decision tree on training and testing data.

Logistic regression, SVM, and AdaBoost show good

performance, with accuracy of 71.05, 73.68, 77.19, 71.92, and
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FIGURE 6

Accuracy of the implemented models.

72.80% respectively. Random forest, decision tree, XGBoost, and

light GBM models show 100% training accuracy. Overfitting

occurs when an ML model fits too closely to a particular dataset.

In simple terms, when a model is trained too much, the model

starts memorizing the data instead of learning from it. Also, as

the dataset is imbalanced, the implemented ML models are biased

toward the majority class label. Using random forest for patients

with no liver disease (minority class label), we have precision value:

55%; recall value: 37.93%; F1-score: 44.89%; and ROC–AUC score:

63.67%. We can see that the model is performing really poorly

in predicting non-liver disease patient among liver patients. The

graph of accuracy of implemented models is shown in Figure 6.

The ROC–AUC for implemented models is depicted in

Figure 7.

These ROC–AUC have a numerically greater value on the Y-

axis, as discussed above, corresponds to a greater proportion of

true positives as opposed to false negatives, as well as a greater

proportion of false positives as opposed to true negatives. The

implemented models are able to separate points from the positive

and negative classes.

But these implemented models performed poorly.

4.2 Handling imbalanced dataset

• Using balancing techniques, such as SMOTE, SMOTE-Tomek,

SMOTE-ENN, Upsampling, ADASYN, the data is balanced.

• The balanced data is divided in an 80:20 ratio with 80% train

data and 20% test data.

• The models are trained on balanced data, and the

implemented model is then tested on test data.

• The results we got for implemented classification techniques

with different balancing techniques are shown in Table 4.

4.2.1 Accuracy
The hybrid models, KNN–SMOTE-ENN and AdaBoost-

SMOTE-ENN show the highest accuracy of 91.89%. Using SMOTE

techniques, the hybrid model, random forest-SMOTE, shows

the highest accuracy of 82.2%. Using SMOTE-Tomek balancing

techniques, the hybrid models, XGBoost-SMOTE-Tomek and

light-GBM-SMOTE-Tomek, show the highest accuracy achieved
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FIGURE 7

ROC–AUC for the implemented models before balancing.

TABLE 4 Accuracy score of di�erent balancing techniques on classifiers.

Models SMOTE (%) SMOTE-ENN (%) SMOTE-Tomek (%) ADASYN (%) Upsampling (%)

Logistic regression 65.03 79.72 63.81 58.22 60.73

SVM 67.48 78.37 60.52 57.59 57.66

Random forest 82.20 87.83 82.23 75.94 82.82

KNN 73 91.89 74.34 72.78 68.71

Decision tree 74.84 87.83 75.65 66.45 83.43

AdaBoost 69.32 91.89 75 67.08 69.93

XGBoost 77.91 90.54 82.89 73.41 82.20

Light GBM 75.46 90.54 82.89 75.31 82.82

Gaussian Naïve Bayes 72.39 90.54 70.39 67.72 68.09

The bold values are indicating best results.

is 82.89%. Using ADASYN balancing techniques, the hybrid

model light-GBM-ADASYN shows the highest accuracy achieved

is 75.31%. Using the upsampling technique, the hybrid model

decision tree-upsampling shows the highest accuracy of 83.43%.

Random forest, XgBoost, and light GBM show better accuracy

in comparison to other ML algorithms with all the balancing

techniques. The graph of the accuracy of all implemented hybrid

models is shown in Figure 8 to analyze the results.

SMOTE-ENN performs well with all the implemented ML

algorithms. Upsampling also shows good results, but it is necessary

to check other evaluation metrics. This is because accuracy

metrics are not a good measure of model performance for

imbalanced datasets. In cases where the class distribution is

imbalanced, relying solely on accuracy can lead to predictions

that are biased, as it may favor the majority class. Instead, it

is recommended to employ alternative metrics such as recall

value, precision value, ROC—AUC, and F1 score to better assess

the model’s performance. The precision value, recall value, F1-

score, and ROC–AUC score are calculated for the implemented

hybrid model.

To statistically validate the improvements observed with hybrid

models over traditional models, the Wilcoxon Signed-Rank Test

was conducted. This non-parametric test evaluates the symmetry

of the distribution of paired differences between accuracies. The

Wilcoxon statistic was found to be 0.0, with a corresponding p-

value of 0.0039, indicating a statistically significant improvement

in hybrid models’ performance (p < 0.05). The result supports

the hypothesis that hybrid models provide robust enhancements in
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FIGURE 8

Accuracy of nine classifiers with di�erent balancing techniques.

TABLE 5 Precision value of di�erent balancing techniques on classifiers.

Precision values:

Models Label SMOTE (%) SMOTE-ENN (%) SMOTE-Tomek (%) ADASYN (%) Upsampling (%)

Logistic regression 0 64.91 76.78 60.78 58.51 56.14

1 65.30 88.88 70 57.81 71.42

SVM 0 63.57 74.57 56.58 55.9 53.28

1 91.30 93.33 82.60 62.85 80.76

Random forest 0 80.39 92.85 78.4 76.19 76.04

1 85.24 81.25 87.5 75.67 92.53

KNN 0 69.74 91.48 70.65 70.1 65.16

1 81.81 92.57 80 77.04 72.97

Decision tree 0 78.4 95 77.02 71.01 75.75

1 70.66 79.41 74.35 62.92 95.31

AdaBoost 0 70.29 95.34 73.49 67.85 67.90

1 67.74 87.09 76.81 66.21 71.95

XGBoost 0 78.35 93.18 80.72 73.25 75.25

1 77.27 86.66 85.50 73.61 92.42

Light GBM 0 75.75 93.18 80.72 74.71 76.59

1 75 86.66 85.50 76.05 91.3

Gaussian Naïve Bayes 0 68.25 89.58 64.54 63.02 61.01

1 86.48 92.30 85.71 82.05 86.66

The bold values are indicating best results.

predictive accuracy for the ILPD dataset. For the precision value of

the implemented hybrid models is displayed in Table 5.

In Table 5, label “0” represents the patients not diagnosed with

liver disease, and “1” represents patients with liver disease. The

precision value for both labels is calculated and analyzed. The

hybrid model KNN- SMOTE-ENN shows the highest precision

score of 91.48% for patients not diagnosed with liver disease and

92.57% for patients with liver disease. KNN excels in capturing

local relationships between data points, which is particularly useful

in distinguishing between healthy and diseased liver conditions

based on feature similarity. The hybrid models designed using

upsampling techniques show lower precision values for patients

without liver disease as opposed to those with liver disease, as a

result of overfitting. In other balancing techniques, the difference in

precision values is not that much. Using the SMOTE technique, the

hybrid model random forest-SMOTE shows the highest precision

score of 80.39% for patients not diagnosed with liver disease and

85% for patients with liver disease. Using the SMOTE-Tomek

technique, the hybrid models, XGBoost-SMOTE-Tomek and light

GBM-SMOTE-Tomek, show the highest precision value of 80.72%
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FIGURE 9

Precision score of nine classifiers with di�erent balancing techniques for non-liver disease patient.
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FIGURE 10

Precision score of nine classifiers with di�erent balancing techniques for liver disease patients.

for patients not diagnosed with liver disease and 85.5% for patients

diagnosed with liver disease. Using the ADASYN technique, the

hybrid model random forest-ADASYN shows the highest precision

value of 76.19% for patients not diagnosed with liver disease

and 75.67% for patients diagnosed with liver disease, among all

implemented models. Using upsampling technique, the hybrid

model decision tree gives the highest precision value of 75.75% for

patients not diagnosed with liver disease and 95.31% for patients

diagnosed with liver disease. The individual graph of precision

value for patients not diagnosed with liver disease and patients

diagnosed with liver disease is shown in Figures 9, 10.

From the graph, it can be seen that up-sampling techniques

show good precision value for patients diagnosed with liver disease

and perform poorly for patients not diagnosed with liver disease.

The SMOTE-ENN balancing techniques show good precision

score for both patients who are diagnosed with liver disease and

those who are not. Table 6 shows the recall value of implemented

hybrid models.

The hybrid model AdaBoost-SMOTE-ENN shows the highest

recall score of 91.11% for patients not diagnosed with liver disease

and 93.1% for patients diagnosed with liver disease, among all

implemented models. The other hybrid models which have good

recall value for both patients who are not diagnosed for liver disease

as well as those that are KNN–SMOTE-ENN, XGBoost-SMOTE-

ENN, and light GBM-SMOTE-ENN. These hybrid models have

a recall value of more than 90% for non-liver disease patients

and a recall value of more than 86% for liver disease patients.

The random forest-SMOTE-ENN hybrid models show a good

recall value of more than 85% for both patients who are not

diagnosed with liver disease as well as those who are diagnosed

with liver disease. The individual graphs of recall value for both

patients who are not diagnosed with liver disease are shown

in Figures 11, 12.

SMOTE-ENN shows better performance for patients not

diagnosed with liver disease and for patients who are diagnosed

with liver disease. The hybrid models that use other balancing
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TABLE 6 Recall value of di�erent balancing techniques on classifiers.

Recall values

Models Label SMOTE (%) SMOTE-ENN (%) SMOTE-Tomek (%) ADASYN (%) Upsampling (%)

logistic

Regression

0 81.31 95.55 80.51 67.07 82.05

1 44.44 55.17 46.66 48.68 41.1

SVM 0 97.80 97.77 94.8 84.14 93.58

1 29.16 49.27 25.33 28.94 24.70

Random

forest

0 90.10 86.67 89.61 78.04 93.58

1 72.22 89.65 74.66 73.68 72.94

KNN 0 91.2 95.55 84.41 82.92 74.35

1 50 86.20 64 61.84 63.52

Decision

tree

0 75.82 84.44 74.02 59.75 96.15

1 73.61 93.10 77.33 73.68 71.76

AdaBoost 0 78.02 91.11 79.22 69.51 70.51

1 58.33 93.10 70.66 64.47 69.41

XGBoost 0 83.51 91.11 87.01 76.82 93.58

1 70.83 89.65 78.66 69.73 71.76

Light GBM 0 82.41 91.11 87.01 79.26 92.30

1 66.66 89.65 78.66 71.05 74.11

Gaussian

Naïve Bayes

0 94.5 95.55 92.2 91.46 92.34

1 44.44 82.75 48 42.10 45.88

The bold values are indicating best results.

FIGURE 11

Recall score of nine classifiers with di�erent balancing techniques for non-liver disease patients.

techniques show poor recall for liver disease patients. The F-1-score

is listed in Table 7.

The hybrid model KNN–SMOTE-ENN shows the highest F1-

score of 93.47% for patients not diagnosed with liver disease

and 89.28% for patients diagnosed with liver disease, among all

implemented models. The AdaBoost-SMOTE-ENN hybrid models

also show a good F1-score of 93.18% for patients not diagnosed

with liver disease and 90% for patients diagnosed with liver disease,

among all implemented models.

The combination of SMOTE-ENN with KNN and AdaBoost

was strategically chosen for the ILPD dataset to address issues

related to class imbalance and noisy data, which are common in

medical datasets like liver disease detection. The rationale for using

this combination is as follows:

The ILPD dataset exhibits an imbalance between the number of

healthy individuals and those with liver disease. SMOTE is used to

synthetically generate samples for the minority class (patients with

liver disease), thus helping to balance the dataset. This ensures that

the models do not become biased toward themajority class (healthy

individuals) and can better identify the minority class, which is

critical in medical diagnosis tasks where detecting the diseased class

is of utmost importance. Additionally, Edited Nearest Neighbors
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FIGURE 12

Recall Score of 9 classifiers with di�erent balancing techniques for liver disease patients.

TABLE 7 F-1-score di�erent balancing techniques on classifiers.

F-1-score

Models Label SMOTE (%) SMOTE-ENN (%) SMOTE-Tomek (%) ADASYN (%) Upsampling (%)

Logistic

regression

0 72.19 85.14 69.27 62.5 66.66

1 52.89 68.08 56 52.85 52.23

SVM 0 77.05 84.61 70.87 67.94 67.90

1 44.21 63.63 38.77 39.63 37.83

Random

forest

0 84.97 89.65 83.63 77.1 83.90

1 78.19 85.24 80.57 74.66 81.57

KNN 0 79.04 93.47 76.92 75.97 69.46

1 62.06 89.28 71.11 68.61 67.92

Decision

tree

0 77.09 89.41 75.49 64.9 84.74

1 72.1 85.71 75.81 67.87 81.87

AdaBoost 0 73.95 93.18 76.25 68.67 69.18

1 62.68 90 73.61 65.33 70.65

XGBoost 0 80.85 92.13 83.75 75.90 83.42

1 73.91 88.13 81.94 71.62 80.79

Light GBM 0 78.94 92.13 83.75 76.92 83.72

1 70.58 88.13 81.94 73.46 81.81

Gaussian

Naïve Bayes

0 79.26 92.47 75.93 74.62 73.46

1 58.71 87.27 61.15 55.65 60

The bold values are indicating best results.

(ENN) is applied to remove noisy or misclassified instances from

the dataset. By cleaning the data, ENN improves the quality of

the training data, making the model more robust and reducing

the likelihood of overfitting, which is especially important in

medical datasets that may contain ambiguous or erroneous entries.

KNN benefits from the balanced and cleaned dataset provided

by SMOTE-ENN, as it relies on proximity between instances to

make predictions. In the case of the ILPD dataset, having a well-

balanced representation of both healthy and diseased classes allows

KNN to more accurately classify the liver disease cases, as the

model can better identify the true similarities between instances.

Additionally, the cleaning performed by ENN helps KNN avoid the

influence of noisy or irrelevant data points, improving its overall

accuracy. AdaBoost is an ensemble learning method that combines

several weak classifiers to create a strong classifier, with a focus

on misclassified instances by increasing their weight in subsequent

iterations. When combined with SMOTE (for balancing) and ENN

(for cleaning), AdaBoost is better able to focus on the harder-

to-classify minority class, improving its performance on liver

disease detection. By addressing both class imbalance and noise,

the ensemble method is more likely to correctly classify patients

with liver disease, which is crucial for medical decision-making.
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The hybrid model KNN–SMOTE-ENN shows the highest F1-

score of 93.47% for patients not diagnosed with liver disease

and 89.28% for patients diagnosed with liver disease, among all

implemented models.

The hybrid models created using SMOTE, SMOTE-Tomek,

and upsampling balancing techniques show almost similar F1-score

for patients who are and are not diagnosed with liver disease.

Using the SMOTE technique, the random forest-SMOTE hybrid

model shows the highest F1-score of 84.97% for patients not

diagnosed with liver disease and 78.19% for patients diagnosed with

liver disease.

Using the SMOTE-Tomek technique, the hybrid models

XGBoost-SMOTE-Tomek and light GBM-SMOTE-Tomek show

the highest F1-score of 83.75% for patients not diagnosed

with liver disease and 81.94% for patients diagnosed with liver

disease. Using the up-sampling technique, the hybrid model

Decision-Tree-Up-sampling gives the highest accuracy of 84.74%

for patients not diagnosed with liver disease and 81.87% for

patients diagnosed with liver disease. The individual graphs of

F1-score for patients with and without liver disease are shown

in Figure 13.

The hybrid models that use the SMOTE-ENN technique show

a better F1-score than other hybrid models. The ROC scores of the

implemented hybrid models are provided in Figure 14 and Table 8.

4.2.2 ROC–AUC Score
The hybrid model AdaBoost-SMOTE-ENN shows the highest

ROC–AUC score of 92.1% among all implemented models.

Using the SMOTE technique, the random forest-SMOTE hybrid

model shows the maximum ROC–AUC score of 81.16%.

Using the SMOTE-Tomek technique, the random forest-SMOTE,

XGBoost-SMOTE-Tomek, and light-GBM-SMOTE-Tomek hybrid

models show the highest ROC–AUC score of 82.83%. Using

the ADASYN technique, the random forest-ADASYN hybrid

FIGURE 13

F1-score of nine classifiers with di�erent balancing techniques for non-liver disease patients.

FIGURE 14

F1-score of nine classifiers with di�erent balancing techniques for liver disease patients.
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TABLE 8 ROC–AUC Score of di�erent balancing techniques on classifiers.

Models SMOTE (%) SMOTE-ENN (%) SMOTE-Tomek (%) ADASYN (%) Upsampling (%)

Logistic regression 62.88 75.36 63.59 57.87 61.61

SVM 63.48 73.02 60.06 56.54 59.14

Random forest 81.16 88.16 82.13 75.86 83.26

KNN 70.60 90.88 74.20 72.38 68.94

Decision tree 74.71 88.77 75.67 66.72 83.95

AdaBoost 68.17 92.10 74.94 66.99 69.96

XGBoost 77.17 90.38 82.83 73.28 82.67

Light GBM 74.54 90.38 82.83 75.16 83.21

Gaussian Naïve Bayes 69.47 89.15 70.1 66.78 69.09

The bold values are indicating best results.
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FIGURE 15

ROC–AUC score of nine classifiers with di�erent balancing methodologies.

model shows the maximum ROC–AUC score of 75.86%. Using

the SMOTE technique, the decision-upsampling hybrid model

shows the highest ROC–AUC score of 83.95%. The graph of

the ROC–AUC score for the implemented models is shown

in Figure 15.

The hybrid model, which uses the SMOTE-ENN technique,

shows better results than other implemented models. SMOTE-

ENN is a two-step technique that integrates SMOTE with the

Edited Nearest Neighbors (ENN) algorithm in order to enhance

classifier performance on imbalanced data. In this approach,

Synthetic Minority Oversampling Technique (SMOTE) creates

synthetic examples for the minority class by interpolating between

existing instances and their nearest neighbors. This method

expands the minority class dataset without merely duplicating

samples, addressing the problem of limited training data while

reducing the risk of overfitting, often associated with simple sample

replication. Following this, ENN (Edited Nearest Neighbors)

enhances the dataset by eliminating noisy and ambiguous instances

from both majority and minority classes, particularly those

misclassified by their k-nearest neighbors. This step not only

removes inaccurately generated synthetic points but also filters out

outliers and borderline cases in the original dataset that might blur

decision boundaries. By combining these techniques sequentially,

the process achieves a more balanced class distribution and cleaner

data, ultimately improving classification accuracy compared to

using SMOTE or ENN individually.

The dataset has a limited number of minority class instances

and contains noisy and overlapping data points, particularly due

to physiological and biochemical variations among individuals.

Hence, the hybrid approach of SMOTE-ENN is best suited

as it balances the dataset while simultaneously improving the

quality of samples. The hybrid models, which use SOMTE-Tomek

and upsampling, show similar ROC–AUC score. Among the

implemented balancing techniques, ADASYN shows the lowest

performance. Classification algorithms are assessed using multiple

metrics, including accuracy, recall, precision, ROC–AUC, and

F1 score. Now, ROC–AUC of all the balancing techniques on

implemented models are shown in Figure 16.

The ROC–AUC of SMOTE-ENN shows that SMOTE-ENN is

most sensitive, that is, it can easily distinguish between class labels.

From the result table, graphs, and ROC–AU, we can conclude

the following:
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FIGURE 16

ROC–AUC of all the balancing techniques used.

• Upsampling also underperformed with different classification

techniques because it creates duplicate copies of existing data,

resulting in overfitting in the classification.

• SMOTE-Tomek and SMOTE show similar performance. In

some cases, both underperform. SMOTE underperformed

in comparison to SMOTE-ENN because it lacks flexibility
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and did over generalization. SMOTE-Tomek uses SMOTE

and Tomek to oversample the minority class and remove

the majority class samples that are close to minority class

samples, respectively.

Among all the balancing techniques, SMOTE-ENN gives

a better accuracy score, precision value, recall value, F1-

score, and ROC–AUC score. The hybrid models KNN–SMOTE-

ENN, AdaBoost-SMOTE-ENN are suggested. The hybrid model

KNN–SMOTE-ENN gives accuracy: 91.89%, precision value:

91.48%, recall value: 95.55%, F1-score: 93.47%, and ROC–AUC

score: 90.88%. The AdaBoost-SMOTE-ENN hybrid model shows

accuracy: 91.89%, precision value: 95.34%, recall value: 91.11%,

F1-score: 93.18%, and ROC–AUC Score: 92.10%.

Some other models that performed well are XGBoost, light

GBM, and Gaussian Naïve Bayes, with an accuracy of almost 90%.

The random forest-SMOTE-ENN hybrid model shows Accuracy

score, recall value, precision value, F1-score and ROC–AUC

score of 87.82, 92.85, 89.01, 89.65, and 88.16%, respectively.

The XGBoost-SMOTE-ENN hybrid model shows accuracy score,

precision value, recall value, F1-score, and ROC–AUC score of

90.54, 93.18, 91.11, 92.13, and 90.38%, respectively. The light GBM-

SMOTE-ENN hybrid model shows accuracy, precision, recall, F1-

score, and ROC–AUC of 90.54, 93.18, 91.11, 92.13, and 90.38%,

respectively. The Gaussian-NB-SMOTE-ENN hybrid model shows

accuracy, precision, recall, F1-score, and ROC–AUC of 90.54,

89.58, 95.55, 92.47, and 92.1%, respectively.

Since KNN, AdaBoost, XGBoost, light GBM, and Gaussian

Naïve Bayes gave high accuracy scores with the SMOTE-ENN

data balancing techniques. Hence, we have also tried to find the

Brier score loss and the calibration curves for this combination

to analyze the results deeply. Brier score is a type of evaluation

metric for classification tasks where lower values indicate better

predictive reliability.

BS =
1

N

N∑

t=1

(ft − ot)
2 (1)

where ft is the predicted value and ot is the observed value;

N is the number of observations. The Brier score calculates

the mean squared error between predicted probabilities and the

observed values (actuals). AdaBoost gave a Brier score loss

of 0.2256, among the evaluated models as shown in Table 9.

AdaBoost achieved the lowest Brier score loss, indicating superior

probability estimation and model calibration. Ensemble-based

models (AdaBoost, XGBoost, and light GBM) performed better in

terms of probability calibration compared to non-ensemble models

(KNN, Naïve Bayes). Also, we have obtained the calibration curve

for the AdaBoost with SMOTE-ENN. The calibration curve is a

graphical representation of how well the predicted probabilities

from the AdaBoost model align with actual observed outcomes, as

shown in Figure 17. From the calibration curve, we can observe that

for lower predicted probabilities, which are below 0.4, the fraction

of positives is lower than expected, indicating under-confidence

in predictions. However, for mid-to-high probability predictions

(0.4–0.8), the model overestimates the likelihood of positive cases,

TABLE 9 Brier score loss and calibration curves.

Models Balancing
techniques

Brier score loss

KNN SMOTE-ENN 0.3435

AdaBoost SMOTE-ENN 0.2256

XGBoost SMOTE-ENN 0.2602

Light GBM SMOTE-ENN 0.2935

Gaussian Naïve Bayes SMOTE-ENN 0.3856

FIGURE 17

Calibration curve of Adaboost with SMOTE-ENN.

and for very high probability values (above 0.8), the model is

relatively well-calibrated.

We also applied Recursive Feature Elimination for feature

selection on Adaboost with SMOTE-ENN, which performs by

recursively removing the least important features and re-fitting

the model until the desired number of features is reached.

It helps in selecting the most relevant features, improving

model interpretability, and also prevents overfitting by removing

redundant or noisy features. The Brier score loss for Adaboost with

SMOTE-ENN became 0.2168. The RFE training time comes out to

be 0.0310 s, and the AdaBoost training time is 0.2032 s.

We analyze our best model’s predictions using explainable

artificial intelligence (XAI) techniques, such as SHapley Additive

exPlanations (SHAP), which are used to explain machine learning

model predictions in a mathematically sound and interpretable

way, and help to gain transparency into its decision-making

process. SHAP helps determine which features contribute the

most to a model’s predictions. SHAP provides both global (overall

importance) and local (individual predictions) explanations.

Figure 18 shows the SHAP summary plot (feature importance),

which shows how much each feature impacts predictions on

average and also helps in feature selection. In Figure 18a, the top-5

features are listed on the y-axis [TB, Alkphos, SGOT, SGPT, Direct

Bilirubin (DB)], and the SHAP value is represented on the x-axis.

This indicates the average impact of each feature on the model’s

prediction. Positive values mean the feature contributes positively
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FIGURE 18

SHAP summary plot. (a) SMOTE-ENN with Adaboost. (b) SMOTE-ENN with KNN.

TABLE 10 The performance of the hybrid ensemble model for the ilpd and bupa liver disorder dataset.

Dataset Label Accuracy (%) Precision Recall F1-score Brier score loss ROC–AUC

ILPD 0 93.2 0.94 0.97 0.95 0.032 0.99

1 0.92 0.93 0.93

BUPA 0 95.4 0.98 0.96 0.97 0.031 0.99

1 0.95 0.97 0.94

FIGURE 19

(a) ROC–AUC; (b) Calibration curve of the proposed hybrid ensemble model.

to the prediction, while negative values contribute negatively. The

feature value is shown by the color of each dot. Red indicates

high values, while blue indicates low values of the feature. TB

has a significant positive impact on the model output. Most data

points cluster on the right side of the zero line, indicating positive

SHAP values. The color gradient suggests that high TB values

(red dots) correspond to higher positive SHAP values. It indicates

that the samples with high TB levels largely increase the predicted

outcome (likely indicating liver disease). Alkphos shows a more

varied impact. The data points appear on both sides of the zero

line, with a notable concentration on the positive side. Higher

Alkphos values are linked to positive SHAP values, while lower

values have a slightly negative to negligible impact. Samples with

higher Alkphos values tend to increase the predicted outcome, but

not as significantly as TB. DB has a smaller impact compared to

the other features, with data points more tightly clustered around

the zero line. The gradient indicates that higher DB values might

have a slightly positive influence, though the overall impact is less
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pronounced. In Figure 18b, DB shows a wide distribution of SHAP

values but mainly clustered around SHAP value zero. Most of

the points are clustered around zero, with some having a positive

impact and some having a negative impact.

4.2.3. Proposed hybrid ensemble model
We have designed a hybrid Machine learning model to predict

liver disease using the Indian Liver Patient Dataset (ILPD). The

hybrid model involves the combination of Recursive Feature

Elimination (RFE) for feature selection, SMOTE-ENN to address

the problem of data imbalance, and ensemble learning.

The ILPD dataset is first preprocessed. The missing values

are filled with the mean of their respective columns following the

imputation technique, and the target variable is transformed into

a binary format to prepare it for the binary classification. The

dataset is split into the train and test using the train_test_split

with an 80:20 ratio. Recursive Feature Elimination (RFE) is

applied to select the most important and relevant set of features.

This technique recursively removes features and builds a model

on the remaining attributes. It uses a RandomForestClassifier

as the base estimator to determine feature importance.

n_features_to_select=7 specifies that the RFE should select the top-

7 features, namely [“age,” “total_bilirubin,” “alkaline_phosphatase,”

“alamine_aminotransferase,” “aspartate_aminotransferase,”

“total_proteins,” “albumin”]. The ILPD dataset is a highly

imbalanced dataset; hence, SMOTE-ENN is applied for data

balancing after feature selection. Then, the scaling of the feature

is performed using MinMaxScaler to a range between 0 and 1.

The training and testing datasets are re-split after resampling

and scaling.

Ensemble learning is performed using a VotingClassifier,

which integrates predictions from multiple classifiers to

enhance predictive accuracy. Defines two base classifiers:

RandomForestClassifier and GradientBoostingClassifier. Both are

initialized with n_estimators=100 (meaning 100 trees/estimators

in each ensemble) and a random_state for reproducibility.

The methodology involves defining two base classifiers:

RandomForestClassifier and GradientBoostingClassifier. These

classifiers are chosen for their ability to capture complex patterns

in the data. The VotingClassifier employs soft voting, which means

it predicts the class label based on the predicted probabilities from

each classifier rather than simply taking a majority vote. After

training the VotingClassifier on the training dataset, predictions

are made on the test set. The ensemble model’s performance is

evaluated using various metrics, including accuracy, ROC–AUC

score, and Brier score loss. These metrics provide insights into how

well the ensemble model generalizes to unseen data.

Table 10 shows the performance of the proposed hybrid

ensemble model on the ILPD and BUPA Liver Disorder Dataset.

For the ILPD dataset, the model achieves an overall accuracy of

93.2%, whereas for the BUPA dataset, the model attains an accuracy

of 95.4%. The Brier score loss for the ILPD dataset is 0.032 and

0.031 for the BUPA Liver Disorder Dataset. The hybrid ensemble

model demonstrates strong performance on both datasets, with

high accuracy, precision, recall, and F1-scores, coupled with low

Brier score loss and excellent ROC–AUC scores. The Figure 19

TABLE 11 Comparison of our proposed hybrid models with the other

previous studies.

Authors Dataset Classifiers Accuracy

Singh et al. (9) IPLD Logistic regression (LR),

SVM, and KNN

LR: 73.97%

KNN: 73.97%

SSVM:71.79%

Keerthana

et al. (10)

ILPD LR LR: 85.96%

Fernando et al.

(14)

ILPD Random forest (RF),

multilayer perceptron

(MLP), KNN, and SVM

RF: 69%

KNN: 67%

SVM: 74%

MLP: 68%

Gupta et al.

(23)

ILPD Logistic regression (LR),

decision tree (DT),

KNN, RF, gradient

boosting (GB), XGBoost,

light GBM

LR: 57%,

NB: 54%

DT: 61,

RF: 63,

XGBoost: 60%,

AdaBoost: 62%

LGBM: 63%

KNN: 57%

Amin et al.

(33)

ILPD Logistic

KNN

Random forest

SVM

MLP

Ensemble

55.4

67.9

88.1

67.9

83.53

82.09

Altaf et al. (34) ILPD Voting ensemble 73.56

Proposed ILPD Hybrid (SMOTE-ENN

AdaBoost)

Hybrid ensemble Model

91.89%

93.2%

shows the ROC–AUC b) Calibration Curve. Figure 19a shows a

receiver operating characteristic (ROC) curve with a very high area

under the curve (AUC) score of 0.98. This signifies that the model

achieves a high true positive rate (TPR) while maintaining a low

false positive rate (FPR) across a wide range of thresholds. This

indicates that the classification model performs exceptionally well

at distinguishing between the two classes (positive and negative).

In Figure 19b, the calibration curve shows that the blue line closely

follows the dashed diagonal line for mean predicted probabilities

in the range of ∼0–0.4. This indicates that the model is well-

calibrated for predictions in this range; when the model predicts

a low probability, it is indeed a low probability event.

The proposed hybrid model is compared with the recent

existing studies carried out for liver disease prediction on the ILPD

datasets. We have considered the accuracy as the key criterion

to perform the comparison among all the studies and presented

them in Table 11. The proposed hybrid model (SMOTE-ENN +

AdaBoost) demonstrates significant improvement over previous

studies on the ILPD dataset, achieving the highest accuracy

(91.89%) among all approaches compared in the table. This

improvement can be attributed to the effective handling of class

imbalance using SMOTE-ENN. The powerful ensemble learning

capabilities of AdaBoost optimize classification performance.

The results clearly establish the superiority of the proposed

approach for liver disease diagnosis using ILPD data, making it a

robust solution for clinical applications and research purposes in

this domain.
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5 Conclusion

The early and precise prediction of liver disease has

been examined and analyzed. The dataset we chose is an

imbalanced dataset. We used balancing methodologies,

such as upsampling, ADASYN, SMOTE, SMOTE-ENN, and

SMOTE-Tomek, for balancing the dataset. After that, machine

learning models are implemented with all the different balancing

techniques mentioned.

After performing a thorough comparative analysis, we observed

that SMOTE-ENN yields better results compared to other

balancing techniques. The hybrid models KNN–SMOTE-ENN

and AdaBoost-SMOTE-ENN are suggested for the prediction of

liver disease.

• KNN with SMOTE-ENN gives accuracy: 91.89%, precision

score (patients not diagnosed with liver disease): 91.48%,

precision value (patients diagnosed with liver disease): 92.57%,

recall value (patients not diagnosed with liver disease): 95.55%,

recall value (patients diagnosed with liver disease): 86.20%,

F1-score (patients not diagnosed with liver disease): 93.47%,

F1-score (patients not diagnosed with liver disease): 89.28%,

and ROC–AUC score: 90.88%.

• AdaBoost with SMOTE-ENN gives accuracy: 91.89%,

precision value (patients not diagnosed with liver disease):

95.34%, precision (patients diagnosed with liver disease):

87.09%, recall value (patients not diagnosed with liver

disease): 91.11%, recall value (patients diagnosed with liver

disease: 93.10%, F1-score (patients not diagnosed with liver

disease): 93.18%, F1-score (patients diagnosed with liver

disease): 90%, and RUC–AUC score: 92.10%.

From the results, it can be concluded that the probability

of having liver disease can be predicted with an accuracy of

more than 90%. The results we obtained show that some of

the techniques, except the KNN model, may perform well under

specific parameters, combined with the AdaBoost model and the

SMOTE-ENN balancing technique, accurately predicted patients

with liver disease.

However, the inference time for KNN–SMOTE-ENN is

relatively high due to the need for real-time distance calculations,

which may not be ideal for real-time applications. This is because

the training time for KNN–SMOTE-ENN is influenced by the KNN

algorithm’s reliance on distance computation, which has a time

complexity of O(n·d) where n is the number of training samples

and d is the number of features. AdaBoost-SMOTE-ENN, with its

ensemble-based structure, demonstrated faster inference, making

it more appropriate for scenarios requiring real-time decision-

making. Based on the runtime analysis, we suggest that AdaBoost-

SMOTE-ENN is better suited for real-time applications due to

its lower inference time and consistent predictive performance.

The KNN–SMOTE-ENN model, while slightly slower during

inference, remains a robust choice for offline or semi-real-time

use cases.

• The research study also proposed a hybrid ensemble model

on the ILPD and BUPA Liver Disorder Dataset. For the

ILPD dataset, the model achieves an overall accuracy of

93.2%, whereas for the BUPA dataset, the model attains

an accuracy of 95.4%. The Brier score loss for the

ILPD dataset is 0.032 and 0.031 for the BUPA Liver

Disorder Dataset. The ensemble learning method used in

the provided code primarily employs a VotingClassifier,

which combines predictions from multiple base classifiers

(RandomForestClassifier and GradientBoostingClassifier).

Liver disease is becoming more and more common over time.

There are multiple factors that are responsible for the same, such

as unhealthy lifestyles, obesity, excessive consumption of alcohol,

etc. Despite increased health consciousness, the introduction of idle

lifestyles and luxuries continues to be prevalent. In these scenarios,

this research study may prove to be quite useful to the world

because early, timely, and precise prediction of liver disease plays an

important role in increasing the life span of patients. This work has

currently been done on a CSV file; we can further proceed to apply

imaging techniques for liver disease detection, utilizing ultrasound

and other liver diagnosis images. There are other advanced classifier

algorithms and hybrid techniques that we can use, which will

give us better accuracy. Application of Deep Learning models,

such as Fuzzy Neural Network, CNN, and ANN (32) may also be

performed to predict liver disease.
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