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Background: Accurate segmentation and classification of carotid plaques are

critical for assessing stroke risk. However, conventional methods are hindered by

manual intervention, inter-observer variability, and poor generalizability across

heterogeneous datasets, limiting their clinical utility.

Methods: We propose a hybrid deep learning framework integrating Mask

R-CNN for automated plaque segmentation with a dual-path classification

pipeline. A dataset of 610 expert-annotatedMRI scans from Xiangya Hospital was

processed using Plaque Texture Analysis Software (PTAS) for ground truth labels.

Mask R-CNN was fine-tuned with multi-task loss to address class imbalance,

while a custom 13-layer CNN and Inception V3 were employed for classification,

leveraging handcrafted texture features and deep hierarchical patterns. The

custom CNN was evaluated via K10 cross-validation, and model performance

was quantified using Dice Similarity Coe�cient (DSC), Intersection over Union

(IoU), accuracy, and ROC-AUC.

Results: The Mask R-CNN achieved a mean DSC/IoU of 0.34, demonstrating

robust segmentation despite anatomical complexity. The custom CNN attained

86.17% classification accuracy and an ROC-AUC of 0.86 (p = 0.0001),

outperforming Inception V3 (84.21% accuracy). Both models significantly

surpassed conventional methods in plaque characterization, with the custom

CNN showing superior discriminative power for high-risk plaques.

Conclusion: This study establishes a fully automated, hybrid framework that

synergizes segmentation and classification to advance stroke risk stratification.

By reducing manual dependency and inter-observer variability, our approach

enhances reproducibility and generalizability across diverse clinical datasets. The

statistically significant ROC-AUC and high accuracy underscore its potential

as an AI-driven diagnostic tool, paving the way for standardized, data-driven

cerebrovascular disease management.

KEYWORDS

carotid plaque classification, MRI, stroke risk assessment, plaque texture analysis, deep
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1 Introduction

Each year, 647,000 Americans die from cardiovascular diseases

(CVD), which account for 17.9million deaths worldwide. Benjamin

et al. (1), which means a loss of one life in every 37s (2). The

main causes of CVD are the development of atherosclerosis and

the production of plaque in the vasculature, including the coronary

and carotid arteries (3). A thrombus is frequently formed as a

result of plaque rupture or plaque ulceration, which can embolize

or occlude the lumen, restricting blood flow and resulting in

myocardial infarction or stroke (4). As the plaque falls off, the

components such as platelets and cellulose formed in the blood

will adhere and accumulate, which in turn creates a thrombus and

causes obstruction of the distal artery. This lead to less blood to the

brain, causing cerebral ischemia and hypoxia disease, that is, bloody

stroke often referred to as cerebral infarction and increase the risk

of stroke (5). Figure 1 gives a visual comparison between a normal

artery and an artery with plaque buildup along with the histological

representation and their respective plaque segmentation using

PTAS.

Public health is seriously affected by stroke. The percentage

of the vessel that is stenotic due to the lumen being obstructed

by atherosclerotic plaque is currently used as one of the clinical

reasons for carotid endarterectomy (CAE) or carotid stenting

(CAS). Patients with recent cerebrovascular symptoms and high-

grade carotid stenosis experience a 17% absolute risk reduction

for stroke over a two-year period in large CEA trials, such

as the North American Symptomatic Carotid Endarterectomy

Trial. As a result, patients can be treated with both preventive

and therapeutic treatments through early planning, detection,

and monitoring of high-risk populations, such as those with

cardiovascular and cerebrovascular disorders. Since the total plaque

area is likewise susceptible to changes in the plaque, doctors can

detect changes in the plaque based on the area of the plaque.

Medical practitioners frequently do carotid plaque segmentation

manually, albeit this takes time, depends on the operator’s clinical

background, and may result in incorrect diagnoses that are risky

for the patient’s life. Magnetic resonance imaging (MRI) remains

the preferred technique for evaluating and monitoring plaques

due to its widespread application in clinical settings (6), alongside

other imaging methods such as computed tomography (CT)

(7) and ultrasound (US) (8). MRI’s ability to deliver superior

soft tissue contrast compared to CT and US, combined with

the potential to integrate multiple contrast-weighted sequences,

provides enhanced diagnostic information (9). Furthermore, MRI

offers key advantages, including its operator-independence and the

absence of ionizing radiation, making it a safer option for repeated

use. Despite these benefits, there is a notable gap in comprehensive

research on MRI-based radiomics specifically targeting carotid

plaque, with current literature limited to exploratory analyses,

such as MRI texture characterization of basilar artery plaques. The

computer-aided framework was used in this study to identify and

categorize carotid artery atherosclerotic plaques. Machines may

be better able to manage linear and non-linear fluctuations in

plaque distribution because of the significant and fuzzy pixels data

obtained from the spatial magnetic resonance imaging; the recent

trend in artificial intelligence (AI) has been used to characterize and

classify plaques (10) using machine learning (ML). Deep learning

technology has recently been used in various applications of life,

including image classification (11), and medical imaging (12). In

particular, radiological imaging has been can be better analyzed

by deep learning (DL) technology (13). The neural network

layers of the DL architecture dynamically adapt the fluctuations

in grayscale contrast and automatically produce down-sampled

representations of the original pattern (14). In the domain of

multiple sclerosis lesion segmentation, Kim et al. (15) employed a

3-layer convolutional encoder network to generate segmentation

predictions that matched the resolution of the original images.

In a different study (16), a segmentation technique utilizing the

Hough transform was proposed for carotid magnetic resonance

imaging; however, the method proved unsuitable for carotid plaque

segmentation due to the artery’s curved structure. Loizou et al.

(17) developed an advanced segmentation framework based on

the snake model for carotid artery images, though its reliance

on manual initialization of the snake can result in inaccurate

outcomes. Another methodology, introduced by Destrempes et al.

(18), used a combination of three Nakagami distributions to

model the echogenicity in carotid magnetic resonance images. This

approach simulated plaques, vascular lumens, and external arterial

walls but required manual segmentation of the initial image frame,

limiting full automation.

Here are the key contributions of this study, highlighting

significant advancements in the classification and segmentation of

carotid plaques for the assessment of stroke risk. The following

points detail the innovative methods and results achieved through

this research.

• Curated and processed 610 high-resolution MRI scans

from Xiangya Hospital, ensuring robust model training

and validation, with expert-annotated ground truth labels

enhancing clinical applicability.

• Adapted and fine-tuned Mask R-CNN specifically for MRI-

based carotid plaque segmentation, incorporating a multi-task

loss function and Dice similarity coefficient to mitigate class

imbalance and improve segmentation robustness.

• Developed a dedicated 13-layer CNN tailored for medical

imaging, effectively capturing intricate plaque characteristics,

while integrating Inception V3 to leverage deep hierarchical

features, achieving state-of-the-art classification accuracy

(86.17% with CNN, 84.21% with Inception V3).

• Designed a fully automated and scalable framework that

reduces dependency on manual assessment, minimizes inter-

observer variability, and enhances stroke risk assessment,

paving the way for AI-assisted diagnostic support in

cerebrovascular disease management.

This study bridges critical gaps in carotid plaque analysis

by introducing a fully automated, hybrid deep learning

framework that synergizes advanced segmentation with

multi-scale classification to optimize stroke risk stratification.

Integrating Mask R-CNN’s instance-aware segmentation

capabilities–trained on expert-annotated MRI scans and

optimized via multi-task loss–with a purpose-built 13-

layer CNN and Inception V3, our approach addresses
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FIGURE 1

Visual representation of plaque formation, histological representation and PTAS segmentation. (a) is the schematic description based on normal

healthy artery, the diseased artery with stable plaque, and with vulnerable plaque (b) is the histological representation of normal stable, and

vulnerable artery and (c) is plaque segmentation using PTAS.

the limitations of manual intervention and inconsistent

feature extraction inherent to conventional methods. Using

automating feature learning while reducing inter-observer

variability, this work establishes a scalable paradigm for AI-

driven cerebrovascular diagnostics, offering a pathway toward

standardized, data-driven stroke risk assessment in diverse

clinical populations.

2 Related work

The analysis of carotid plaques is a critical component of stroke

risk assessment, yet significant challenges remain in achieving

accurate and automated segmentation and classification. Over the

years, various methodologies have been proposed to address these

challenges, ranging from traditional image processing techniques

to advanced deep learning models. This section provides an

in-depth review of the state-of-the-art approaches, emphasizing

recent advancements and identifying gaps that this study aims

to address.

2.1 Early approaches: image processing
and classical machine learning

Early efforts in carotid plaque analysis relied on conventional

image processing techniques and classical machine learning

algorithms. Methods such as thresholding, edge detection, and

region-growing were commonly used for plaque segmentation

(16). These techniques, while straightforward, are highly sensitive

to variations in imaging conditions and often fail to capture

the irregular shapes and fuzzy boundaries of plaques. Another

limitation is their reliance on manual tuning of parameters, which

makes them impractical for large-scale applications.

Classical machine learning approaches, such as Support

Vector Machines (SVM) and Random Forests, have also been

explored. These methods typically involve extracting handcrafted

features, such as texture, intensity, and shape, and using them

to train classifiers. For instance, Destrempes et al. (18) modeled

echogenicity using Nakagami distributions to segment plaques,

lumens, and arterial walls. However, this approach required

manual initialization, limiting its scalability. Similarly, Loizou
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et al. (17) developed a snake model-based framework for carotid

artery segmentation, but its performance was heavily dependent

on operator expertise. While these methods demonstrated some

success, they are inherently limited by their inability to generalize

across diverse datasets and complex plaque morphologies.

2.2 Transition to deep learning:
convolutional neural networks (CNNs)

The advent of deep learning has revolutionized medical

imaging, enabling automated feature extraction and significantly

improving performance. Convolutional Neural Networks (CNNs)

have become the cornerstone of many state-of-the-art solutions for

medical image analysis. Architectures like U-Net (19) and nnU-

Net (20) have been widely adopted for segmentation tasks due

to their ability to capture fine-grained details in medical images.

These models have achieved remarkable success in segmenting

tumors, lesions, and other anatomical structures, demonstrating

their potential for carotid plaque analysis.

Recent studies have also explored the use of Mask R-CNN

(21) for medical image segmentation. Unlike traditional CNNs,

Mask R-CNN extends Faster R-CNN by adding a branch for pixel-

level segmentation, making it suitable for tasks requiring both

object detection and precise boundary delineation. Although Mask

R-CNN has been applied to various medical imaging tasks, its

application to carotid plaque segmentation remains underexplored.

Additionally, pre-trained architectures like Inception V3 (22) and

ResNet (23) have been fine-tuned for classification tasks, leveraging

transfer learning to achieve high accuracy with limited data. These

advancements highlight the growing potential of deep learning

in medical imaging but also underscore the need for specialized

frameworks tailored to carotid plaque analysis.

2.3 Recent advances: radiomics and
multi-modality integration

In recent years, radiomics has emerged as a promising approach

for extracting quantitative features from medical images. By

analyzing texture, shape, and intensity patterns, radiomics-based

methods provide deeper insights into disease characteristics and

progression. For example, Khanna et al. (13) demonstrated the

utility of radiomics in characterizing rheumatoid arthritis using

MRI sequences. While radiomics has shown promise in oncology

and neurology, its application to carotid plaque analysis is still in

its infancy.

Another emerging trend is the integration of multi-modality

data, such as combining MRI with ultrasound or CT scans,

to improve diagnostic accuracy. Recent work by Liu et al.

(6) explored the use of multi-modal imaging for carotid

plaque characterization, achieving better performance than

single-modality approaches. However, these methods often

require complex preprocessing and alignment, making them

computationally expensive and challenging to implement in

clinical settings.

Despite the significant advancements in medical imaging

and deep learning, several critical gaps and challenges persist

in the domain of carotid plaque analysis, which this study

directly addresses. First, most existing research focuses on

other vascular regions, such as the basilar artery, or unrelated

diseases like multiple sclerosis, leaving carotid plaque segmentation

underexplored. This lack of attention to carotid plaques has created

a pressing need for specialized solutions tailored to stroke risk

assessment, which our study fulfills by leveraging a robust dataset

of 610 MRI scans from Xiangya Hospital specifically annotated for

carotid plaques. Second, existing models often struggle with the

irregular shapes and fuzzy boundaries of carotid plaques, leading

to suboptimal segmentation accuracy. To address this, we fine-

tuned Mask R-CNN with a multi-task loss function and Dice

similarity coefficient, achieving a mean DSC of 0.34 and laying

the groundwork for further improvements. Third, few studies

integrate segmentation and classification into a unified pipeline,

resulting in fragmented workflows that hinder clinical adoption.

Our hybrid framework bridges this gap by combining Mask R-

CNN for precise segmentation with a custom CNN and Inception

V3 for classification, streamlining the diagnostic process and

enhancing clinical applicability. Finally, many traditional methods

rely on manual initialization or parameter tuning, limiting their

scalability and practicality in real-world settings. By designing

a fully automated and scalable framework, our study minimizes

human intervention, reduces inter-observer variability, and paves

the way for AI-assisted diagnostic support in cerebrovascular

disease management. Through these contributions, our work not

only addresses the limitations of existing approaches but also sets a

new benchmark for carotid plaque analysis.

3 Materials and methods

In this study, our proposed model consists of two parts: the use

of Plaque Texture Analysis Software (PTAS) for the manual plaque

segmentation protocol to trace the region of interest and then the

Mask R-CNN to perform automatic carotid plaque segmentation.

While in the second part, we used a 13-layer traditional convolution

neural network and Inception V3 for the training and classification

of stable and vulnerable carotid plaque for stroke risk assessment.

Our proposed model is shown in Figure 2.

3.1 Data collection and statistics

The FDA/CFDA-approved magnetic resonance examination

technology named the magnetic resonance plaque analysis system

(MRI-VPD) is used in this study. The data included normal

patients, and susceptible cases were collected from the Xiangya

Hospital of Central South University. We selected the 106 hospital

patients who had risk indicators for atherosclerosis. Given the

inherent complexity of medical images and the stringent accuracy

requirements for their analysis, such tasks are typically carried

out by expert professionals. In this study, we randomly selected a

total of 610 sample images. To ensure an effective evaluation, the
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FIGURE 2

Proposed framework for this study. First, raw magnetic resonance images are processed using the Plaque Texture Analysis to trace the

Region-of-Interest (ROI) and trained Mask R-CNN for automatic plaque segmentation; then, these data are the input for the 13-layered convolution

neural network and Inception V3 for training and classification.

dataset was partitioned into 90% for training and 10% for testing. A

detailed representation of the sample data is provided in Figure 3.

The dataset used in this study consists of MRI images from

106 patients diagnosed with risk indicators for atherosclerosis.

These images represent both vulnerable and stable carotid plaques,

and the data was partitioned into 90% for training and 10% for

testing. The demographic details of the dataset, including patient

age, gender, ethnicity, and risk factors, were carefully considered

to ensure a diverse and representative sample. Several measures,

including random selection, stratified sampling, and balancing

demographic variables, were employed to mitigate potential biases

and improve the generalizability of the model. The full details of the

dataset are shown in Table 1.

3.1.1 Inclusion criteria
Identifying carotid artery stenosis is crucial, as it can be detected

through various imaging techniques such as ultrasound, computed

tomography angiography (CTA), magnetic resonance angiography

(MRA), and other numerical simulations (24), even in the absence

of clinical symptoms. Unlike some other imaging tests, which

may miss significant stenosis or only identify transient ischemic

attacks (TIA) and cerebral infarctions of uncertain origin, magnetic

resonance imaging of the carotid arteries offers detailed insights.

3.1.2 Scanning parameters
A Philips 3.0T MRI scanner with an 8-channel phased array

surface coil, optimized for carotid artery imaging, was employed.

Patients were asked to lie on the scanning table, stay still, avoid

swallowing, and ensure their jaw and neck were centered in the coil.

The imaging protocol began with coronal thin slice T2-weighted

imaging (T2WI) to capture both carotid arteries. These images were

then processed to visualize the arterial structure and identify any

areas of stenosis. Detailed information on the imaging sequence

and parameters is provided below:

• Rapid gradient echo (3D MERGE): this sequence utilized a

3Dmotion-sensitized driven equilibrium preparationwith fast

gradient echo (turbo field echo). The repetition time (TR) and

echo time (TE) were set at 9 ms and 4.2 ms, respectively.

The field of view (FOV) was 25 × 16 × 4 cm3, with a spatial

resolution (SR) of 0.8 × 0.8 × 0.8 mm3 and a flip angle of 6◦.

The imaging duration was 4 minutes.

• 3D simultaneous non-contrast angiography and intra-plaque

hemorrhage (3D SNAP): this sequence employed turbo field

echo with a TR of 10 ms and TE of 4.8 ms. The FOV was 25×

16 × 4 cm3, spatial resolution was 0.8 × 0.8 × 0.8 mm3, and

the flip angles were 11◦ and 5◦. The total imaging time was 5

minutes.

• 3D Time of Flight (TOF): Utilized fast field echo with TR

and TE of 20 ms and 4.9 ms, respectively. The FOV was

16 × 16 × 4 cm3, with a spatial resolution of 0.6 × 0.6 ×

2 mm3 and a flip angle of 20◦. Imaging lasted 6 minutes.

Axial 3D TOF, along with fast spin echo (FSE)-based T1-

weighted imaging (T1WI) and T2-weighted imaging (T2WI),

were conducted in the longitudinal range of 20–24 mm (10–

12 slices), with the stenosis centered and fat suppression
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FIGURE 3

The sample dataset: (a) includes magnetic resonance images of vulnerable carotid plaques, and (b) includes images of stable carotid plaques. In each

case, (i) shows the original magnetic resonance images, while (ii) displays their corresponding enlarged views.

applied. Consistent positioning was maintained for T1WI,

T2WI, and 3D TOF sequences. Images of patients with carotid

plaques were selected for further analysis. Post-processing was

carried out using the MRI-VPD system, and Plaque View

software was used to analyze the properties and components

of carotid plaques. All analysis and measurement steps

were independently performed by three senior radiologists.

Informed consent was obtained from the patients and

their families.

3.2 Plaque segmentation using PTAS

The carotid plaque is classified into two classes, vulnerable

and stable carotid plaque, for the purpose of assessing the risk of

stroke. The plaque segmentation methodology tries to manually

trace the region of interest in the anterior and posterior walls of

the carotid artery. We used “Plaque Texture Analysis Software

(PTAS)” (Iconsoft International Ltd, Greenford, London, UK) to

trace and segment the magnetic resonance images, just like in

earlier studies (25, 26). It has two advantages: first, you can

normalize the images so that the adventitia layer’s median gray-level

intensity is between 180 and 190 (bright intensities), and blood’s

median gray-level intensity is between 0 and 5. Second, the PTAS

delineation approach is user-friendly (25). This implies that after

normalization, the physician can use a mouse to create a brand-

new image of the plaque’s outline and preserve it. The calcified

plaques cast acoustic shadows, but they weren’t taken into account

when defining their boundaries. This made it possible to choose

the plaque’s calcification- and non-calcification-related elements

outside of the acoustic shadow. The complete process is carried out
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TABLE 1 Summary of the dataset used in this study, including details on

patient demographics and bias mitigation strategies.

Category Description

Total number of

patients

106 patients

Total number of

images

610 sample images

Image categories Vulnerable carotid plaques, stable carotid plaques

Training set 90% of images (549 images)

Testing set 10% of images (61 images)

Age range 18–30, 31–50, 51–70, >70

Gender Male, Female

Ethnicity Han, Minority ethnic groups (e.g., Miao, Tujia)

Risk factors Hypertension, hyperlipidemia, diabetes, family history

Inclusion criteria Patients with atherosclerosis risk factors (hypertension,

hyperlipidemia, diabetes, family history)

Exclusion criteria Patients with interventions or conditions that could

interfere with plaque morphology interpretation

Bias mitigation Random selection, stratified sampling by plaque type,

and consideration of demographic diversity

and validated by the domain experts. We trained the Mask R-CNN

network to automatically segment plaque in magnetic resonance

images following the manual segmentation of the pictures.

3.3 Plaque segmentation using Mask
R-CNN

Image segmentation, which is the process of splitting an image

into numerous segments or regions that correspond to various

items or sections of an object, is a common technique that uses

Mask R-CNN. The input for Mask R-CNN is an enhanced image

multiplied by the edge map acquired via HED in order to grasp the

structure. This mask identifies the pixels in the image that belong to

the object, allowing for fine-grained segmentation of the object. We

utilize a current Tensor Flow deep learning implementation that is

open-source (26). We use an efficient method like AdamOptimizer

(27) to solve this problem and improve training. Themulti-task loss

function of the Mask R-CNN, as given in Equation 1, combines the

classification, localization, and segmentation mask losses.

L = Lcls + Lbox + Lmask (1)

Lbox is the bounding box regression loss, Lmask is the mask loss,

and Lcls is the classification loss. To solve the class-imbalance issues,

the Dice coefficient was used. We substituted the Dice coefficient

loss for the binary cross-entropy loss in the Lmask loss modification.

We observed that the validation loss and Dice coefficient loss

converged smoothly. The complete structure of Mask R-CNN is

shown in Figure 4.

3.4 Deep learning architecture

Size and image size are equally reasonable and range from 55

× 43 to 593 × 107 pixels due to our cohort. The 13-layered CNN

design we chose has four convolution layers (CL), four average

pooling layers (APL), two dense layers, and one dropout layer, as

illustrated in Figure 5.

We optimized the model by modifying hyperparameters

including layer types, dropout rates, momentum, and learning

rates. The softmax layer, which is the final layer of the network,

computes the categorical cross-entropy loss function (E) between

the symptomatic and asymptomatic patient groups, as described in

Equation 2.

E = −
[

y ∗ log(p)+ (1− y) ∗ log(1− p)
]

(2)

In Equation 2, y is the binary indicator for the observed class,

and p is the predicted probability of the plaque belonging to

a specific class, calculated using deep learning. The product is

denoted by ∗. Equation 3 shows the number of output features from

the average pooling feature mappings (APFM), whereas Equation 4

shows the number of output features from the convolution

procedure (28).

nout =

⌊

nin + (2 ∗ p)−M

S

⌋

+ 1 (3)

aout =

(

w− f

s

)

+ 1 (4)

The symbols used in Equations 3, 4 represent key parameters

in the convolutional and pooling operations. The variables nin
and nout denote the number of input and output feature maps,

respectively. The parameter w corresponds to the width of the

input feature map, while f represents the kernel size used in

convolution operations. The convolution kernel size is denoted by

M, and the padding size is given by P. The stride, represented

by S, determines the step size of the kernel movement during the

convolution process. These parameters collectively influence the

feature extraction process and define the spatial dimensions of the

transformed feature maps in deep learning models.

In each convolutional layer (CL), nin and nout specify the

numbers of input and output features, respectively. Table 2 details

the layers’ names, feature map sizes, and training parameters in

three distinct columns. The parameters include nout (number of

output features), w (width of the input feature map), f (kernel size),

M (convolution kernel size), P (convolution padding size), and S

(stride size, which indicates kernel movement).

To integrate our data into a CNN model, we replicate the

first convolutional layer four times and connect each copy to the

respective data layers. These four convolutional layers are then

combined through a sum-up layer, which merges multiple feature

maps of identical size into a single feature map. This combined

feature map is subsequently linked to the remainder of the network.

Figure 6 illustrates the modifications made to the input section of

the network
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FIGURE 4

Architecture of mask R-CNN used in this study.

FIGURE 5

The five CL, five APL, two DenL, and one fattened layer comprise the conceptual view of the deep learning architecture. The missing three CL and

three APL layers are represented by the dashed line in the middle.

3.5 Inception V3

The primary goal of Inception v3, which improves upon

earlier designs, is to reduce computational resource usage (22).

Inception Networks are more computationally efficient than VGG-

16 networks in terms of the number of parameters and the

computational effort required. This is achieved by decomposing

larger two-dimensional convolutions into smaller one-dimensional

convolutions. For example, a 7 × 7 convolution is split into

a 1 × 7 convolution and a 7 × 1 convolution, and a 3 × 3

convolution is divided into a 1 × 3 convolution and a 3 × 1

convolution. This method significantly reduces the number of

parameters, minimizes memory overhead, and enhances network

performance. After filtering and denoising, the data is forwarded

to the designated network for training. The network structure is

illustrated in Figure 7.

Inception v3, as shown in Equation 5, is a deep convolutional

neural network model with 48 layers, pre-trained on over one

million images from the ImageNet dataset.

The symbols in Equation 5 represent key components of the

matrix multiplication operation used in feature extraction. The

matrix AX represents the transformed feature map, while A and

B denote input matrices of dimensions M × N. Each element

Ai,j and Bi,j corresponds to specific feature values extracted from

the input image. The summation terms iterate over the indices i

and j to compute the final feature representation, capturing spatial

dependencies in convolutional layers.

AX =







A1,1 · · · A1,N

A21 · · · A2N

AM1 · · · AMN






∗







B1,1 · · · B1N
B21 · · · B2N
BM1 · · · BMN







=

M−1
∑

i=0

N−1
∑

j=0

A(M−1),(N−j)B(i+1),(j+1) (5)

The complete model architecture and hyper parameter details

are shown in Table 3.
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3.6 Evaluation metrics

The Receiver Operating Characteristic (ROC) curve (29) is

utilized to compare the effectiveness of two or more diagnostic

TABLE 2 Details of hyperparameters used in the CNN Model for our

dataset.

Sn Name of the layer C2 feature
map size

C3
trainable
parameter

R1 2D convolution layer-1 (240, 240, 256) 7,168

R2 2D average pooling layer-1 (120, 120, 256) 0

R3 2D convolution layer-2 (120, 120, 128) 295,040

R4 2D average pooling layer-2 (60, 60, 128) 0

R5 2D convolution layer-3 (60, 60, 64) 73,792

R6 2D average pooling layer-3 (30, 30, 64) 0

R7 2D convolution layer-4 (30, 30, 32) 18,464

R8 2D average pooling layer-4 (15, 15, 32) 0

R9 2D convolution layer-5 (15, 15, 16) 4,624

R10 2D average pooling layer-5 (7, 7, 16) 0

R11 1D flatten 784 0

R12 1D dense-1 128 100,480

R13 Dropout layer 128 0

R14 1D Dense-2 2 258

R15 Total trainable parameters 499,826

FIGURE 6

Modified CNN Input Layers in our proposed architecture.

methods, providing a comprehensive assessment of a test’s

diagnostic accuracy. The ROC-AUC, also referred to as the Area

Under the Curve (AUC), is explained in Equation 6.

P(x1 > x0) = P(x1 − x0 > 0) (6)

In this context, x1 and x0 are continuous random variables

representing the “scores” assigned by our binary classifier to

randomly selected positive and negative samples, respectively. The

ROC curve shows the trade-off between sensitivity (True Positive

Rate, TPR) and specificity (False Positive Rate, FPR), as given

by Equations 7, 8. These metrics are essential for evaluating the

classifier’s performance in distinguishing between the two classes.

TPR =
TP

p
(7)

FPR =
FP

N
(8)

Based on the convolution theorem, with the assumption of

convergence (30), the expression for ROC-AUC is formulated and

presented in Equation 9.

P(x1 > x0) = P(x1 > x0) > 0 =

∫

+∞

0

∫

+∞

−∞

f1(u)Xf0(u− v) du dv

(9)

TABLE 3 Hyper parameters details used in the Inception V3 model

according to our dataset.

Layer (type) Output shape Param

inception_v3 (Model) (None, 8, 8, 2,048) 21,802,784

flatten_1 (Flatten) (None, 131,072) 0

activation_95 (Activation) (None, 131,072) 0

dropout_1 (Dropout) (None, 131,072) 0

dense_1 (Dense) (None, 1024) 134,218,752

activation_96 (Activation) (None, 1,024) 0

dropout_2 (Dropout) (None, 1,024) 0

dense_2 (Dense) (None, 28) 28,700

activation_97 (Activation) (None, 2) 0

FIGURE 7

Schematic diagram of Inception V3 network structure.
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Let x1 and x0 represent continuous random variables that

correspond to the “scores” assigned by the binary classifier to

randomly selected positive and negative samples, respectively.

Moreover, we also used a confusion matrix to evaluate our

model’s performance. Each column of the matrix represents a

class instance prediction, while each row represents an actual class

instance. It is so named because this matrix can analyze whether the

machine has confused two classes (28). There is a list of rates that

are often computed from a confusion matrix for a binary classifier

which are described below (31): Equation 10 depiction of recall

explains how many of the positive groups we properly predicted.

Recall =
TP

TP + FN
(10)

Equation 11 presents the formula for precision, whichmeasures

the accuracy of positive predictions made by the model. Precision

is defined as the ratio of true positives to the total number of

predicted positives.

Precision =
TP

TP + FP
(11)

Accuracy is a metric for evaluation of classification models

which shows the fraction of predictions and the accuracy is

calculated using the formula shown in Equation 12.

Accuracy =
TP

TP + TN
(12)

4 Experimental results

In this research work, we used PTAS to trace the ROI (the

plaque in the carotid arteries) from the magnetic resonance images

and then trained Mask R-CNN for automatic segmentation of

plaque frommagnetic resonance images. We used 13-layered CNN

and Inception V3 for the image classification. The model was

trained on a hardware setup featuring an Intel Core i7 processor

and a Tesla K40 C graphics card. The training was conducted using

a Python 3.6 environment with TensorFlow on an Ubuntu 16.04

LTS system. The learning rate was manually configured to 10−3,

and the weights were initialized to zero.

4.1 Experimental results for plaque
segmentation

To assess the model’s performance in segmenting plaques

in new images, we calculated four evaluation metrics: the Dice

similarity score (DSC) of (0.736± 0.10), the intersection over union

(IoU) of (0.583 ± 0.12), and Cohen’s Kappa coefficient of (0.728 ±

0.10). The threshold that yielded the highest mean DSC and IoU

values was found to be 0.34. The mean and standard deviation for

each evaluation metric are detailed in Table 4.

We assess the effectiveness of ourMask R-CNNmodel using the

actual clinical patient data set to determine the method’s capacity

for segmentation. The testing employs the same evaluation criteria

and does not require any fine-tuning. We randomly selected three

TABLE 4 Evaluation metrics of the plaque segmentation.

Evaluation metrics Average (±std)

DSC 0.736± 0.10

IoU 0.583± 0.12

KI 0.728± 0.10

patients from each class, their magnetic resonance is fed to the

model, and their corresponding segmentation images using PTAS

and Mask R-CNN for both categories are shown in Figure 8. It

provides detailed visual results of our proposed approach for better

interpretation. Our approach achieves a much better segmentation

performance in contrast to manual segmentation. In Figure 8 blue

area is the carotid artery wall, the yellow area is stable carotid

plaque, and the red area is vulnerable plaque. Different degrees

of red and yellow determine the vulnerability or stability of

plaque, respectively.

Whereby Figure 8a is the stable plaque (the blue area is

the carotid artery wall, and the yellow area is stable carotid

plaque), and Figure 8b represents the images for vulnerable

carotid plaque (the blue area is the carotid artery wall,

and the red area is vulnerable plaque). In comparison, the

first column represents in original magnetic resonance images,

while second column are the segmented images using PTAS

and third column are the images segmented by using the

Mask R-CNN.

4.2 Experimental results for plaque
classification

As demonstrated previously in Figure 5, we used a 13-layered

CNN to build the DL architecture, with the final layer serving

as the softmax layer. For the purpose of assessing the risk of

stroke, the output layer gives us a binary assessment showing

that the estimated risk belongs to either the vulnerable or stable

carotid plaque. The K10 protocol, which uses 13-layered CNN

and MEDCALC 17.0, has the best accuracy and AUC, 88.38%

and 0.87 (p-value 0.0001), respectively. According to our dataset,

Figure 9a displays the training accuracy and loss using a 13-

layered CNN. Similarly, by using Inception v3, we achieved

84.21% accuracy in categorizing carotid plaque into two classes as

shown Figure 10a shows the training accuracy and loss by using

Inception V3.

In the ROC curve, an AUC value close to 1 indicates that

the classifier is highly effective at differentiating between positive

and negative class points (32). As shown in Figure 9b, the AUC

scores for class 0 and class 1 are 0.87 and 0.85, respectively. In

comparison, Figure 10b displays AUC values of 0.79 for class 0

and 0.76 for class 1, which are lower than those achieved by the

13-layer CNN. Thus, the 13-layer CNN demonstrated superior

performance in classifying magnetic imaging modalities for stroke

risk assessment.

The most popular method for representing experimentally

acquired statistical data visually is confusion matrices,
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FIGURE 8

Segmented visualization results using PTAS and Mask R-CNN for two categories: (a) stable carotid plaque and (b) vulnerable carotid plaque. In the

visualizations, the blue region indicates the carotid artery wall, the yellow region represents stable carotid plaque, and the red region denotes

vulnerable plaque.
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FIGURE 9

Performance measure using 13-layered CNN according to our dataset. Whereby (a, b) represent the training accuracy and loss and ROC curves

respectively.

FIGURE 10

Performance measure using Inception V3 according to our dataset. Whereby (a, b) represent the training accuracy and loss and ROC curves

respectively.

which are also used to solve classification problems in

deep learning and machine learning methods. Figure 11a

shows how well the 13-layered CNN model performed,

while Figure 11b shows how well the Inception V3 classified

magnetic resonance images into a susceptible and stable carotid

plaque for the assessment of stroke risk level using the 22

confusion matrix.

The 13-layered CNN model classifies 88.69% of the data

as True Positive (TP), which indicates that 88.69% falls into

this class, as shown in Figure 11a. The 13-layered CNN model

incorrectly predicted the positivity of 11.31% of the data,

the negativity of 10.57% of the data, and the negativity of

89.43% of the data, which were both negative. Similar to

Figure 11b, Inception V3 assigns 82.98% of the data to the

True Positive (TP) classification, indicating that 82.98% falls

under this category. The Inception V3 incorrectly forecasted

17.11% of the data as positive, 14.57% as negative, and 85.53%

as negative of the genuinely negative data; only 14.57% were

also predicted to be negative. We calculate each combination’s

real-time accuracy at the end of the 500th step value to

better understand the model performance. We also contrasted

the performance of our suggested 13-layered CNN model with

that of earlier studies that used the same plaque data (33,

34). The comparative accuracy of previous studies with our

proposed approach are displayed in Figure 12 using the K10 cross-

validation process.

4.3 Comparison with other methods

Our proposed method facilitates the early detection of plaques,

with magnetic resonance imaging (MRI) proving more effective

than ultrasound for assessing plaque composition and mobility.

Integrating both imaging techniques enhances the diagnosis

and stability evaluation of carotid atherosclerotic plaques. This

approach is crucial for guiding clinical treatment strategies and
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FIGURE 11

Confusion matrix representation of the performance of the (a) 13-layered CNN model and (b) Inception V3.

FIGURE 12

Performance comparison of our proposed 13-layered CNN system with the prior studies using the combination of K10 protocols for identical plaque

data.

offers a non-invasive, reliable evaluation method for clinical drug

interventions. Additionally, we have compared the performance

of our proposed framework with recent state-of-the-art methods

published in 2024, 2023, and 2022, as detailed in Table 5.

4.4 Ablation analysis

To evaluate the contributions of various model components,

we conducted a series of ablation studies to assess the impact

of different architectures, loss functions, and learning rate

configurations on the overall performance of plaque segmentation

and classification. The details are shown in Table 6.

The baseline model, which utilizes a 13-layered CNN with

Cross-Entropy Loss and a learning rate of 10−3, achieved an

accuracy of 88.38% and an AUC of 0.87. We then explored

alternative configurations: Variant 1, which replaced the 13-layered

CNN with Inception V3, achieved a slightly lower accuracy of

84.21% and AUC of 0.79, indicating that the 13-layered CNN

outperforms Inception V3 for this task. In Variant 2, where Dice

TABLE 5 Comparative accuracy of the proposed approach with previous

studies.

Reference
Study

Approach Accuracy

Jamthikar et al. (35) Deep learning models 83.98%

Zhang et al. (36) Deep learning models 80.6%

Li et al. (37) Two-stage neural network for

multi-Weighted MRI

78.0%

Zhou et al. (38) Image reconstruction-based

self-supervised learning

(ultrasound)

84.2%

Jain et al. (39) Deep learning for carotid artery

plaque segmentation

85.3%

Our proposed

framework

Pre-trained Models (Mask

R-CNN + CNN + Inception V3)

86.17%

Loss was applied instead of Cross-Entropy Loss, we observed a

slight decrease in performance (accuracy: 87.12%, AUC: 0.84),
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TABLE 6 Ablation study results for plaque segmentation and classification.

Model variant Architecture Loss function Learning rate Accuracy (%) AUC

Baseline model 13-layered CNN Cross-entropy loss 10−3 88.38 0.87

Variant 1 Inception V3 Cross-entropy loss 10−3 84.21 0.79

Variant 2 13-layered CNN Dice loss 10−3 87.12 0.84

Variant 3 13-layered CNN Focal loss 10−3 88.04 0.85

Variant 4 Mask R-CNN Cross-entropy loss 10−3 85.26 0.82

Variant 5 13-layered CNN Cross-entropy loss 10−4 86.45 0.83

Variant 6 13-layered CNN + Inception V3 (Ensemble) Cross-entropy loss 10−3 89.15 0.89

suggesting that while Dice Loss is effective for segmentation

tasks, it is not optimal for classification in this context. Variant

3, using Focal Loss, resulted in improved classification accuracy

(88.04%, AUC: 0.85), demonstrating that this loss function can

help improve the model’s focus on harder-to-classify examples.

We also evaluated the Mask R-CNN architecture (Variant 4),

which led to a lower performance (accuracy: 85.26%, AUC:

0.82), highlighting that segmentation-specific models may not

always translate into better classification outcomes. In Variant

5, we reduced the learning rate to 10−4, which resulted in

a slight drop in performance (accuracy: 86.45%, AUC: 0.83),

suggesting that the learning rate plays a significant role in model

convergence. Finally, Variant 6, which combined 13-layered CNN

and Inception V3 in an ensemble approach, achieved the highest

performance with an accuracy of 89.15% and an AUC of 0.89,

demonstrating the benefits of integrating multiple architectures

for improved classification. These results collectively highlight the

importance of model selection, loss function, and hyperparameter

tuning in optimizing performance for plaque detection and

risk assessment.

5 Discussion

Carotid plaques frequently have been found in patients who

suffer from a stroke. Since medical therapy advancements over

the past 20 years have decreased the risk of stroke, there is

growing interest in finding markers of plaque vulnerability to help

identify high-risk individuals. However, drawing firm conclusions

on the utility of magnetic resonance imaging carotid plaque

characterization is difficult because magnetic resonance images of

plaque composition are a relatively new method, and individual

studies have often been small. In this study, magnetic resonance

imaging approaches with the ability to forecast stroke risk due to

carotid atherosclerosis were reported. The methods were arranged

in descending order, from those that could be used in clinical

settings to those that required the most technological advancement.

In this study, we manually segmented the plaque in the carotid

arteries using Plaque Texture Analysis Software (PTAS) and

automatically segmented the plaque in magnetic resonance images

usingMask R-CNN, both of which produced statistically significant

results. In addition, we used a 13-layer traditional convolution

neural network and Inception V3 to identify high-risk carotid

plaque for stroke risk assessment using magnetic resonance images

by categorizing carotid plaque into two classes, vulnerable and

stable carotid plaque for stroke risk assessment.

6 Conclusion

Our study finds that the 13-layer CNN approach stands out

as the most effective method for assessing carotid risk. This

framework includes two main components: first, automatically

segmenting plaque regions from magnetic resonance images, and

second, classifying these images into two categories to evaluate

stroke risk based on carotid plaque. The 13-layer CNN model we

trained achieved an impressive accuracy of 86.17% in classifying

magnetic images. We assessed its performance using accuracy and

loss graphs, as well as AUC curves, and found that it significantly

outperformed previous methods in categorizing carotid plaques

for stroke risk assessment. Moreover, we compared our model

with earlier studies that used the same plaque data. Our approach

addresses potential issues with image quality and individual

interpretation, ensuring more reliable diagnoses. The results

demonstrate that our method is highly effective for classifying

magnetic imaging data to assess stroke risk. Looking ahead,

incorporating extreme learning techniques might offer even more

advanced solutions for plaque classification.
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