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Deoxyribonucleic acid (DNA) serves as fundamental genetic blueprint that

governs development, functioning, growth, and reproduction of all living

organisms. DNA can be altered through germline and somatic mutations.

Germline mutations underlie hereditary conditions, while somatic mutations can

be induced by various factors including environmental influences, chemicals,

lifestyle choices, and errors in DNA replication and repair mechanisms which

can lead to cancer. DNA sequence analysis plays a pivotal role in uncovering

the intricate information embedded within an organism’s genetic blueprint and

understanding the factors that canmodify it. This analysis helps in early detection

of genetic diseases and the design of targeted therapies. Traditional wet-lab

experimental DNA sequence analysis through traditional wet-lab experimental

methods is costly, time-consuming, and prone to errors. To accelerate large-

scale DNA sequence analysis, researchers are developing AI applications that

complement wet-lab experimental methods. These AI approaches can help

generate hypotheses, prioritize experiments, and interpret results by identifying

patterns in large genomic datasets. E�ective integration of AI methods with

experimental validation requires scientists to understand both fields. Considering

the need of a comprehensive literature that bridges the gap between both

fields, contributions of this paper are manifold: It presents diverse range of DNA

sequence analysis tasks and AI methodologies. It equips AI researchers with

essential biological knowledge of 44 distinct DNA sequence analysis tasks and

aligns these tasks with 3 distinct AI-paradigms, namely, classification, regression,

and clustering. It streamlines the integration of AI into DNA sequence analysis

tasks by consolidating information of 36 diverse biological databases that

can be used to develop benchmark datasets for 44 di�erent DNA sequence

analysis tasks. To ensure performance comparisons between new and existing AI

predictors, it provides insights into 140 benchmark datasets related to 44 distinct

DNA sequence analysis tasks. It presents word embeddings and languagemodels

applications across 44 distinct DNA sequence analysis tasks. It streamlines the

development of new predictors by providing a comprehensive survey of 39 word

embeddings and 67 language models based predictive pipeline performance

values as well as top performing traditional sequence encoding-based predictors

and their performances across 44 DNA sequence analysis tasks.
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1 Introduction

Deoxyribonucleic acid (DNA) functions as the blueprint of
life as it contains essential instructions for the development,
operation, growth, and reproduction of all living organisms (1).
Organisms utilize cell division process to grow from fertilized egg
to a multicellular adult. Throughout an organism’s lifespan, the
health of tissues and organs is maintained through a continuous
cycle of cell replacement. In this cycle, worn-out or damaged
cells are systematically replaced with new, healthy cells. When a
cell divides, each new cell requires an exact copy of the DNA to
function correctly (1). DNA replication and repair processes ensure
that each daughter cell receives the same genetic information as
the parent cell, which is essential for the survival and proper
functioning of all living organisms (2). DNA sequence changes
occur through two fundamental mechanisms: germline mutations
inherited from parents and somatic mutations acquired during
an individual’s lifetime (3). Germline mutations are present in
all cells and can be passed to offspring, underlying hereditary
conditions. Somatic mutations occur post-conception and can
be caused by various factors including internal factors such as
cellular metabolites, replication errors, and spontaneous chemical
changes and external factors such as ionizing radiation, chemical
mutagens, environmental pollutants, and lifestyle factors (3,
4). Understanding these distinct mutation types is crucial as
they require different analytical approaches. Germline mutation
analysis typically involves comparing an individual’s sequence
to population databases, while somatic mutation analysis often
requires comparing affected tissue to unaffected tissue from
the same individual. Regardless of type, mutations in genetic
information can lead to complex diseases and disorders such as
cancer (1). To detect susceptibility, initiation, and progression of
such diseases at early stages, scientists perform large-scale DNA
sequence analysis (5). Through DNA sequence analysis, scientists
can decode the intricate genetic data by uncovering the origins
of genetic mutations and disorders (6). In addition, this analysis
is crucial for the development of targeted therapies and the
advancement of personalized medicine (1).

DNA sequence analysis through traditional wet-lab
experiments is expensive and time-consuming (7, 8). This is
because wet-lab experiments require specialized equipment, e.g.,
PCR machines, and costly reagents (e.g., enzymes and chemicals).
Detailed experiments on multiple patient samples may take weeks
or even months. Moreover, experimentation requires careful
execution and validation to prevent incorrect interpretations of
genetic mutations due to errors or inconsistencies. The influx of
next-generation sequencing and high-throughput approaches has
given rise to huge sequences data. This abundance of genomic
information has created both opportunities and challenges for
comprehensive analysis. To expedite genomics sequence analysis,
researchers are analyzing publicly available sequences data by
harnessing the capabilities of Artificial Intelligence (AI) methods.
It is important to mention that AI approaches serve to augment
rather than replace experimental methods in DNA sequence
analysis. For example, in precision medicine, AI models trained on
large genomic databases can help to interpret patient-specific data
by identifying relevant patterns and potential functional impacts.

However, patient-specific experimental data remain essential,
particularly for understanding unique aspects of individual
cases such as tumor mutations. Thus, AI methods provide a
valuable tool for generating hypotheses and guiding experimental
design while working in concert with traditional molecular
biology approaches.

While DNA sequence analysis encompasses a broad range
of computational approaches in bioinformatics, from genome
assembly and variant detection to evolutionary analysis and
microbiome studies, this review focuses specifically on DNA
sequence analysis tasks that involve pattern recognition and
prediction, where artificial intelligence approaches can be
effectively applied. These tasks include predicting functional
elements, identifying regulatory regions, and classifying
sequence types applications where AI can learn complex
sequence patterns that may not be apparent through traditional
computational methods.

Most of the AI-based genomics sequence analysis methods
fall under the hood of regression and classification paradigms (9–
11). Figure 1 illustrates a unified workflow of AI-based predictive
pipelines for genomics sequence analysis tasks. It is evident in the
Figure that, overall, AI predictive pipelines can be divided into 4

different stages (12). First stage emphasizes on the collection and
development of quality benchmark datasets using public databases
(13). Second stage focuses on the characterization of raw DNA
sequences in terms of statistical vectors using different kinds of
sequence encoders (14–16). This is primarily done to address
the inherent dependency of AI predictive pipelines on statistical
vectors (17–19). In entire predictive pipeline, this stage is the
most crucial one because highly informative and discriminative
statistical vectors help the predictors to learn comprehensive useful
patterns for accurate prediction (14–16). It is widely accepted
that with quality statistical vectors, even simple machine learning
predictors can produce promising performance. On contrary,
with less informative and discriminative statistical representations,
even sophisticated deep learning predictors fail to produce decent
performance (17–19).

There is a marathon of developing powerful sequence encoders
for generating highly informative and discriminative statistical
vectors of raw sequences. To date, hundreds of sequence
encoding methods have been developed (12) that can be broadly
classified into four categories: Physico-chemical properties based
methods, statistical methods (12, 20), neural word embedding
methods (21), and language models (22). While physico-chemical
properties based methods generate statistical vectors of raw
sequences using pre-computed physical and chemical values of
nucleotides, statistical methods rely on occurrence frequencies
of individual or group of nucleotides with DNA sequences
(12). Physico-chemical properties based and statistical methods
capture the intrinsic characteristics of biological sequences,
such as nucleotide composition and distributional information.
However, these methods lack to capture complex relationships
of nucleotides such as long range interactions of nucleotides
in the sequences (12, 23). In addition, these methods may not
fully capture the semantic and functional similarities between
sequences (12, 23). Neural word embedding methods learn
distributed representations of nucleotides in the continuous
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FIGURE 1

Predictive pipeline of DNA sequence analysis tasks.

vector space. These methods capture the syntactic and semantic
similarities of nucleotides by mapping them to vectors in a high-
dimensional space. This enables the representation of residues
with similar contexts to be closer together in the vector space.
Neural word embeddings methods efficiently capture semantic and
contextual information of nucleotides. However, these methods

lack to efficiently handle different contexts of same nucleotides
(21). Language models also learn representation of individual
nucleotides or groups of nucleotides (k-mers) in an unsupervised
fashion by predicting masked nucleotides based on the context of
surrounding nucleotides. Language models based methods capture
complex nucleotide relations; however, these methods require
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large amount of sequence data for training and hyperparameter
optimization (22).

Third stage includes predictors that make best use of statistical
vectors produced by second stage to extract informative patterns
for creating decision boundaries. Overall, these predictors can
be classified into two categories: machine learning and deep
learning (12). Machine learning predictors require less data and
computational power for training. However, these predictors lack
to capture comprehensive complex relationships of nucleotide (12),
whereas deep learning predictors (24) are capable to learn highly
complex relationships of nucleotide. However, these predictors
require a huge amount of training data and computational power
(12). In fourth stage, comprehensive evaluation of predictors
using different experimental settings and evaluation measures is
performed (24).

AI researchers have been endeavoring to complement wet-
lab-based DNA sequence analysis methods by incorporating more
innovative sequence encoders at second stage and predictors
at third stage of predictive pipeline. However, there is still
ample room for the development of more powerful predictive
pipelines. Different fields such as Natural Language Processing
(NLP), Energy, and Computer Vision have seen substantial
progress in the development of diverse predictive pipelines.
Whereas, the DNA sequence analysis field is known for its
wide range of tasks, still the progress of AI applications in
this area is hindered mainly due to the lack of integration
between molecular biologist and AI experts. For instance, the
field of NLP has made strides with multi-task learning predictors.
However, the DNA sequence analysis field lags behind due
to AI experts limited understanding of the diverse range of
DNA analysis tasks that could support the development of
multi-task learning predictors. Furthermore, the efficacy of AI
applications hinges on the availability of benchmark datasets.
Although developing datasets in DNA sequence analysis is
relatively straightforward due to abundance of public databases
which contain raw biological sequences along with associated
labels, there is a tendency among researchers to overlook existing
benchmark datasets, develop new benchmark datasets, and neglect
comprehensive performance comparisons with existing predictors.
This oversight often complicates the determination of the most
effective predictors for specific tasks. For example, up to date,
according to our best of knowledge, approximately 127 predictive
models have been developed and published in 59 different
conferences and journals for widely studied 44 different DNA
sequence analysis tasks. To enhance the performance of predictive
models developed for diverse DNA sequence analysis tasks,
researchers need to conduct a comprehensive examination of
existing literature to find most effective algorithms for different
stages of new predictive pipelines. With an aim to expedite
progress in the development of fair and robust AI applications
for DNA sequence analysis, numerous review articles have
emerged. However, these reviews typically focus on isolated
tasks rather than providing a holistic overview. Considering the
need and significance of a comprehensive study that bridges
the gap between AI specialists and biologists, this paper makes
manifold contributions:

• It bridges the gap between DNA sequence analysis and
artificial intelligence fields by presenting a diverse range of
DNA analysis tasks and AI methodologies.

• It empowers AI researchers by equipping them with essential
biological knowledge related to 44 distinct DNA sequence
analysis tasks. It categorizes 44 different DNA sequence
analysis tasks into 8 different categories on the basis of
sequence analysis goals. This categorization provides a
structured overview to biologists and AI researchers in
navigating the complex landscape of genomics studies more
efficiently.

• It streamlines the integration of AI into DNA sequence
analysis by consolidating information of 36 diverse biological
databases being used to develop benchmark datasets for 44
different DNA sequence analysis tasks.

• It sheds light on the nature of 44 different DNA sequence
analysis tasks and categorizes them into three primary
categories: regression, classification, and clustering, and
three secondary categories: binary classification, multi-
class classification, and multi-label classification. This
categorization assists computer scientists in efficient
selection of most suitable algorithms for each task category,
development of more effective and specialized computational
frameworks, and to significantly accelerate advancements in
AI-driven genomic research.

• It provides insights of 140 benchmark datasets related to 44
distinct DNA sequence analysis tasks to ensure performance
comparisons between new and existing AI predictors.

• It presents word embeddings and language models
applications for 44 distinct DNA sequence analysis tasks.

• It streamlines the development of new predictors by providing
a comprehensive survey of current top predictors, their
performances across 44 DNA sequence analysis tasks, and
their public accessibility. This comprehensive overview serves
as a valuable resource for researchers developing and
validating predictive pipelines in computational genomics.

It is important to note that our categorization of 44 DNA
sequence analysis tasks emerges from the AI and computational
biology literature rather than representing a definitive biological
taxonomy. We have organized these tasks into biologically relevant
groupings based on their functional and analytical similarities,
while recognizing that many tasks span multiple biological
domains. This organization aims to bridge the gap between
computationalmethodologies and biological applications, although
we acknowledge that future refinements with deeper domain expert
input would further enhance this framework.

2 Research methodology

This section provides a detailed overview of the research
methodology used to identify articles focused on word embeddings
and large language models applications in DNA sequence analysis
landscape (10, 11). Figure 2 illustrates two stage processes for article
identification and selection.
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FIGURE 2

Research methodology.

2.1 Article searching

To identify a wide range of relevant scholarly articles, initial
stage involves formulation of quality search queries using different

keywords. In Figure 2, article identification module contains
keywords cell of three different categories, namely, DNA tasks,
word embedding methods, and Language models. To formulate
quality search queries, keywords within same category are
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combined using OR ∨ operator, while keywords of different
categories are combined using AND ∧ operator. For instance,
few sample search queries include DNA Replication Origins
Identification using BERT language model, DNA Replication
Origins Identification using DeepWalk word embedding method,
etc. To acquire relevant papers, formulated search queries are
executed on academic search engines such as Google Scholar,1

ACM Digital Library,2 Elsevier,3 IEEEXplore,4 Wiley Online
Library,5 Springer,6 and ScienceDirect.7 In addition, snowballing
method is employed to explore sources referenced in extracted
papers to identify more research articles. This technique is
particularly useful in research contexts where access to resources
is limited, such as niche topics or hard-to-reach communities, as
it expands the pool of resources for a study. Execution of queries
across multiple academic databases acquired approximately
238 research articles which are screened and filtered in
second stage.

2.2 Article screening and filtering

Second stage selects most relevant articles in two steps. In the
first step, titles and abstracts of 113 word embeddings and 125
large language models related studies were reviewed. This review
analysis identified 80 word embeddings and 104 language models
related relevant articles. Second step involves full-text assessment
of articles selected in first step, resulting in 39 word embeddings
and 67 language models related articles.

Our selection criteria focused on DNA sequence analysis tasks
where (1) rawDNA sequence data serve as the primary input, (2) AI
methods extract patterns from these sequences, and (3) the analysis
predicts specific biological properties or functions. This allowed us
to examine AI’s impact on genomic sequence interpretation while
acknowledging that bioinformatics encompasses many other types
of analyses not covered here.

3 Biological foundations of DNA
sequence analysis goals and tasks

With an aim to find molecular basis of diseases initiation
and progression, their effective detection at early stages, and
development of potent drugs, researchers are trying to understand
DNA sequence language by performing a variety of sequence
analysis tasks. Every unique DNA sequence analysis task aims
to enhance the understanding of one specific aspect of DNA,
and a bunch of tasks can enhance the understanding of specific
major biological goal. To summarize the biological background

1 https://scholar.google.com/

2 https://dl.acm.org/

3 https://www.elsevier.com/

4 https://ieeexplore.ieee.org/

5 https://www.wiley.com/en-us

6 https://www.springer.com/gp

7 https://www.sciencedirect.com/

of 44 distinct DNA sequence analysis tasks, we have categorized
them into 8 major biological goals. Figure 3 depicts the biological
categorization of 44 unique DNA sequences analysis tasks into
8 different goals, namely, genome structure and stability, gene
expression regulation, gene analysis, gene network analysis, DNA
modification prediction, DNA functional analysis, environmental
and microbial genomics, and disease analysis. This biologically
informed organization was developed by analyzing both the
computational biology literature and aligning with biological
processes in genomics research. While computational researchers
often approach these tasks through the lens of AI methodologies,
we have endeavored to categorize them according to their biological
relevance and function. Our categorization into 8 major biological
goals represents an attempt to bridge computational approaches
with biological understanding. Although we recognize the inherent
complexity and interconnectedness of biological systems which
indicates that many tasks could reasonably be classified in
multiple categories, thus, this categorization represents one of
several possible ways to organize these tasks. This categorization
reflects the diverse biological applications where AI-based sequence
analysis has made significant contributions. However, we recognize
that DNA sequence analysis in bioinformatics extends beyond
these pattern recognition tasks to include other critical applications
such as genome assembly, variant detection, and population
genetics studies. We specifically examine how modern AI
approaches are transforming our ability to extract meaningful
biological insights from sequence data through pattern-based
prediction tasks.

In living organisms, DNA is packaged at multiple levels to
condense vast genetic information into a well-organized structure
within the cell nucleus (1). At the first level, DNA is wrapped
around histone octamers also known as nucleosomes. These
nucleosomes further assemble into chromatin, which then folds
and condenses into an even more compact structure known
as the genome (1). The exploration of genome structure and
stability is pivotal in understanding the biological intricacies
and potential therapeutic avenues. Genome structure can affect
how genes are accessed and used. Disruptions in this structure,
such as missing or misplaced DNA sections, or changes in how
tightly DNA is wrapped around histone octamers, or irregularities
in nucleosomes positions can lead to genes being turned on
or off at the wrong times or in the wrong amounts (1).
This can cause various diseases and biological disorders. DNA
is an instruction manual that controls biological functioning
within living organisms. If genome gets unstable, the manual
gets messed up such as typos and missing sections. It can
lead to uncontrolled growth of the cells (cancer) and improper
working of the genes (many diseases) (1). In a nutshell, a
stable genome possesses clear, complete instruction manual,
essential for keeping biological functions working smooth.
To better understand genome structure and stability, it is
essential to explore various tasks such as DNA Replication
Origins Prediction (25, 26), Genome Structure Analysis (27, 28),
Nucleosome Position Detection (29, 30), Chromatin Accessibility
Prediction (31–33), Chromatin Feature Prediction (31, 34, 35),
Long-range Chromatin Interaction Prediction (36, 37), and
YY1-Mediated Chromatin Loops Prediction (38, 39). These
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FIGURE 3

Precise classification of 44 unique DNA sequence analysis tasks in 8 major biological goals.

tasks are crucial for comprehending the intricate mechanisms
governing genetic information processing and regulation within
cells (40).

DNA replication origin prediction is fundamental as accurate
replication of the genome is vital for maintaining genomic
stability (25). The prediction of replication origins involves
calculating DNA structural properties to identify sites crucial
for initiating DNA replication (25). Understanding where these
sites are located and how they are specified is essential for
comprehending DNA replication and ensuring genome integrity
(41). Genome structure analysis plays a pivotal role in deciphering
the organization and arrangement of genetic material within the
cell (27). By analyzing the structural features of the genome,
researchers can gain insights into the functional and spatial
organization of chromosomes, aiding in the identification of
genomic elements involved in gene regulation and phenotypic
variations (27, 42). Furthermore, nucleosome position detection
is essential for understanding how nucleosomes, the basic units
of genome, are arranged along the DNA strand (29, 43). This
information is crucial for elucidating gene regulation mechanisms
and chromatin dynamics within the cell (29, 43). Chromatin
accessibility prediction is a key task that involves determining
the regions of chromatin that are accessible for transcription
factors and other regulatory proteins to bind (31–33). Prediction of
chromatin accessibility across different cellular contexts provides
valuable insights into gene regulation and chromatin dynamics

(31–33). Chromatin feature prediction complements accessibility
prediction by identifying specific chromatin features and epigenetic
markers that influence gene expression and regulatory processes
(31, 34, 35, 44). These features include transcription factor (TF)
binding sites, DNase I-hypersensitive sites (DHS), and histone
marks (HM). By understanding these features, researchers can
unravel the mechanisms underlying chromatin regulation and gene
expression (34). Long-range chromatin interactions make bridges
between distant enhancers and promoters. These interactions
enable interactions between enhancers and promoters by bringing
them closer to each other (36, 37). YY1-mediated chromatin
loop prediction provides comprehensive understanding about gene
regulation (38, 39, 45). YY1 is a protein that makes loop between
enhancers and promoters. These loops are essential for gene
regulation, and by predicting these loops, we can see which genes
can be controlled through YY1 protein (38, 39, 45). This knowledge
is valuable for understanding diseases where gene regulation goes
wrong. To sum up, only through multi-dimensional exploration
of genome structure and stability, researchers can discriminate
healthy cellular processes from malfunctioned processes, find the
root causes of diseases, and develop potent therapies.

Another major goal of molecular biologists behind is
gene expression regulation. Gene expression regulation provides
fundamental insights into how genes are activated or repressed in
response to various cellular cues (46). Specifically, researchers are
trying to unravel the intricate mechanisms that control when and
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up to what extent specific genes are turned on or off in different cells
and tissues (46). This knowledge forms the basis for understanding
the functional behavior of genes in different biological contexts and
sets the stage for further analyses. Hence, it holds immense promise
for scientists and pharmaceutical industries. This helps scientists
to detect irregularities in normal gene expression regulation, the
way diseases develop at the molecular level, and identify potential
drug targets (46). Furthermore, this understanding can assist
pharmaceutical industries to develop improved diagnostic tools,
innovative personalized therapies, and targeted interventions,
which will ultimately contribute to advancements in personalized
healthcare (46). In addition, it can provide a deeper understanding
of biological systems which can lead to breakthroughs in
biotechnology (46). For better understanding of gene expression
regulation, researchers are performing nine different DNA
sequence analysis tasks, namely, enhancer identification (47),
promoter identification (48), enhancer-promoter interactions
prediction (49), transcription site prediction (50), transcription
factor binding site prediction (51), transcription factor binding
affinity prediction (52), protein-DNA binding site prediction (53),
splice site prediction (53), and translation initiation site prediction
(54). Enhancers (47, 55–75) and promoters identification (48, 76–
81), along with their interactions (82–86) prediction are important
to decipher a complex control panel for gene expression (47–49).
Enhancers are known as distant switches of genes, while promoters
are the landing sites where gene activation starts. Identification of
these elements and predicting how they loop together provide a
comprehensive understanding of gene regulation, including which
genes are activated or repressed, the intensity of their expression,
and the specific cell types involved (87, 88). This knowledge reveals
the intricate regulatory code that governs gene expression and
offers valuable insights into the mechanisms underlying normal
cellular function as well as the dysregulation that may contribute
to various diseases.

Furthermore, prediction of different genomic sites including
transcription sites (50), transcription factor binding sites (89–93),
transcription factor binding site affinity (52), protein-DNA binding
site (53, 94–96), splice site (93, 97–100), and translation initiation
site (50, 101) provide deep insights into gene expression regulation.
A transcription site refers to the specific location on the DNA
where the process of transcription takes place. Transcription is
the synthesis of RNA from a DNA template, and the transcription
site represents the region where the RNA polymerase enzyme
binds and initiates the transcription process, whereas transcription
factor binding sites are specific DNA sequences where transcription
factors (proteins), that regulate gene expression, bind. These
binding sites are typically located near the transcription start site
and are recognized by transcription factors to control the initiation
or repression of transcription. In contrast, transcription factor
binding site affinity refers to the strength or affinity with which
a transcription factor binds to its specific binding site on DNA.
It represents the likelihood of a transcription factor binding to
its target site and influencing gene expression. A protein-DNA
binding site refers to any region on the DNAwhere a protein binds.
This can include transcription factors, as mentioned earlier, as well
as other proteins involved in various cellular processes such as
DNA replication, repair, and chromatin remodeling. Splice sites are

specific sequences within a gene’s DNA that mark the boundaries
of introns and exons. During the process of RNA splicing, introns
are removed from the pre-mRNA molecule, and exons are joined
together to form the mature mRNA. Splice sites are essential for
the accurate and precise splicing of RNA. Translation initiation
site (TIS) is the specific location on the mRNA molecule where
the process of translation begins. TIS prediction seems like a RNA
sequence analysis task; however, in molecular biology research, to
study gene expression, researchers are synthesizing complementary
DNA (cDNA) data from messenger RNA (mRNA) template
through a process called reverse transcription. In the context of
cDNA data, the translation initiation site (TIS) represents the
position where the ribosome, the cellular machinery responsible for
protein synthesis, binds to the mRNA to initiate translation. The
TIS is typically identified by the presence of specific start codons,
such as AUG, which serve as signals for the ribosome to start
protein synthesis.

To better understand gene functions and their roles in disease
initiation, researchers are exploring various aspects such as gene
expression prediction (102, 103), identification of essential (104–
109) and disease-specific genes (110), gene function prediction
(111, 112), pseudo-gene function prediction (111), target gene
classification (113), and candidate gene prioritization (114). Overall
together, these tasks provide a comprehensive platform for disease
diagnosis and development of treatment strategies by uncovering
disease mechanisms, identifying potential therapeutic targets, and
organizing genes into functional categories. Specifically, gene
expression prediction provides useful information about the level
of gene activity in different cells or tissues (115). This task is vital
for understanding the molecular mechanisms underlying complex
diseases such as cancer and identifying potential therapeutic
targets. Essential gene identification is another critical task in
gene analysis that helps researchers pinpoint genes that are crucial
for an organism’s survival and development (116, 117). This task
is particularly important in understanding gene function and
the genetic basis of various disorders. Gene function prediction
elucidates the roles of genes in different pathways and biological
processes and provides valuable insights into disease mechanisms
and potential therapeutic interventions.

Apart from gene function prediction, pseudo-gene function
prediction has gained a lot of attention as a critical task in
gene analysis (111). Pseudogenes were once thought to be
useless DNA because they cannot code for proteins due to
mutations that happened over time. However, recent studies
have shown that pseudogenes actually play important roles
in controlling genes, especially in cancer. For instance, the
pseudogene PTENP1 helps to regulate the tumor suppressor gene
PTEN in various cancer conditions, showing that pseudogenes
can have important functions. Pseudogene function prediction
offers numerous advantages, including better understanding of
gene regulation, disease mechanisms, evolutionary biology, and
the potential for new biomarkers and drug targets. In addition,
disease gene prediction is a pivotal task in gene analysis that
focuses on identifying genes associated with specific diseases or
disorders (118). By pinpointing disease-related genes, researchers
can unravel the genetic basis of diseases, discover novel biomarkers
for diagnosis and prognosis, and develop targeted therapies. This
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task is instrumental in precision medicine approaches, where
understanding the genetic underpinnings of diseases is crucial
for personalized treatment strategies. Target gene classification
involves categorizing genes based on their functions, interactions,
or regulatory mechanisms (119). By classifying target genes,
researchers can better understand gene networks, signaling
pathways, and biological processes. This task is essential for
deciphering the complex relationships between genes and their
roles in health and disease. Candidate gene prioritization and
selection are critical tasks in gene analysis that aim to identify
genes with the highest likelihood of being involved in a particular
biological process or disease (120). By prioritizing candidate genes,
researchers can focus their efforts on studying genes that are
most likely to have significant effects, accelerating the discovery of
novel gene functions and disease mechanisms. This task is crucial
for efficiently allocating research resources and maximizing the
impact of genetic studies. Aforementioned seven DNA sequence
analysis tasks are essential for advancing our understanding of
genes and their roles in health and disease. By leveraging these
tasks, researchers can unravel the complexities of the genome,
uncover novel gene functions, and pave the way for innovative
diagnostic and therapeutic strategies in various fields of biology
and medicine.

Furthermore, gene network analysis is a promising goal that
seeks to comprehend the intricate interactions and relationships
between genes within a biological system. Two primary tasks
within Gene Network Analysis are Gene Taxonomy Classification
and Gene Network Reconstruction. Gene Taxonomy Classification
(121–123) involves categorizing genes based on their evolutionary
relationships and functional similarities, providing a structured
framework for organizing genetic information. Gene Taxonomy
Classification plays a crucial role in gene network analysis
by offering a foundational structure for understanding the
evolutionary history and functional relationships between genes.
By classifying genes into taxonomic groups based on shared
characteristics and evolutionary relatedness, researchers can infer
valuable insights into the origins and evolutionary trajectories
of genes within a network (124). This classification allows for
the identification of core genes that have remained conserved
throughout evolution, providing a basis for inferring phylogenetic
relationships and understanding the fundamental building blocks
of gene networks. Moreover, Gene Taxonomy Classification enables
researchers to utilize existing knowledge about gene functions and
evolutionary relationships to guide Gene Network Reconstruction.
By categorizing genes into taxonomic groups, researchers can
pinpoint gene clusters with similar functions or evolutionary
origins, facilitating the identification of modules within gene
networks that exhibit coordinated activity (125). This classification
serves as a roadmap for exploring the functional roles of genes
within a network and understanding how these roles have evolved
over time. On the other hand, Gene Network Reconstruction (126–
128) involves creating a detailed map of the interactions and
regulatory relationships between genes within a cell or an organism.
The primary input for gene network reconstruction is gene
expression data obtained through high-throughput techniques
such as RNA sequencing (RNA-seq) or microarrays. This task is
pivotal for understanding how genes work together to control

various biological functions and processes (129). By reconstructing
gene networks, researchers can uncover key regulatory hubs
involving highly connected genes, clusters of closely interacting
genes, pathways, and interactions that steer cellular functions and
responses to external stimuli (130).

DNA modification prediction is also a crucial goal where
researchers aim is to decipher how tiny tweaks to the DNA
code can lead to big changes in cellular functions (131–133).
In DNA modifications, distinct chemical groups are added to
specific locations on the DNA molecule. These additions do not
change the actual sequence of nucleotides (A, C, G, T) but can
alter the physical properties of DNA sequence. Understanding
these modifications, such as 4-Methylcytosine (4mc) (134–
143), Methyladenine (6ma) (144–151), 5-methylcytosine (5mc)
(152, 153), 5-hydroxymethylcytosine (5hmc) (154–157), and
methylation modifications (146, 154–159), are essential for
advancing our comprehension of epigenetic regulation (160–162).
Specifically, methylation modifications that occur due to the
addition of methyl groups to DNA molecules play a pivotal role
in regulating gene expression and maintaining genomic integrity.
Similarly, methyladenine modifications, such as DNA N6-
methyladenine (6mA), occur due to the addition of a methyl group
to the adenine base of DNA. DNA 6mA modifications dynamically
influence DNA thermal stability, curvature, and transcription
factor interactions, impacting gene expression in a heritable
manner. Understanding the prediction of 6mA sites is pivotal for
both basic and clinical research as it aids in the identification of
gene expression patterns and potential epigenetic changes induced
by environmental factors. These predictions enhance our ability to
study the role of 6mA modifications in diseases and could lead
to improved therapeutic strategies, highlighting the relevance of
accurate predictionmethods in unraveling the complexities of DNA
modifications. Moreover, 5-methylcytosine (5mc) modification
occurs due to the addition of a methyl group to the cytosine base
of DNA, whereas 5-hydroxymethylcytosine (5hmc) modification
is an oxidized derivative of 5mc, where an additional hydroxyl
group (-OH) is added to the methyl group of 5mc. Prediction
of 5-methylcytosine (5mc) and 5-hydroxymethylcytosine (5hmc)
modifications is essential for decoding their roles in gene
regulation, developmental processes, and disease states. These
critical epigenetic modifications are dynamically regulated by
enzymes and influence gene expression crucial for neuronal
differentiation and cellular proliferation. Abnormal levels of these
modifications have been linked to diseases such as cancer. Precise
prediction of 5mc and 5hmc sites is useful for the development of
targeted therapies and improved prognostic assessments.

Functional genomics is also a critical goal that encompasses
multiple sub-tasks including species classification (44), conserved
non-coding element (NCE) classification (163), functional
prioritization of non-coding variants (34), prediction of context
specific functional impact of genetic variants (36), exon and intron
region classification (164), and recombination spots identification
(165). Each of these tasks plays a vital role in unraveling the
complexities of genetic regulation and molecular mechanisms
within the genome. In biomedical research, understanding the
genetic similarities and differences between humans and other
species is crucial for modeling diseases and studying genetic
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disorders. Majority of the genome is conserved across different
species which makes it difficult to distinguish humans and non-
human species. Despite very high genetic similarity across species
(<10% sequence divergence), small differences are extremely
valuable and they have significant biological implications. Species
classification determines the source species of genetic sequences
based on such differences and pave way for better modeling
diseases and studying genetic disorders (44). Conserved non-
coding element classification is another critical task in functional
genomics that focuses on identifying and understanding non-
coding regions of the genome that are evolutionarily conserved
across different species (163). It is essential for advancing our
understanding of gene regulation, evolutionary biology, and the
genetic basis of diseases. By elucidating the functions of these
non-coding regions, researchers can gain insights into the intricate
regulatory networks that govern gene expression and cellular
processes and contribute to the development of targeted therapies.

Functional prioritization of non-coding variants (34) is another
crucial task for making sense of the vast amount of genetic
data generated by modern sequencing technologies. By identifying
which variants have significant biological impacts, researchers
can gain a deeper understanding of the genetic architecture of
complex diseases, uncover novel therapeutic targets, and advance
the field of precision medicine. This prioritization is essential
for translating genomic research into practical health benefits
and ultimately improving patient outcomes and advancing our
knowledge of human biology (34). As functional prioritization of
non-coding variants task involves identifying which non-coding
variants among millions are likely to have functional consequences,
it does not account for the specific context in which these
variants might exert their effects, whereas prediction of context-
specific functional impact of genetic variants aims to provide a
detailed understanding of how specific variants influence gene
function in different contexts (e.g., specific tissue) (36). This is
particularly important for genetic studies that seek to uncover the
mechanisms by which variants contribute to disease phenotypes.
Unlike functional prioritization of non-coding variants task which
only filters the variants that are most likely to have functional
significance. Prediction of context-specific functional impact of
genetic variants provides a finer level of detail by predicting the
actual effect of a variant on gene expression or other functional
outcomes in specific tissues. This granularity is essential for
precisely understanding the specific biological mechanisms and for
developing targeted therapies (36).

Exon and intron region classification is crucial for
understanding gene structure and function within the genome.
Exons are coding regions that are translated into proteins, while
introns are non-coding regions that are spliced out during
mRNA processing. By classifying exons and introns, researchers
can describe gene boundaries, identify functional elements,
and elucidate the mechanisms of gene expression regulation
(166). This task is essential for deciphering the genetic code
and unraveling the complexities of gene regulation in health
and disease. Recombination spots identification is a pivotal task
in functional genomics that focuses on mapping regions of the
genome where genetic recombination events occur. Genetic
recombination is a natural process where DNA segments are

exchanged between two chromosomes during cell division.
Recombination plays a vital role in generating genetic diversity,
ensuring proper chromosome segregation, and driving evolution
(167). By identifying recombination hot spots, researchers can
gain insights into the mechanisms underlying genetic diversity
and genome evolution, shedding light on the processes that shape
genetic variation and adaptation in populations. In conclusion,
the tasks related to functional genomics, including species
classification, conserved non-coding element classification,
functional prioritization of non-coding variant, prediction of
context-specific functional impact of genetic variants, exon and
intron region classification, and recombination spots identification,
are essential for advancing our understanding of genetic regulation,
molecular mechanisms, and disease pathogenesis. By delving into
these tasks, researchers can unravel the complexities of the
genome, decipher the genetic basis of diseases, and pave the way
for precision medicine and personalized healthcare interventions
tailored to an individual’s genetic profile.

Another goal of researchers is to study overlap between
two distinct fields namely environmental science and microbial
genomics (27). This interdisciplinary study enables researchers
to explore how environmental factors such as pollution, climate
change, and agricultural practices affect on function and diversity
of microbial communities (27). A key area of focus in this
field is the nitrogen cycle prediction. By examining the genomes
of microbes involved in nitrogen fixation, nitrification, and
denitrification, scientists can predict how these processes might
respond to environmental changes (168). This prediction provides
understanding about potential impacts of environmental shifts on
ecosystem health (169) and nitrogen availability, which are essential
for plant growth and overall biogeochemical cycles (170).

From all eight different biological goals, disease analysis goal
has received huge attention in scientific community as it aims to
understand, diagnose, and treat various illnesses. Within this field,
several tasks play a vital role in enhancing our comprehension
of diseases. One such task is Pathogen Signatures Identification
(171), which involves identifying specific markers or characteristics
of pathogens that can aid in their detection and classification
(172). By pinpointing these signatures, researchers can develop
targeted diagnostic tools and therapies, ultimately improving
disease management and control. Mutation Susceptibility
Analysis (173) is another essential task in disease analysis. This
task focuses on investigating the genetic variations that make
individuals more prone to developing certain diseases (174).
Understanding mutation susceptibility can aid in personalized
medicine approaches, where individuals at higher risk can be
identified early for preventive interventions or closer monitoring.
Phage-Host Interactions Prediction (175–177) is a task that delves
into the relationships between bacteriophages and their host
bacteria (178). By predicting these interactions, researchers can
gain insights into how phages influence bacterial populations,
which is crucial for developing phage-based therapies to combat
bacterial infections and antibiotic resistance. Disease Risks
Estimation (90) is a fundamental aspect of disease analysis that
involves assessing the likelihood of an individual developing a
particular condition based on various factors such as genetics,
lifestyle, and environmental exposures (179). Accurately estimating
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disease risks enables healthcare providers to offer targeted
interventions and counseling to high-risk individuals, potentially
preventing the onset or progression of diseases. Tumor Type
Prediction (180) is a significant task in disease analysis that focuses
on identifying the specific type of tumor a patient may have
based on various characteristics such as genetic markers, imaging
features, and histopathological findings (181). Predicting tumor
types is essential for determining the most effective treatment
strategies and prognostic outcomes for patients with cancer.
Pathogenicity Potential Assessment (27) is a critical task that
involves evaluating the ability of pathogens to cause disease
in a host. By assessing the pathogenicity potential of different
microorganisms, researchers can prioritize the development
of interventions against the most virulent pathogens, thereby
improving disease prevention and control strategies. Phylogenetic
Analysis (21) is a key component of disease analysis that involves
studying the evolutionary relationships between different strains of
pathogens or tumor cells. Phylogenetic analysis provides insights
into the origins, spread, and diversification of diseases, aiding
in the development of targeted interventions and understanding
disease transmission dynamics.

4 A look on DNA sequence analysis
tasks from the perspective of
computer scientists

While Section 3 presents a biologically motivated
categorization of DNA sequence analysis tasks, this section
reframes these same tasks from a computational perspective. This
dual categorization approach (biological and computational) aims
to facilitate interdisciplinary understanding between life scientists
and AI researchers. With the influx of biological data and rise of
AI, researchers are increasingly applying AI in diverse areas of
molecular biology. Development of large scale AI applications
requires a good understanding of variety of sequence analysis
tasks. However, there exist a huge domain gap between computer
scientists and molecular biologists. Molecular biologists know the
need, biological importance, and pharmaceutical worth of different
sequence analysis tasks. However, they do not knowwhichmachine
or deep learning models are most appropriate to use to either
replace or complement experimental work. Similarly, computer
scientists know which Artificial Intelligence predictive pipeline
can potentially perform better with specific type of data; however,
they do not know the nature of biological sequence analysis
tasks. For instance, DNA sequence analysis tasks such as gene
function prediction, gene network reconstruction, gene expression
prediction, and disease risk estimation can be challenging for
computer scientists to grasp. However, a comprehensive literature
review that explains the basics of these tasks can bridge this gap.
For example, gene function prediction is a multi-label classification
tasks, gene expression prediction is a regression task, while
gene network reconstruction and disease risk estimation are
binary classification tasks. With this foundational understanding,
computer scientists can more easily develop predictive pipelines
for these binary, multi-label classification, and regression tasks. To
empower AI experts, we have presented 44 DNA sequence analysis

tasks in computer scientist language in Figure 4. A simple look on
Figure 4 reveals that nature of DNA sequence analysis tasks can be
categorized into three primary types: regression, clustering, and
classification where classification can be further divided into three
secondary types: binary classification, multi-class classification,
and multi-label classification. Let us mathematically formulate the
possible natures of DNA sequence analysis tasks.

In binary classification, researchers aim to predict the outcome
of a binary variable (0 or 1). Given a dataset with features X ∈ R

nxd,
binary labels y ∈ 0, 1, and training dataset (x1, y1), (x2, y2), ..., our
goal is to learn a decision function f :X → Y that maps inputs to
binary outputs 0, 1 on the basis of hypothesis function h(x) learned
from the training data.

f (x) =

{

1 ifh(x) > 0.5

0 otherwise
(1)

In multi-class classification, researchers aim to predict the
outcome from more than two classes. Specifically, given a dataset
having sequences X ∈ R

nxd, labels y ∈ 1, 2, ...,K where K is the
number of classes, and training dataset (x1, y1), (x2, y2), ..., (xn, yn)
where xi ∈ X and yi ∈ Y , our goal is to learn a decision function
f :X → Y that assigns inputs to one of the classes.

f (x) = argmaxkhk(x) (2)

where hk(x) is the hypothesis function for class k learned
from the training data. On the other hand, in multi-label
classification, each input can be assigned to multiple classes
simultaneously. Given a dataset with features X ∈ R

nxd, labels
y ∈ 1, 2, ...,K where K is the number of classes, and training dataset
(x1, y1, y2, ..), (x2, y1, y4, ...), ..., (xn, y5, yn, ....) where xi ∈ X and yi ∈
Y , our goal is to learn a decision function f :X → 0, 1K that assigns
inputs to multiple classes simultaneously using hypothesis function
hk(x) for class k learned from the training data.

f (x) = (h1(x), h2(x), ..., hK(x)) (3)

Furthermore, in regression, researchers goal is to predict a
continuous outcome variable. Given a dataset with sequences X ∈
R
nxd, labels y ∈ R, and training dataset (x1, y1), (x2, y2), ..., (xn, yn)

where xi ∈ X and yi ∈ Y , our goal is to learn a function f :X → R

that predicts continuous outputs using hypothesis function h(x)
learned from the training data.

f (x) = h(x) (4)

In clustering, the goal is to group similar data points into same
clusters. Given a dataset with data points X = x1, x2, ..., xn, where
each xi ∈ R

d, our goal is to find a partition of the data into clusters
C = C1,C2, ...,CK . This is done on the basis of a distance metric
d(x,µc) between data point x and the centroid µc of cluster c.

f (x) = argmincd(x,µc) (5)
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FIGURE 4

DNA sequence analysis task representation for computer scientist perspective.

5 DNA sequence analysis databases

This section provides a comprehensive overview of
various databases employed to develop benchmark datasets
for development of AI-based applications for 44 distinct DNA
sequence analysis tasks. A total of 45 DNA sequence databases
have been identified from 127 existing studies. Among these, 36
databases are publicly accessible, while the remaining 9 databases
are either inaccessible or no longer exist. To ease the lives of
researchers and practitioners, Table 1 summarizes accessible
databases in terms of their release year, types of inherent genetic
data (DNA, RNA, protein), details of species and organisms,
statistics of raw sequences, and supported data formats.

A holistic view of the Table 1 reveals that 12 databases provide
RNA and protein sequences as well in addition to providing
DNA sequences. As word embeddings methods and large language
models are trained in unsupervised fashion and when they are
trained on large sequence data usually, they produce better
representations. To efficiently train word embedding methods
and large language models, raw data can be acquired from
these databases. To facilitate researchers, we have categorized 36

databases into three different categories on the basis of volume
of raw sequences: low sequence facilitators, medium sequence
facilitators, and high sequence facilitators. Specifically, 13 low
sequence facilitators, namely, HOCOMOCO Human v11 database
(182), Consensus Coding Sequence Database (183), MSigDB (184),
Broad DepMap (185), JASPAR (186), Database of Essential Genes
(187), ENCODE (188), MGC (189), Exon-Intron Database (190),
Ensembl (191), RegulonDB (192), EPD2 (193), offer up to 100,000
DNA sequences each, while 9 medium sequence facilitators,
namely, PPD (194), DREAM (195), EmExplorer database (196),
GenomAD (197), DeOri (198), BioLip (199), DeOri6.0 (198),
GWAS (200), Eukaryotic Promoter Database (193), provide up to
1 million DNA sequences. In contrast, 13 high sequence facilitators
such as Descartes (201), EnhancerAtlas 2.0 (202), COSMIC (203),
DisGeNet (204), ClinVar (205), CCLE (206), GENCODE (207),
Gene Ontology (208), DataBase of Transcriptional Start Sites (209),
GEO (210), KEGG (211), NCBI (212), GenBank (213), and dbSNP
(214, 215) offer more than 1 million DNA sequences each. These
databases predominantly house DNA sequences from a diverse
array of species, including humans, mice, plants, bacteria, and
fungi. A comprehensive analysis reveals that approximately 22
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TABLE 1 Summary of publicly accessible biological databases, their inherent data types, species diversity, and statistics of raw sequences related to

di�erent genomic and proteomic data.

Database
name

Release
date

Type of
data
(DNA/RNA/
Protein)

Organism
name

Species name Sequences statistics Data
format

Descartes 2020 DNA, RNA Animals Mus musculus, Homo sapiens Human Gene Expression During
Development: 4M Cells, 121 Tissues, 15
Organs; Human Chromatin
Accessibility During Development:
720K Cells, 53 Tissues, 15 Organs;
Mouse:∼2M Cells, 61 Embryos

.RDS

PPD 2020 DNA, RNA Bacteria,
Archaea

63 species 129,148 Promoter Sequences, 63 Species
with 74 strains

.csv

EnhancerAtlas
2.0

2019 DNA Animals,
Bacteria

Homo sapiens, Mus musculus,
Drosophila melanogaster,
Caenorhabditis elegans, Danio
rerio, Rattus norvegicus, Gallus
gallus, Sus scrofa, Saccharomyces
cerevisiae

13,494,603 Enhancers, 586 tissue .csv, BED, R
Object

DREAM Base 2018 DNA, RNA,
Protein

Animals Homo sapiens scRNA-Seq Data: 93,3704 cells;
RNA-Seq Data:∼18,196; ChiP-Seq
Data:∼10,000; RNAModification Data:
∼500; ribo-Seq Data: 1,570; DNase-Seq
Data: 599; CLIP-Seq Data: 568

.excel, .txt

EmExplorer
database

2018 DNA, Protein Animals Bos taurus, Homo sapiens, Mus
musculus, Rattus norvegicus, Sus
scrofa

158,000 items that contain more than
32,000 development-related Genes
under 306 related pathways

.txt

COSMIC 2018 DNA Animals Homo sapiens Total Genomic variants = 24,599,940;
Genomic non-coding variants =
16,748,366,406; Genomic mutations
within Exons = 768; Genomic mutations
within Intronic and other intragenic
regions = 9,217,664; Samples =
1,531,613; Fusions = 19,428; Gene
expression variants = 9,215,470;
Differentially Methylated CpGs =
7,930,489

.FASTA, .tsv

DisGeNet 2015 DNA Animals Homo sapiens 1,134,942 GDAs between 21,671 Genes,
30,170 diseases and traits; 369,554 VDAs
between 194,515 variants and 14,155
diseases and traits

.txt, RDF,
SQL Dump

genomAD 2014 DNA Animals Homo sapiens 730,947 Exomes, 76,215 whole Genomes VCF, Hail
Table

ClinVar 2013 DNA, RNA,
Protein

Animals Homo sapiens Records = 4391341, Total Genes = 92225 .xml, VCF,
.tsv

HOCOMOCO
Human v11
database

2013 DNA Animals Mus musculus, Homo sapiens 1,443 TF binding models including
secondary motif subtypes for 949
human TFs and 720 Mouse orthologs

PWM,
PFM, PCM,
Flat text
files

DeOri 2012 DNA Animals Homo sapiens, Mus musculus,
Arabidopsis thaliana,
Kluyveromyces lactis,
Schizosaccharomyces pombe,
Drosophila melanogaster

189,743 entries .FASTA

BioLip 2012 DNA, RNA,
Protein

Animals Homo sapiens 873,925 Entries, 448,816 regular ligands,
191,485 mental ligands, 37,492 Peptide
ligands, 43,448 DNA ligands, 152,684
RNA ligands, 873,925 binding affinity
data, 451,485 Protein receptors

.FASTA

DeOri6.0 2011 DNA Animals,
Plants, Fungi

17 species 189,740 eukaryotic replication origins .FASTA

GWAS 2008 DNA Animals Homo sapiens 146,394 TASs .tsv,
OWL/RD

(Continued)
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TABLE 1 (Continued)

Database
name

Release
date

Type of
data
(DNA/RNA/
Protein)

Organism
name

Species name Sequences statistics Data
format

Broad
DepMap

2008 DNA Animals Homo sapiens 2,000 Human cancer cell lines .csv, .txt

CCLE 2008 DNA, RNA,
Protein

Animals Homo sapiens 1,019 RNA cell lines, 954 microRNA
expression profiles, 899 Protein lines,
897 Genome-wide histone
modifications, 843 DNA methylation,
329 whole Genome Sequencing, 326
whole exome Sequencing

.csv

GENCODE 2006 DNA Animals Homo sapiens, Mus musculus Homo sapiens: Total genes = 63,086,
Total transcripts = 254,070, Total
distinct Translations = 65,650; Mus
musculus: Total Genes = 57,132, Total
Transcripts = 149,138, Total distinct
Translations = 44,819

.txt

Consensus
Coding
Sequence
Database

2005 DNA Animals Homo sapiens, Mus musculus 35,608 CCDS IDs that correspond to
19,107 Genes, with 48,062 Protein
Sequences

.FASTA

MSigDB 2005 DNA Animals Homo sapiens, Mus musculus 8,380 Gene set .gct, .res,
.pcl, .txt,
.cls, .gmx,
.gmt, .grp,
.xml, .chip,
.rnk

Gene
Ontology

2004 DNA Animals,
Bacteria,
Fungi, Plants

Escherichia coli, Homo sapiens,
Oryza sativa, Saccharomyces
cerevisiae, Schizosaccharomyces
pombe, Mus musculus, many more

Annotated Gene products = 1,536,921;
Annotated Species = 5,409; Annotated
Species with over 1,000 annotations =
183

OBO,
OWL, GAF,
GPAD, GPI,
JSON

JASPAR 2004 DNA, RNA,
Protein

Fungi, Insects,
Nematoda,
Plants,
Urochordata,
Vertebrata

34 species 4279 Profiles .txt

Database of
Essential
Genes

2004 DNA, RNA,
Protein

Bacteria,
Archaea,
Eukaryotes

51 species 53,885 essential Genes, 786 essential
non-coding Sequences

.csv, DAT

ENCODE 2003 DNA, RNA,
Protein

Animals Homo sapiens, Mus musculus _ .FASTA,
BAM,
BigWig,
BED, VCF

DataBase of
Transcriptional
Start Sites

2002 DNA Animals Homo sapiens, Mus musculus 491M TSS tag Sequences from a total of
20 tissues and 7 cell cultures

.FASTA,

.csv, .xlsx,

.txt

MGC 2001 DNA Animals Mus musculus, Homo sapiens, Rat,
Bovine

Total MGC Full ORF Clones: Homo
sapiens: 29,818; Mus musculus: 27,285;
Rat: 6,763; Bovine: 9,104;
Non-redundant Genes: Homo sapiens:
17,592; Mus musculus: 17,701; Rat:
6,486; Bovine: 8,724

_

GEO 2000 DNA, RNA,
Protein

Animals 20 species Samples = 7,209,691 SOFT,
MINiML,
.txt

Exon-Intron
Database

1999 DNA, RNA Animals,
Plants

Homo sapiens, Mus musculus,
Drosophila melanogaster, C.
Elegans, S. Pombe

42,460 Genes (243,589 Exons) .FASTA

Ensembl 1999 DNA, RNA,
Protein

Animals Homo sapiens, Mus musculus,
Danio rerio, Sus scrofa

Genomes = 44,048, Ensembl Fungi =
1,014 Genomes, Ensembl Metazoa = 78
Genomes (Invertebrate species),
Genomes for vertebrate Species = 236,
Ensembl Plants = 67 Genomes, Ensembl
Protists = 237 Genomes

.FASTA,
GTF, GFF,
MySQL
Dump

(Continued)
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TABLE 1 (Continued)

Database
name

Release
date

Type of
data
(DNA/RNA/
Protein)

Organism
name

Species name Sequences statistics Data
format

RegulonDB 1998 DNA, RNA,
Protein

Bacteria Escherichia coli 4,748 Genes, 2,590 Operons, 287
Regulons, 3,718 Transcription Unit,
4050 Promoters

.tsv, .csv

EPD2 1998 DNA Animals,
Plant, Fungi,
Protists

139 species 4,806 Promoters .FASTA,
EMBL

dbSNP 1998 DNA Human Homo sapiens Nearly 2 billion submissions
representing more than 675 million
distinct variants; 23.7 million refSNP
entries (14.5 million validated)

ASN.1,
FASTA,
XML

KEGG 1995 DNA, RNA,
Protein

Animals,
Plants, Fungi,
Protists,
Bacteria,
Archaea

Euryarchaeota Candidatus,
Thermoplasmatota,
Thermoproteota, Chordata,
Echinodermata, Hemichordata,
Ascomycota, Basidiomycota,
Atribacterota Candidatus,
Saccharibacteria

Genes = 53,674,741, Addendum
Proteins = 4,181, Viral Genes=688,823,
Viral mature Peptides = 377

KGML,
.FASTA, .txt

NCBI 1988 DNA, RNA,
Protein

Multiple
organisms

Multiple species Hub of databases .FASTA,
XML

Eukaryotic
Promoter
Database

1986 DNA Animals,
Plants, Fungi,
Invertebrates

Homo sapiens, Macaca mulatta,
Mus musculus, Rattus norvegicus,
Gallus gallus, Canis familiaris,
Drosophila melanogaster, Apis
mellifera, Danio rerio,
Caenorhabditis elegans,
Arabidopsis thaliana; Zea mays,
Saccharomyces cerevisiae,
Schizosaccharomyces pombe,
Plasmodium falciparum

192,586 Promoters, 163,676 Genes .FASTA,
EMBL

GenBank 1982 DNA Animals,
Archaea,
Bacteria,
Fungi, Plants,
Virus

557000 species 3,213,818,003,787 Bases, 250,803,006
Sequences

.gb

OMIM 1960 DNA Animals Homo sapiens 17,290 Gene descriptions, 18 Gene and
Phenotypes, 8,361 Phenotype
description, 1,736 Phenotypes suspected
mendelian

.txt

databases, namely, Descartes (201), DREAM (195), EmExplorer
database (196), COSMIC (203), DisGeNet (204), GenomAD
(197), ClinVar (205), HOCOMOCO Human v11 database (182),
DeOri (198), BioLip (199), GWAS (200), Broad DepMap (185),
CCLE (206), GENCODE (207), Consensus Coding Sequence
Database (183), MSigDB (184), ENCODE (188), DataBase of
Transcriptional Start Sites (209), MGC (189), GEO (210), Ensembl
(191), and OMIM (216), focus on animal DNA sequences, 4
databases including PPD (194), Database of Essential Genes (187),
RegulonDB and (192) on bacterial sequences, and JASPAR (186)
on plant DNA sequences. EnhancerAtlas 2.0 (202) is the only
database that facilitates with both animal and bacterial DNA
sequences, while 4 databases namely DeOri6.0 (198), Exon-Intron
Database (190), EPD2 (193), and Eukaryotic Promoter Database
(193) focus on animal and plant DNA sequences, whereas Gene
Ontology (208), KEGG (211), and GenBank (213) provide DNA
sequences for animal, plant, and bacteria. In addition, sequences
from other organisms such as eukaryotes, invertebrates, fungi, and

various microorganisms are also well-represented. Some databases
encompass a broad spectrum of species. For instance, the EDP2
(193) database includes genomics data for 139 species, GenBank
(213) houses sequences for 557,000 species, and PPD (194) has
genomics data of 63 species.

Moreover, Table 1 includes data formats utilized by various
databases to manage and provide access to DNA sequences.
TXT and FASTA format are universally accepted by almost all
DNA sequence analysis programs. Each entry in both format
types contains at least two lines: First line or header includes
accession number, species name, or identification details, while
next line contains nucleotide sequences. CSV and TSV are text-
based formats in which values in rows are separated by commas or
tabs, respectively. In both file formats, first row specifies headers
which defines names of columns (“SeqID”, “SeqName”, “Type”,
“Function”) and subsequent rows represent data. In VCF format,
first row specifies headers which defines names of columns, but this
format is specifically used to store genetic variation data including
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single nucleotide polymorphisms (SNPs), insertions, deletions,
and structural variants. In addition, XLSX formats represent
complex datasets that contain information computed with various
formulas across multiple columns, whereas EMBL format includes
structured sections for sequence data, feature annotations (genes
and other biological features), organism information, references,
and other details. An extensive analysis of Table 1 reveals that most
widely used data formats are FASTA, TXT, CSV, XLSX, and EMBL
in DNA sequence analysis.

A rigorous analysis of Table 1 reveals that out of 36 publicly
accessible databases, several key categories of data emerge. Four
databases, namely, Broad DepMap (185), genomAD, COSMIC,
and MGC, provide data for DNA functional analysis tasks such
as prediction of context-specific functional impact of genetic
variants and conserved non-coding element classification. Seven
databases, namely, BioLip, HOCOMOCO Human v11, GWAS,
EnhancerAtlas 2.0, DataBase of Transcriptional Start Sites, Exon-
Intron Database, and Eukaryotic Promoter Database, offer data
on gene expression regulation. Three databases, namely, PPD,
CCLE, and EmExplorer, focus on DNAmodification data including
methylcytosine and methyladenine modifications. In addition,
DeOri, Descartes, DeOri6.0, and JASPAR provide information
on gene structure and stability, including chromatin accessibility
prediction, YY1-mediated chromatin loop identification, and DNA
replication origins identification. GENCODE, Consensus Coding
Sequence Database, MSigDB, Gene Ontology, DisGeNet, Database
of Essential Genes, KEGG, and NCBI offer comprehensive
gene analysis data. Furthermore, eight other databases, namely,
EPD, ENCODE, RegulonDB, GEO, Ensembl, ClinVar, GenBank,
and OMIM, provide a range of data on gene expression
regulation, DNA modification prediction, genome structure and
stability, DNA functional analysis, disease information, and
gene analysis.

6 DNA sequence analysis benchmark
datasets

The quality and quantity of datasets utilized in AI-driven
DNA sequence analysis applications are vital determinants of
their effectiveness and functionality. This section aims to provide
a comprehensive overview of datasets relevant to 44 distinct
DNA sequence analysis tasks. Overall, these datasets fall into
two primary categories: publicly available datasets and in-
house datasets. This categorization serves to illuminate the
significance of dataset accessibility and its implications for the
advancement of AI-driven DNA sequence analysis. Specifically,
publicly available datasets are accessible to the wider research
community and are commonly employed in the development of
AI-based predictive models. They serve as foundational resources
that facilitate the advancement of AI-drivenDNA sequence analysis
pipelines by ensuring accessibility, reusability, and transparency
in research endeavors. Furthermore, the utilization of publicly
available datasets fosters collaboration and knowledge exchange
within the scientific community, thereby contributing to the
overall progress of the field. In contrast, in-house datasets
are proprietary in nature and are developed within specific

research laboratories or institutions. These datasets often contain
sensitive data tailored to particular research objectives. As in-
house datasets cannot be shared publicly, their proprietary
nature may limit broader access, reproducibility, and applicability
of findings.

Rigorous assessment of 127 existing studies reveals that a
total of 242 benchmark datasets related to 44 distinct DNA
sequence analysis tasks are constructed or acquired from existing
literature. Specifically, among these 242 benchmark datasets, 199
are publicly available and 43 are in-house datasets. Table 2 provides
the distribution of public and in-house datasets for 44 distinct
DNA sequence analysis tasks. It provides information about which
of these datasets are used by word embeddings, large language
models, nucleotide composition, and positional information-based
predictive pipelines.

For each DNA sequences analysis task, public and in-house
datasets are distributed as DNA Replication Origins Identification
(0, 5), Nucleosome Position Detection (11, 0), Chromatin
Accessibility Prediction (2, 0), YY1-Mediated Chromatin Loop
Prediction (4, 0), Genome structure analysis (0, 1), Chromatin
Feature Prediction (3, 0), Long-range chromatin interaction
prediction (1, 0), Enhancers Identification (12, 0), Promoter
Identification (15, 0), Enhancer-Promoter Interactions Prediction
(18, 2), Transcription Site Prediction (1, 0), Transcription Factor
Binding Site Prediction (4, 4), Transcription Factor Binding
Affinity Prediction (2, 0), Protein-DNA Binding Site Prediction (5,
0), Splice Site Prediction (10, 0), Translation Initiation Sites (1,
1), Essential Gene Identification (6, 5), Disease Gene Prediction
(1, 0), Pseudogene Function Prediction (3, 0), Target Gene
Classification (1, 0), Candidate Gene Prioritization/ Identification
(0, 1), Gene Function Prediction (4, 0), Gene Expression Prediction
(4, 0), Gene Taxonomy Classification (2, 1), Gene Network
Reconstruction (2, 6), 4mc-Methylcytosine Site Prediction (16, 0),
6mA-Methyladenine Site Prediction (5, 0), 5mc-Methylcytosine
Site Prediction (24, 1), 5hmc-Methylcytosine Site Prediction (2,
0), Methylation Site Prediction (17, 0), Conserved Non-Coding
Elements Classification (0, 1), Functional Priorizitation of non-
coding variants (3, 0), Exon and Intron Region Classification (0,
1), Recombination Spots Identification (1, 0), Species Classification
(8, 0), Prediction of context-specific functional impact of genetic
variant (1, 0), Nitrogen Cycle Prediction (0, 1), Pathogen
Signatures Identification (0, 1), Phage-Host Interactions Prediction
(8, 0), Mutation Susceptibility Analysis (0, 2), Tumor Type
Prediction (1, 0), Pathogenicity Potential Assessment (0, 8),
Phylogenetic Analysis (0, 1), and Disease Risks Estimation (2,
0). First entry in brackets refers to count of public datasets, and
second entry indicates total number of in-house datasets for a
particular task. For example, in “Essential Gene Identification
(6, 5)” task, 6 refers to public datasets while 5 represents
in-house datasets.

A holistic view of Table 2 reveals 110 public and 18 in-house
datasets are employed to develop both word embeddings and
language models based predictive pipelines for 12 DNA sequence
analysis tasks, namely, DNA replication origins identification,
enhancers identification, promoters identification, enhancer-
promoter interaction prediction, transcription factor binding site
prediction, essential gene identification, gene function prediction,
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TABLE 2 Overview of 199 public and 43 in-house datasets used across 44 di�erent DNA sequence analysis tasks.

Task name Task type Datasets used in language models Datasets used in word embeddings Datasets used in other methods

Public In-house Public In-house Public In-house

DNA replication origins
identification

Binary classification _ Gao et al. (A.
thaliana) (25)

_ Wu et al. datasets
(S. cerevisiae
Dataset, S. pombe

Dataset, K. lactis
Dataset, P. pastoris
Dataset) (329)

_ _

Nucleosome position detection Binary classification Gangi et al. datasets (CE, DM,
YS, HM, DM-5U, DM-PM,
DM-LC, HM-5U, HM-LC,
HM-PM, YS-PM) (330)

_ _ _ _ _

Chromatin accessibility
prediction

Binary classification DeepSEA datasets (TF, DHS)
(32), DNase-Seq experiment
data (31)

_ _ _ _ _

YY1-Mediated chromatin loops
prediction

Binary classification _ _ Dao et al. DeepYY1 datasets
(HCT116, K562) (39)

_ Zhang et al. DeepYY1 datasets
(HCT116, K562) (38)

_

Genome structure analysis Multi-class
classification

NCycDB dataset (27) _ _ _ _ _

Chromatin feature prediction Multi-label
classification

Logo919 (34), Logo2002 (34),
Logo3357 (34)

_ _ _ _ _

Long-range chromatin
interaction prediction

Interaction Chip-seq dataset (36) _ _ _ _ _

Enhancers identification Binary classification Liu et al. dataset (57), Liao et al.
datasets (HEK293, NHEK,
K652, GM12878, HMEC,
HSMM, NHLF, HUVEC) (58)

_ Liu et al. dataset (57) _ DiseaseEnhancer (55),
EnDisease (55), CancerEnD
(55)

_

Promoter identification Binary classification Yang et al. dataset (34), Ji et al.
dataset (90), Xiao et al. dataset
(331)

_ Wang et al. dataset [H. Sapiens-I
(TATA-containing), H.
Sapiens-II (TATA-less), R.
Norvegicus-I

(TATA-containing), R.
Norvegicus-II (TATA-less), D.
melanogaster-I

(TATA-containing), D.
melanogaster-II (TATA-less), Z.
mays-I (TATA-containing), Z.
mays-II (TATA-less)] (236),
Zhang et al. dataset (K562,
GM12878, HeLa-S3, HUVEC)
(76), Xiao et al. dataset (331)

_ Yang et al. dataset (34), Xiao
et al. (331)

_

(Continued)
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TABLE 2 (Continued)

Task name Task type Datasets used in language models Datasets used in word embeddings Datasets used in other methods

Public In-house Public In-house Public In-house

Enhancer-promoter
interactions prediction

Interaction/binary
classification

Yang et al. datasets (FoeT, Mon,
nCD4, tB, tCD4, tCD8) (249)

_ Whalen et al. dataset
(GM12878, HUVEC, HeLa-S3,
IMR90, K562, NHEK) (329)

_ Whalen et al. dataset
(GM12878, HUVEC, HeLa-S3,
IMR90, K562, NHEK) (329)

Zhang et al.
(GM12878 cell line,
HeLa cell line)
(332)

Transcription sites prediction Binary classification Clauwaert et al. dataset (50) _ _ _ _ _

Transcription factor binding
sites prediction

Binary classification ChIP-Seq dataset (94), TSSs
dataset (91), 497 TF ChIP-Seq
dataset (90), 690 ChIP-Seq (51)

_ Shen et al. datasets (A549
dataset, MCF-7 Dataset,
H1-HESCDataset, HUVEC
dataset) (92)

_ _ _

Transcription factor binding
affinity prediction

Multi-class
classification

Weirauch et al. dataset (PBM
Dataset), Jolma et al. dataset
(HT-SELEX Dataset) (52)

_ _ _ _ _

Protein-DNA binding sites
prediction

Interaction/binary
classification

690 ChIP-Seq dataset (96),
Patiyal et al. dataset (53), Xia
et al. (dataset 2) (53), Liu and
Tian (dataset 1, dataset 2) (95)

_ _ _ _ _

Splice sites prediction Binary classification Wang et al. dataset (100), Ji
et al. dataset (93)

_ _ _ Splice-junction gene sequence
dataset (97), Degroeve et al.
(98), Liu et al. Datasets [O.
sativa (Acceptor, Donor), A.
Thaliana (Acceptor, Donor), H.
sapiens (Acceptor, Donor)] (99)

_

Translation initiation sites Binary classification Clauwaert et al. dataset (50) _ _ _ Kalkatawi et al. TIS (101) _

Essential genes identification Binary classification Ma et al. datasets (S. cerevisiae,
E. coli, H. sapiens, D.
melanogaster) (109)

_ Ma et al. datasets (S. cerevisiae,
E. coli, H. sapiens, D.
melanogaster) (109), Campos
et al. datasets (D. melanogaster,

M. maripaludis, H. sapiens, C.

elegans) (333), Zhang et al.
(106), Xiao et al. dataset (107)

_ Campos et al. datasets (D.
melanogaster, M. maripaludis,

H. sapiens, C. elegans) (333),
Sharma et al. (104)

_

Disease genes prediction Binary classification Nunes et al. dataset (110) _ _ _ _ _

Pseudogene function prediction Interaction/binary
classification

_ _ Fan et al. dataset (CC, MF, BP)
(111)

_ _ _

(Continued)
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TABLE 2 (Continued)

Task name Task type Datasets used in language models Datasets used in word embeddings Datasets used in other methods

Public In-house Public In-house Public In-house

Target gene classification Multi-class
classification

_ _ Arango et al. dataset (113) _ _ _

Candidate gene prioritization &
Selection

Multi-class
classification

_ Toufiq et al. dataset
(114)

_ _ _ _

Gene functions prediction Multi-label
classification

Hu et al. (Human gene set from
gene ontology) (112)

_ GTEx (CC, MF, BP) (111) _ _ _

Gene expression prediction Regression Reddy et al. dataset (Jurkat,
K-562, THP-1) (334)

_ Al Taweraqi et al., dataset (103) _ _ _

Gene taxonomy classification Multi-class
classification

Mock et al. dataset (123) _ Verma et al. dataset (121) CAMI2 Airway
dataset (122)

_ _

Gene network reconstruction Multi-class
classification

_ _ SynTReN dataset (128)
DREAM5 dataset (128)

_ _ Pio et al. dataset
(126), Schaffter
et al. datasets
(DREAM4 10,
DREAM4 100)
(127), Jozefczuk
et al. datasets (E.coli
cold, E.coli head,
E.coli oxidative)
(127)

4mc-Methyl-cytosine
modification prediction

Binary classification Xu et al. datasets (C. elegans, D.
Malenogaster, A. Thaliana,

E.coli, G. subterraneus, G.

pickeringii) (141), Chen et al.,
datasets (C. elegans, D.
Malenogaster, A. Thaliana,

E.coli, G. subterraneus, G.

pickeringii) (135)

_ Khanal et al. datasets (F. vesca,
R. chinensis) (138), Zulfiqar
et al. dataset (136), Zeng et al.
dataset (137)

_ Khanal et al. (138), Chen et al.,
Datasets (C. elegans, D.
Malenogaster, A. Thaliana,

E.coli, G. subterraneus, G.

pickeringii) (135)

Manavalan et al.
(139)

5mc-Methyl-Cytosine
modification prediction

Binary classification Wang et al. dataset (282),
Stanojevic et al. dataset
(GM24385, NA12878,
NA19240, H1ESc, K562, HX1)
(152)

_ Wang et al. dataset (282),
Hyb_2021 (C. elegans, D.
Malenogaster, A. Thaliana,

E.coli, G. subterraneus, G.

pickeringii) (142)

_ Xu et al. (141), Rao Zeng et al.
(140), Saha et al. (135)

Nguyen-Vo et al.
(139)

5hmc-hydroxy-methylcytosine
modification prediction

Binary classification _ _ Lv et al. dataset (M. musculus,

H. sapiens) (156)
_ _ _

6mA-methyladenine
modification prediction

Binary classification Abbas et al. dataset (A. thaliana,
H. sapiens, M. musculus, S.

cerevisiae) (335), DNA 6 mA
dataset (281)

_ Lv et al. dataset (156) _ Zhou et al. dataset (A. thaliana,
C. elegans, C. equisetifolia, D.

melanogaster, F. vesca, H.

sapiens, R. chinensis, S.

cerevisiae, T. thermophile, Xos.
BLS256) (148), Fan et al. dataset
(1, D.malenogaster, 3, 4, 5) (149)

_

(Continued)
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TABLE 2 (Continued)

Task name Task type Datasets used in language models Datasets used in word embeddings Datasets used in other methods

Public In-house Public In-house Public In-house

Methylation modification
prediction

Binary classification Lv et al. dataset 6mA (T.
thermophile, A. thaliana, H.
sapiens, Xos. BLS256, D.
melanogaster, C. elegans, C.
equisetifolia, S. cerevisiae,
Tolypocladium, F. vesca, R.
chinensis) 5hmC (M. musculus,
H. sapiens) 4mC (F. vesca,
Tolypcladium, S. cerevisiae, C.
equisetifolia) (156)

_ _ _ _ _

Conserved non-coding element
classification

Binary classification _ _ _ Polychronopoulos
et al. dataset (163)

_ _

Functional prioritization of
non-coding variants

Multi-class
classification

Logo919 (34) Logo2002 (34)
Logo3357 (34)

_ _ _ _ _

Exon & Intron region
classification

Binary classification Akalin et al. dataset (164) _ _ _ _ _

Recombination spots
identification

Binary classification _ _ Liu et al. dataset (165) _ _ _

Species classification Multi-class
classification

Mouse enhancers (44) Coding
vs. intergenomic (44) human vs.
worm (44) Human enhancers
cohn (44) human enhancers
ensembl (44) Human
Regulatory (44) human nontata
promoter (44) human OCR
ensembl ()

_ _ _ _ _

Prediction of context-specific
functional impact of genetic
variants

Multi-class
classification

eQTLs dataset (36) _ _ _ _ _

Nitrogen cycle prediction Multi-class
classification

_ NCycDB (27) _ _ _ _

Pathogen signature
identification

Binary classification _ _ _ DS500 dataset (171) _ _

Phage-host interactions
prediction

Interaction/binary
classification

_ _ ESKAPE dataset (177), Wang
et al. dataset (176)

_ Qiu et al. dataset (Kingdom,
Phylum, Class, Order, Family,
Genus) (175)

_
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gene expression prediction, gene taxonomy classification, 4mC-
methyl cytosine modification prediction, 5mC-methl cytosine
modification, and 6mA-methyl modification prediction. Notably,
both types of predictive pipelines have utilized 1 common dataset to
evaluate the performance of predictive models developed for three
tasks, namely, enhancer identification, essential gene identification,
and 5mC-methyl cytosine modification prediction.

Furthermore, 112 public and 15 in-house datasets are used
to develop both word embedding and nucleotide compositional
and positional information-based predictive pipelines for 11 DNA
sequence analysis tasks including essential gene identification,
gene network reconstruction, 4mC-methyl cytosine modification
prediction, 5mC-modification prediction, 6mA-methyl adenine
modification prediction, and phage-host interaction prediction.
However, both predictive pipelines have used 9 common pubic
dataset for only three tasks. Specifically, six public datasets for
enhancer-promoter interactions prediction, one public data for
essential gene identification, and two public datasets for 4mC-
Methyl cytosine modification prediction are commonly employed
by both predictive pipelines.

Moreover, Table 2 highlights that 107 public and 9 in-house
datasets are utilized by 9 DNA sequence analysis tasks, namely,
enhancers identification, promoters identification, enhancer-
promoter interaction prediction, splice site prediction, translation
initiation sites identification, essential gene identification, 4mC-
methyl cytosine modification prediction, 5mC-methl cytosine
modification, and 6mA-methyl modification prediction for
developing both language models and nucleotide compositional
and positional information-based predictive pipelines. Merely, 7
public datasets are used commonly by both predictive pipelines for
two tasks: one for promoter identification and six for 4mC-methyl
cytosine modification prediction.

Although all three different types of representation learning-
based predictive pipelines are employed across six different DNA
sequence analysis tasks, namely, enhancers identification,
promoters identification, enhancer-promoter interaction
prediction 4mC-methyl cytosine modification prediction,
5mC-methl cytosine modification, and 6mA-methyl modification
prediction, only on one task, namely, promoters identification, all
three kinds of predictive pipelines are evaluated on one common
dataset. These statistics reveal that researchers have focused
on creating new datasets for each kind of predictive pipelines
instead of using existing datasets. Consequently, this domain
lacks a fair performance comparison between different kinds of
predictive pipelines.

7 A brief look on representation
learning methods and predictors used
in DNA sequence analysis predictive
pipelines

This section dives into 12 most commonly used word
embedding approaches, 8 large language models, 9 machine
learning, 8 deep learning, and 3 statistical algorithms that are
used in development of predictive pipelines for 44 different DNA
sequence analysis tasks.
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FIGURE 5

Utilization of 12 di�erent word embedding approaches and 8 large language models in diverse DNA sequence analysis pipelines based on a variety of

machine and deep learning predictors such that RF, random forest; DF, deep forest; SVM, support vector machine; LogR, logistic regression; NB,

Naive Bayes; kNN, k-nearest neighbors; MLP, multilayer perceptron; CNN, convolutional neural network; GNN, graph neural network; GCN, graph

convolutional network; TCN, temporal convolutional network; GAT, graph attention network; LSTM, long short-term memory; BiLSTM, bidirectional

Llong short-term memory; BiGRU, bidirectional gated recurrent unit; PCT, predictive clustering tree; CRF, conditional random field; FGM, fast

gradient method. All language models are used with self-classifiers and few language models like transformer, ULMFiT, GPT, and BERT are also used

with separate standalone or hybrid algorithms.

7.1 DNA sequence representation learning
using word embeddings

In the domain of natural language processing (NLP), the
introduction of word embedding techniques represented a
significant advancement by enabling the development of more
accurate machine and deep learning predictive models. These
approaches assign statistical vectors to words by capturing
contextual representations of words within extensive, unlabelled
corpora (217, 218). The primary objective is to assign comparable
vectors to semantically similar words and distinct vectors to
dissimilar words (217, 218). Leveraging transfer learning strategies,
these contextual word representations have empowered data-
hungry deep learning models to achieve exceptional performance,
even with limited training data. Following the success of word
embeddings in various NLP tasks (217–220), researchers have
adopted these approaches for genomic and proteomic sequence
analysis tasks, which share similarities with NLP tasks. This section
offers a comprehensive overview of 12 distinct word embedding
approaches that are utilized in DNA sequence analysis predictive
pipelines. Figure 5 visually illustrates the utilization of various word

embedding methods in conjunction with different machine and
deep learning algorithms.

These word embedding approaches leveraged for DNA
sequence analysis tasks can be categorized into two types: (1)
non-graph-based methods and (2) graph-based methods. Non-
graph-based methods segregate DNA sequences into overlapping
or non-overlapping k-mers. Specifically, overlapping k-mers are
generated by sliding a fixed-size window over sequence with
a smaller stride as compared to window size. For instance, for
ACGTG sequence with a window size of 4 and a stride of 1,
the k-mers generated are ACGT and CGTA. Alternatively, in
non-overlapping k-mers generation, window and stride size must
be equal in size. For same sequence used in the overlapping
case, this non-overlapping approach generates only one k-mer,
such as ACGT. The length of the k-mer is determined by the
window size. Researchers often create pre-trained embeddings
with different k-mer sizes and then select the size which
yields best performance in downstream tasks. Once k-mers
are generated, these k-mers sequences are passed to traditional
word embedding models (Word2vec, FastText, GloVe) to
generate representation.
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A high level overview of Figure 5 indicates that various
studies have explored the potential of the Word2Vec embedding
method in combination with 13 different machine and deep
learning algorithms as well as 2 statistical algorithms. The era
of word embedding approaches begin in 2013 with introduction
of Word2Vec (221). Word2vec has two different embeddings
generation paradigm: (1) SkipGram and (2) Continuous Bag of
Words (CBoW). SkipGram learns representations of k-mers by
predicting surrounding k-mers for every k-mers of corpus. The
number of surrounding k-mers is a hyper-parameter that can be
adjusted according to available data. Contrarily, CBoW model
learns k-mers representations by predicting single k-mer based
on the context of its surrounding k-mers. Similar to SkipGram
model, here context of surrounding k-mers is a hyper-parameter.
Word2vec architecture is comprised of input layer, hidden layer,
and an output layer. At input layer, a random d-dimensional
vector is initialized for each k-mer, while the hidden layer extracts
relationships between k-mers. These relationships are further
passed to output layer, which predicts probabilities of output
k-mers based on the context of input k-mers. The predicted
probabilities are passed to loss function which computes loss
value. To facilitate readers, Equation 10 embodies mathematical
expressions for computing loss values of both variants.

{

ESkipGram = − 1
N

∑N
i=1 log(P(wi|Ws))

ECBoW = − 1
N

∑N
i=1

∑

wjǫWs
log(P(wj|wi)))

(6)

In above expression, N refer to number of k-mers, wi indicates
target k-mers, wj is one of k-mers within contextual window, and
Ws refers to set of k-mers in contextual windows of k-mers wi.
After computing loss, weights are updated during back propagation
which eventually helps in generating similar vectors for similar
k-mers and distinct vectors for dissimilar k-mers.

Pennington et al. (222) proposed another k-mers embedding
approach named Global Vectors (GloVe) which generates k-mers
vectors by capturing both global and local contextual information
of k-mer within corpora. It can be seen in Figure 5, in the context of
DNA sequence analysis, the potential of Glove k-mers embedding
method is explored with two distinct deep learning methods.
Primarily, this embedding generation method computes local
and global contextual information by incorporating occurrence
frequencies of k-mer pairs into an objective function shown in
Equation 7.

J =
∑

∀(wi ,wj)

(

wiwj + bi + bj − log(f (Cij))
)2
, (wi,wj)ǫGeneratedPairs

(7)
In above expression, wi and wj are k-mers within a pair, bi and

bj are corresponding biases, and f (Cij) is a weighted function to
normalize co-occurrence matrix values and eradicate biases and
their impact of noise on k-mers embeddings.

Figure 5 shows that Word2Vec is the most commonly explored
word embedding method, followed by FastText. Mikolov et al.
(223) proposed FastText approach by extending the working
paradigm of Word2Vec model. Primarily, this approach handles
out-of-vocabulary (OOV) k-mers by discretizing k-mers into sub

k-mers. After generating sub k-mers. it takes average of sub k-mers
vectors to generate k-mers vectors and passed them to word2vec
model. During back propagation, it updates vectors of both k-mers
and sub k-mers. Through this strategy, vectors are generated for
both k-mers and sub k-mers.

Furthermore, in NLP domain, with an aim to generate more
comprehensive vectors of k-mers by capturing k-mers informative
patterns from textual corpora, researchers have proposed different
graph-based methods. These approaches include DeepWalk
(224), Node2Vec (225), Graph2Vec (226), SDNE (227), SocDim
(228), GraRep (229), Laplacian Eigenmaps (230), Locally Linear
Embedding (231), and OPA2Vec (232). Figure 5 highlights that
within the context of DNA sequence analysis, the potential of
the 7 graph-based methods is less explored compared to the two
foundational word embedding methods, Word2vec and FastText.
In addition, among the graph-based methods, Node2Vec (225)
has been investigated more extensively than DeepWalk (224),
Graph2Vec (226), SDNE (227), SocDim (228), GraRep (229),
Laplacian Eigenmaps (230), Locally Linear Embedding (231), and
OPA2Vec (232). Similar to non-graph-based methods, graph-
based methods segregate sequences into k-mers and generate k-
mers pairs by sliding a 2 size window over k-mers sequences. By
using k-mers paris, a graph is formed where nodes represent k-
mers, and edges represent relationships between the k-mers. For
example, to generate a graph from the DNA sequence ACTGCA
with k = 3, first, overlapping k-mers (ACT, CTG, TGC, GCA)
are generated. By sliding a window of size 2 over these k-mers
sequence, k-mers pairs [(ACT, CTG), (CTG, TGC), and (TGC,
GCA)] are created. These pairs form edges of graph, with k-
mers serving as nodes. Perrozi et al. (224) proposed DeepWalk
approach that utilizes graphical space to generate new sequences by
capturing extensive relationships between k-mers. After generating
new sequences, it makes use of Word2Vec model for generation of
k-mers vectors. In contrast, Grover et al. (225) proposed Node2Vec
approach that utilizes a distinct strategy for generation of new
sequences. Primarily, Node2Vec employs second order random
walk sampling strategy which reaps the benefits of breath first
search (BFS) and depth first search (DFS) algorithms. This strategy
computes probability of visiting next node depending on the
previously visited nodes rather than just randomly selecting one
of neighboring nodes. Naeayanan et al., (226) introduced another
embedding generation approach namely Graph2Vec. It extracts
root node, its sub-graph, and degree of intended sub-graph to
generate a sorted list of nodes which is then passed to SkipGram
with negative sampling (SGNS) model.

Matrix factorization embedding approaches extend graph-
based embedding approaches by using adjacencymatrix rather than
generating new sequences directly from graph. Adjacency matrix
encodes the relationships between nodes within the graph which
is then decomposed using matrix factorization methods namely
SVD and NMF. These approaches also decompose adjacency
matrix of graph into lower-dimensional matrices which represents
node embeddings. These embeddings extract nodes latent features
and relationships between them. Mainly, matrix factorization
methods aim to minimize reconstruction error between original
adjacencymatrix and reconstructedmatrix from node embeddings.
These methods include Laplacian Eigenmaps (230), Locally Linear
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Embedding (231), SDNE (227), SocDim (228), GraRep (229), and
OPA2Vec (232). A closer view of Figure 5 indicates that 6 matrix
factorization embedding approaches method are least explored as
compared to foundational word embedding methods (Word2vec,
FastText) and graph-based methods.

Laplacian Eigenmaps (230) approach derives degree matrix
from adjacency matrix and computes graph Laplacian matrix by
computing the difference between degree matrix and adjacency
matrix. Next, it computes eigen values and constructs eigenvectors
corresponding to smallest non-zero eigenvalues which results in
generating lower-dimensional k-mer embeddings and preserving
local k-mers relationships. Another matrix representation
approach graph representations (GraRep) (229) make use of
adjacency (Ai,j) and degree (Di,j) matrices driven from nodes and
edges of graph. Equation 8 depicts mathematical expression for
computing proximity matrix from Ai,j and Di,j matrices.

Pi,j = log

(

Ai,j

Di,j

)

− log

(

1

V

)

(8)

where V represents total number of nodes in graphs. Calculated
proximity matrix is further passed to singular value decomposition
approach for generating k-mer embeddings. Moreover, this
approach focuses on extracting similarities between nodes by using
k-step information of neighbors where levels of neighbors can be
represented through k-steps. Similar to GraRep approach, SocDim
(228) generates k-mer representations by incorporating social
dimensions, namely, attributes and network structures. Specifically
in SocDim, adjacency and degree matrices are used to compute
modularity matrix by using Equation 9.

Mi,j = A−
1

2m

(

DDT
)

(9)

where m represents edges, and D represents degree matrix. Similar
to GraRep, modularity matrix is passed to SVD for k-mers
embeddings generation.

Moreover, structural deep network embedding (SDNE) (227)
leverages deep auto-encoders to generate k-mer embeddings by
determining first and second order proximities to ensure connected
k-mers have similar embeddings. SDNE model architecture is
trained to optimize combined loss function that incorporates both
proximities and finally generates low-dimensional representations
by capturing non-linear relationships between nodes and encoding
structural information into embeddings. Afterward, structural
embedding aims to address limitations of k-mer embeddings
approaches in capturing structural and semantic information of
nodes and edges in heterogeneous networks. Among structural
embedding approaches, Opa2Vec (232) makes use of individual
entities containing structured knowledge or characterized classes
axioms and unstructured information or metadata, i.e., textual
annotations and passes them semantic reasoner tool (Elk/HermiT)
for generating ontology sequence which is then passed to
Word2Vec model for generating representations. Locally linear
embedding (LLE) (231) method identifies neighboring k-mers
for each k-mer in the sequence and determines weights by
employing graph Laplacian concept which linearly reconstructs
each k-mer from its neighbors. Afterward, it computes sum of

edges between close k-mers by using heat-kernel method which
ensures weights of connected k-mers as 1 and unconnected k-
mers as 0, ultimately maintaining the reconstruction relationship.
These weights extract both semantic and syntactic information
and maintain the reconstruction relationship. By optimizing
reconstruction error and computing eigenvectors, LLE generates
embeddings for each k-mer in the sequence. These embeddings
represent the k-mers in a reduced-dimensional space, where similar
k-mers in context are closer together.

Specifically, for DNA sequence analysis tasks, word embeddings
methods are being utilized to generate pre-trained embeddings
in 2 different ways: In one way, sequences are segregated into k-
mers and embeddings of k-mers are generated. In second way,
embeddings are generated for whole DNA sequence. Moreover,
most of the DNA sequence analysis predictors follow first way
to generate embeddings (21, 39, 45, 47–49, 58, 59, 64–66, 76, 78,
79, 82, 92, 105, 106, 113, 121, 122, 136–138, 151, 153, 163, 165,
171, 173, 233–235), but second way is utilized by only few tasks
including gene-disease association prediction (110), pseudogene
function prediction (111), promoter identification (236), essential
gene prediction (107, 108), gene network reconstruction (128), and
gene expression prediction (103). In this section, we have defined
methods from first way perspective. A comprehensive detail about
second way is available in following articles (103, 107, 108, 110, 111,
128, 236).

In a nutshell, word embedding approaches have significantly
propelled 44 distinct DNA sequence analysis tasks, enriching
the research community with the development of robust and
precise models. Notably, conventional word embedding techniques
such as Word2Vec, GloVe, and FastText excel in capturing k-
mers context and sub k-mers information effectively. In contrast,
innovative techniques such as Graph2Vec, Node2Vec, DeepWalk,
and GraRep harness graph-based methodologies to enhance
embeddings based on connectivity and proximities. In addition,
SocDim and OPA2Vec offer distinctive perspectives by integrating
social and ontological elements, while SDNE combines local and
global structural insights through deep autoencoders. Locally
linear embedding (LLE) and Laplacian eigenmaps are dedicated to
preserving local geometric properties. Ultimately, each approach
makes a distinctive contribution to driving significant progress in
DNA sequence analysis.

7.2 DNA sequence representation learning
using language models

In the evolving landscape of natural language processing
(NLP), the inception of the Transformer model has announced
a new era of advancements, setting the precedent for subsequent
developments in language models (237, 238). The Transformer and
distinct language models, including BERT, GPT-3, and ELECTRA,
have significantly contributed to pushing the boundaries of what
machines can understand and generate in terms of human language
(237, 238). The importance of these models lies not only in their
ability to comprehend and produce text but also in their application
across different domains including genomics and proteomics
sequence analysis (239). These models have found multifarious
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TABLE 3 Summary of 8 contemporary language models used in DNA sequence analysis.

Architecture type Language model,
release year

Language model variants Number of
layers in
encoders

Number of
layers in
decoders

Trivial LSTM based language model ULMFiT, (243), 2018 AWD-LSTM language model 1 _

Encoder-decoder Transformer_XL (336), 2019 Transformer_XL Large (WikiText-103) 24 24

24L Transformer_XL (text8) 24 24

12L Transformer (enwik8) 12 12

18L Transformer (enwik8) 18 18

24L Transformer (enwik8) 24 24

Transformer_XL base (Billion Word) 12 12

Transformer_XL large (Billion Word) 24 24

Encoder-decoder Transformer, (241), 2017 Base 6 6

Big 6 6

ELECTRA, (246), 2020 Small 12 _

Base 12 _

Large 24 _

ALBERT, (245), 2020 Base 12 _

Large 24 _

xLarge 24 _

xxLarge 12 _

BERT, (244), 2019 Base 12 _

Large 24 _

XL-Net, (242), 2019 Base 12 _

Large 24 _

Decoder-only GPT, 2018 GPT-1 (337) _ 12

GPT-2 small (338) _ 12

GPT-2 medium (338) _ 24

GPT-2 Large (338) _ 36

GPT-3 (247) _ 96

GPT-4 (339) _ 120

applications in genomics and proteomics sequence analysis tasks by
generating highly effective representations of biological sequences
(239). To facilitate DNA sequence analysis researchers, here we
briefly delve into the key features, advantages, and disadvantages
of commonly used eight modern sophisticated language models,
namely, Transformer (102), Transformer-XL (50), XLNet (156),
ULMFIT, BERT (156), ALBERT (156), ELECTRA (156), and
GPT-3 (240). Table 3 presents 8 distinct language models and
their variants, categorized into 4 different groups based on
their architectures. These architectures include trivial LSTM-
based language model, encoder-decoder architecture, encoder-only
architecture, and decoder-only architecture. Table 3 also provides
information about language model architecture and outlines
number of layers as well as count of encoders or decoders and their
respective layers.

The Transformer model, introduced in 2017 by Vaswani et al.,
(241) marks a significant departure from previous models that

relied on recurrent or convolutional neural networks for processing
sequential data. This model utilizes a unique architecture that
focuses on attention mechanisms which allows to handle long-
range dependencies and understand the context and semantics
of sequences more effectively (102, 241). Key innovations of
the Transformer include positional encoding and self-attention
mechanisms (102, 241). Positional encoding assigns a unique
number to each individual k-mer or group of k-mers and helps
in grasping k-mers order and sequence context. The self-attention
mechanism allows the model to weigh the importance of each
k-mer in relation to others, enhancing its ability to process
and predict scientific language patterns (102, 241). The main
advantage of the Transformer is its efficiency in training and
inference due to parallel processing of sequences (102, 241).
However, it requires substantial computational resources, which
can be a limiting factor in resource-constrained environments.
Despite this, its flexibility and scalability in handling diverse
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genomics tasks make it a preferred choice in many advanced AI
applications (102).

Transformer-XL extends the Transformer architecture to
address the limitation of fixed-length context by incorporating
mechanisms that capture long-range dependencies more effectively
(50). This model enhances the ability to maintain context over
longer sequences than standard Transformer models, which
significantly improves performance in various genomics and
proteomics sequence analysis tasks (50). The core innovations
of Transformer-XL include the introduction of a segment-level
recurrence mechanism and a novel relative positional encoding
(50). These features allow the model to reuse past information
and thereby extend the context window across different segments.
This design enables Transformer-XL to handle longer biological
sequences efficiently and provides a substantial improvement over
traditional models where each segment is processed in isolation
(50). One of the main advantages of Transformer-XL is its
capability to learn dependencies that are significantly longer than
those captured by traditional models, leading to improvements in
both short and long sequence analysis tasks (50). However, the
model demands more memory due to its recurrence mechanism
and larger context handling, which could be a limitation in
resource-constrained environments.

XLNet extends the Transformer-XL model using an
autoregressive method (242). This approach allows XLNet
to learn bidirectional contexts by maximizing the expected
likelihood over all permutations of the input sequence order
which significantly enhances its scientific language understanding
capabilities (242). Primary innovation of XLNet is its permutation
language modeling (PLM), which enables the model to predict
the likelihood of a sequence by considering all permutations of
the k-mers within it (156, 242). This method allows XLNet to
capture a comprehensive bidirectional context, unlike traditional
autoregressive models only consider a single direction. In addition,
XLNet incorporates a two-stream self-attention mechanism which
enhances its ability to manage the context more effectively during
the prediction process (156, 242). One of the main advantages
of XLNet is its robustness in modeling bidirectional contexts,
which significantly outperforms previous models such as BERT in
numerous genomics sequence analysis tasks (156, 242). However,
the complexity of its training process, which involves permutation
of input sequences and a two-stream attention mechanism, may
pose challenges in terms of computational resources and time
(156, 242).

Universal Language Model Fine-tuning (ULMFiT) has
revolutionized natural language processing by introducing
effective transfer learning techniques for various NLP tasks. It is
developed by Jeremy Howard and Sebastian Ruder in 2018 (243),
and it typically leverages a pre-trained language model which
is fine-tuned on specific DNA sequence analysis tasks having
minimal sequences (243). ULMFiT utilizes Average Stochastic
Gradient Descent - Long Short-Term Memory (AWD-LSTM)
architecture to learn the distribution and contextual relationships
of k-mers in DNA sequences (57). It employs self-supervised
learning that predicts the next k-mer based on the previous known
k-mers and enables the model to capture the semantics and
discriminative potential of the sequences (57). The core innovation

of ULMFiT lies in its ability to fine-tune pre-trained language
models using techniques such as discriminative fine-tuning and the
slanted triangular learning rates policy. Discriminative fine-tuning
considers that different layers of neural network capture different
kind of information; hence, it tunes every layer with distinct
learning rates (243), whereas slanted triangular learning rate
describes a unique learning rate scheduler that initially increases
the learning rate and afterward drops it in a linear fashion (243).
The short increase stage enables the model to quickly converge to
a parameter space suitable for the task, while the extended decay
period allows for more effective fine-tuning (243). By adjusting
the learning rate for different layers, it prevents catastrophic
forgetting and stabilizes the training process across various tasks
(243). ULMFiT incorporates dropout techniques to regularize
learnable parameters and prevent overfitting which ensures
model’s generalization ability (57). Another advantage of ULMFiT
is its ability to achieve high performance with significantly less
data compared to traditional models. However, the complexity of
fine-tuning and the need for careful calibration of learning rates
can be challenging, requiring a nuanced understanding of model
behavior across different layers (57).

Bidirectional Encoder Representations from Transformers
(BERT) is developed by Google in 2018 (244). It is pretrained
on a large corpus of text data, such as Wikipedia and books
(244). It has revolutionized NLP tasks by employing a transformer-
based architecture that enables the model to consider the context
of k-mers from both directions simultaneously, rather than a
single direction at a time (244). BERT is distinctive for its deep
bidirectional nature, achieved through the application of the
transformer model, specifically using mechanisms such as Masked
Language Modeling (MLM) and Next Sentence Prediction (NSP)
(244). This approach allows BERT to understand the context of a
k-mer based on all other k-mers in a sequence, rather than just
those preceding it. Specifically, it learns to capture the semantics
and contextual information of the input text exceptionally well
through self-supervised learning tasks such as MLP and NSP (244).
In the case of DNA sequence analysis, BERT is used to transform
DNA sequences into statistical feature space and then fine-tuned
on specific downstream tasks, such as enhancer identification and
strength prediction (156). BERT captures the semantics of DNA
sequences by dynamically learning their representations through
a multihead self-attention mechanism. BERT leverages transfer
learning by pre-training on a large corpus and then fine-tuning on
specificDNA sequence analysis task, allowing it to adapt to different
applications (156). BERT uses MLM and NSP tasks during pre-
training to learn the contextual relationships between k-mers in
DNA sequences (156).

The primary advantages of BERT include its high accuracy and
efficiency across various DNA sequence analysis tasks, due to its
robust handling of context and bidirectional training (156). BERT
captures both discriminative and semantical relationships of k-
mers, making it effective in characterizing DNA sequences (156).
BERT-based models have shown improved performance compared
to traditional approaches in different DNA sequence analysis tasks
such as enhancer identification and strength prediction (156). In
addition, BERT can be adapted to specific application scenarios by
pre-training on domain-specific custom corpora (156). BERT is a
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large model that requires significant computational resources for
training and inference on extensive datasets. BERT performs best
when trained on large and diverse datasets, which may not always
be available for specific DNA sequence analysis tasks. In addition,
while BERT provides state-of-the-art results in many scenarios,
it requires fine-tuning for specific tasks, which can be resource-
intensive. BERT performance can degrade with longer texts and the
complex architecture of BERT makes it challenging to interpret the
learned representations and understand the underlying biological
mechanisms (156).

ALBERT, introduced by Google researchers, is a streamlined
version of BERT designed to provide state-of-the-art results in NLP
with significantly fewer parameters (245). This model enhances
the efficiency and scalability of BERT by incorporating innovative
techniques such as factorized embedding parameterization, cross-
layer parameter sharing, and sentence order prediction (156, 245).
Factorized embedding parameterization technique reduces the size
of the embedding matrix by separating the vocabulary and hidden
layer sizes, which decreases the number of parameters significantly
(156, 245). In cross-layer parameter sharing, parameters are shared
across all layers of the model, reducing the total parameter count
and improving training efficiency (156, 245). It replaces the next
sequence prediction with sequence order prediction to enhance
the model’s ability to understand sequence coherence without
requiring task prediction, making it more effective for downstream
tasks (156, 245). The primary advantage of ALBERT is its reduced
parameter size, which allows for faster training times and less
memory usage compared to BERT, without a significant loss in
performance. However, the extensive parameter sharing might lead
to a slight decrease in model flexibility, potentially affecting task-
specific fine-tuning (156, 245). Efficiently Learning an Encoder
that Classifies Token Replacements Accurately (ELECTRA) (156,
246) has introduced a novel pre-training method for language
models. ELECTRA operates on a replaced token detection (RTD)
mechanism, where it differs from traditional masked language
models such as BERT (156, 246). Instead of masking k-mers,
ELECTRA corrupts the input by replacing tokens or k-mers with
outputs from a generator model, challenging the discriminator to
identify changes (156, 246). This approach allows themodel to learn
from the entire input sequence, enhancing training efficiency. The
primary advantage of ELECTRA lies in its efficiency, requiring less
computational power and time to reach or exceed the benchmarks
set by larger models (156, 246). However, the complexity of its dual-
model architecture, involving both a generator and a discriminator,
might pose challenges in training stability and hyperparameter
tuning.8

GPT-3 is one of the most advanced AI language models
developed by OpenAI (247). It is recognized for its ability to
generate text that closely mimics human writing, making it a
pivotal development in natural language processing. GPT-3 builds
upon the transformer architecture, which utilizes self-attention
mechanisms to process input data (247). Unlike GPT-2, which
had 1.5 billion parameters, GPT-3 boasts a staggering 175 billion
parameters. This exponential increase in parameters enhances

8 https://research.google/blog/more-e�cient-nlp-model-pre-training-

with-electra/

its ability to generate coherent and contextually relevant text
(247). GPT-3 differs from models such as BERT and XLNet by
maintaining an autoregressive nature. From scientific perspective,
this implies that it predicts the next k-mer in a sequence based on
the previous k-mers, while BERT uses bidirectional context (240,
247). One of the innovative aspects of GPT-3 is its use of alternating
dense and locally banded sparse attention patterns. Dense attention
considers all input k-mers simultaneously, while sparse attention
focuses on a subset of k-mers, making the model more efficient
and scalable. This combination enables GPT-3 to handle long-range
dependencies and maintain computational efficiency (240, 247).
One of GPT-3’s standout capabilities is its performance in few-
shot settings. Unlike fine-tuned models that require large amounts
of task-specific data, GPT-3 can perform well on new tasks with
minimal sequences. This flexibility is a significant advantage over
models such as BERT, which typically require extensive fine-tuning
for each specific task. GPT-3 demonstrates strong performance
across various tasks, often matching or exceeding that of fine-tuned
models. This capability makes it a versatile tool for a wide range of
applications (240, 247).

For instance, in context of cell biology, scientific researchers
have used GPT-3 to learn gene and cell embeddings effectively
(240). Scientific researchers have utilized the text summaries of
genes from the NCBI database, which contain curated information
about gene functionalities and properties. The gene text summaries
are passed through the GPT-3 language model, which generates
gene embeddings that capture the underlying biology described
in the gene summaries (240). The gene embeddings are averaged,
weighted by the expression levels of each gene in the cell. These
averaged embeddings are then normalized to a unit l2 norm to
generate single-cell embeddings (240). In another strategy, each cell
is represented by a natural language sentence constructed based
on the ranked gene expressions. The gene names are ordered
by descending normalized expression levels, and this sentence
representation is passed through the GPT-3 model to obtain the
cell embeddings (240). Extrinsic performance analysis of GPT-
3 embeddings on tasks such as classifying gene properties or
cell types has shown supreme effectiveness (240). While GPT-
3’s capabilities are groundbreaking, it faces challenges such as
potential biases in training data and high computational demands.
Moreover, its “black box” nature makes it difficult to discern how
decisions are made, posing ethical and operational concerns. GPT-
3’s massive size requires significant computational resources for
both training and inference. This makes it less accessible for smaller
organizations or researchers without high-end hardware.

7.3 Machine and deep learning predictors

Machine and deep learning algorithms need statistical vectors
to extract useful patterns for specific sequence analysis task.
A comprehensive literature review of 127 studies reveals that
12 word embedding and 8 large language models have been
used to generate statistical vectors of raw sequences to feed
28 different algorithm available within predictive pipelines of
44 DNA sequence analysis tasks. Based on working paradigms,
these algorithms are categorized into 3 different categories,
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namely, statistical algorithms, machine learning algorithms, and
deep learning algorithms. From 28 algorithms, 3 algorithms,
namely, conditional random fields (CRF) (248), k-means clustering
algorithm (21), and cosine similarity algorithm (173), belong
to statistical algorithms. Machine learning algorithms involves 8
algorithms, namely, support vector machine (SVM) (352), Naive
Bayes (NB) (95), multilayer perceptron (MLP) (77), predictive
clustering tree (PCT) (128), random forest (RF) (103), deep forest
(DF) (61), XGBoost (352), and CatBoost (143). Furthermore,
deep learning algorithms include convolutional neural network
(CNN) (91), graph neural network (GNN) (104), temporal
convolutional network (TCN) (235), graph convolutional network
(GCN) (55), graph attention network (GAT) (108), long short-
term memory (LSTM) (97), bidirectional long short-term memory
(BiLSTM) (58), and bidirectional gated recurrent unit (BiGRU)
(82). Similarly, 8 algorithms, namely, ELECTRA (89), ALBERT
(249), Transformer-XL (50), XL-Net (156), Transformer (250),
ULMFit (146), GPT-3 (114), and BERT (251), belong to language
modeling algorithms, five algorithms, namely, LSTM + CNN, CNN
+ BiLSTM, CNN + BiLSTM + BiGRU, RF + CNN, and CNN +
BiGRU, belong to hybrid algorithms, whereas 1 meta-predictor
reaps benefits of both machine and deep learning algorithms,
namely, KNN, RF, SVM, MLP, and CNN.

Statistical algorithms provide a framework for understanding
DNA sequence distribution and characteristics. They offer valuable
advantages in terms of interpretability by facilitating researchers
to assess statistical significance of genomic features. Among three
statistical algorithms, Conditional Random Fields (CRF) (248)
calculate the conditional probability of class labels of sequences
by using neighboring k-mers. By capturing dependencies between
adjacent labels, CRF allows for more accurate predictions of
sequence features by taking into account both local sequence
context and broader genomic patterns. K-means clustering
algorithm (21) groups sequences into k distinct clusters based
on similarity. It starts by initializing k centroids and assigns
each sequence to the nearest cluster by calculating Euclidean
distance between sequence and centroid. These centroids are
updated iteratively by averaging the sequences in each cluster
until they stabilize. Cosine similarity can be advantageous in DNA
sequence analysis for tasks such as similarity comparison and
clustering, where measuring the similarity between sequences is
essential (252). Cosine similarity can handle high-dimensional
data efficiently and is suitable for tasks requiring similarity-based
analysis (252). These models also have limitations, including
potential difficulties in managing complex and high-dimensional
data. In addition, they rely on strong assumptions about underlying
data distribution, which may not always align with real-world DNA
sequence analysis scenarios. Despite these challenges, statistical
models remain indispensable tools in DNA sequence analysis and
provide valuable insights.

From 8 different machine learning algorithms, support vector
machine (SVM) operates by finding the optimal hyperplane that
best separates data points into different classes. SVMs are known
for their ability to handle high-dimensional data and work well
in cases where the data are not linearly separable, as they can
use kernel functions to transform the data into higher dimensions
where separation is possible (62). However, SVMs can have

limitations in terms of training time, especially with large datasets,
as they need to solve a complex optimization problem to find
the best hyperplane that separates the classes. Naive Bayes (NB)
is a probabilistic algorithm based on Bayes’ theorem with the
assumption of independence between features. NB is efficient,
simple to implement, and works well with high-dimensional
data, making it suitable for tasks where feature independence
assumptions hold (253). However, it may not always hold true in
practice, especially in complex biological datasets where features
are correlated.

In addition to SVM, tree-based algorithms are fundamentally
built upon decision tree algorithm. Decision tree algorithm uses
independent variables to construct a tree-like structure, where
data are split at decision nodes into branches connected to leaf
nodes tomake predictions. This foundational algorithm is extended
into more advanced algorithms, namely, Random Forest (RF),
Deep Forest (DF), XgBoost, CatBoost, and Predictive Clustering
Tree (PCT) (128). All of these advanced algorithms enhance basic
decision tree by incorporating techniques such as ensembling, and
boosting for improved accuracy and generalization. Random Forest
(RF) algorithm is an ensemble learning method that constructs a
multitude of decision trees during training and outputs the mode
of the classes as the prediction. RF is known for its robustness to
overfitting, feature importance estimation, and ability to handle
high-dimensional data with ease (254). However, RF may not
perform as well when dealing with imbalanced datasets or when
there are many irrelevant features present in the data. Deep forest
(DF) algorithm is another ensemble learning method that utilizes a
cascade structure of multiple random forests to make predictions.
DF can be advantageous in DNA sequence analysis for tasks such
as clustering and species classification based on DNA barcodes
(255). DFs are capable of learning hierarchical representations
of data and can capture complex patterns in high-dimensional
spaces effectively (255). Nonetheless, the main drawback of DF
lies in its computational complexity and the need for substantial
computational resources, which can limit its practicality in large-
scale DNA sequence analysis projects. XGBoost combines multiple
weak learners to create a strong predictive model. XGBoost can
handle large datasets with high dimensionality and is known for
its efficiency in boosting the performance of weak learners (256).
However, XgBoost may require fine-tuning of hyperparameters to
achieve optimal performance, and it could be sensitive to noisy
data. CatBoost is another ensemble learning method designed to
handle categorical features efficiently. CatBoost can automatically
handle categorical features and is known for its robustness to
overfitting and efficiency in training models with categorical data
(256). Nevertheless, CatBoost’s training time might be longer
compared to other algorithms, especially when dealing with large
genetic datasets.

Predictive clustering tree (PCT) (128) is a versatile predictor
that integrates elements of both clustering and supervised learning.
Unlike traditional decision trees, random forests, or support vector
machines, PCTs are designed to handle hierarchical multi-label
classification tasks, making them particularly effective for complex,
high-dimensional data (128). PCTs operate by viewing a decision
tree as a hierarchy of clusters. The root node represents a single
cluster containing all training examples, which is recursively
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partitioned into smaller clusters as one moves down the tree.
This approach allows PCTs to simultaneously perform clustering
and classification, leveraging the hierarchical structure to predict
multiple labels for each instance (128). One of the key strengths
of PCTs is their ability to manage complex data with multiple
interrelated labels. They can identify relevant features across
different levels of the hierarchy, providing interpretable results that
are valuable for domain experts. In addition, PCTs are capable of
handling large datasets efficiently, making them suitable for various
real-world applications (128). Despite their strengths, they can be
computationally intensive, especially for large and deep hierarchies,
and may require careful parameter tuning to avoid overfitting.
In addition, while PCTs offer interpretability, the complexity of
the hierarchical structure can sometimes make the results harder
to interpret compared to simpler models (128). Apart from this,
researchers have also designed customized meta-predictors which
utilize the powers of five or more than five distinct algorithms,
namely, kNN, RF, SVM, MLP, and CNN (105).

Multilayer perceptron (MLP) is composed of multiple layers of
nodes that can learn complex patterns in data. MLPs are powerful
algorithms for feature extraction and predictive modeling in DNA
sequence analysis, capable of capturing intricate relationships in
the data (252). MLPs excel in tasks requiring non-linear decision
boundaries and can handle large amounts of data effectively.
However, training MLPs can be computationally expensive,
especially with large datasets, and they are prone to overfitting if
not properly regularized.

Among all categories, deep learning algorithms are most
extensively used for efficient DNA sequence analysis. A total
of eight deep learning algorithms are most commonly used by
scientific community for DNA sequence analysis. Convolutional
neural network (CNN) is a deep learning algorithm designed to
process structured grid-like data, such as images. In DNA sequence
analysis, CNNs can be applied to DNA sequence analysis tasks
to capture spatial dependencies in data. They are effective for
tasks that require feature hierarchies and translation invariance
(257). However, CNNs may struggle with capturing long-range
dependencies in sequences, which can be crucial in DNA analysis
where distant k-mers may interact. Graph neural network (GNN)
is a type of neural network designed to operate on graph-
structured data. GNNs are suitable for tasks involving relational
data, such as molecular structures, making them applicable to
DNA sequence analysis for tasks such as clustering (258). GNNs
can effectively capture dependencies between nodes in a graph
and are capable of learning representations that incorporate both
local and global information (258). However, GNNsmay encounter
challenges in efficiently scaling to large graphs, and interpreting the
learned representations in GNNs can be complex, limiting their
interpretability. Temporal convolutional network (TCN) is a type
of neural network designed to process sequential data efficiently.
TCNs are suitable for tasks involving temporal dependencies,
making them applicable to DNA sequence analysis for tasks like
predicting DNA binding sites for transcription factors. TCNs
can capture long-range dependencies in sequential data and are
known for their parallel processing capabilities, enabling faster
training times (259). However, TCNs may struggle with modeling
complex temporal dynamics compared to recurrent models such as

LSTMs. Graph convolutional network (GCN) is a type of neural
network designed to operate on graph-structured data. GCNs
can leverage graph structures to learn representations of nodes
and edges, enabling tasks such as node classification and link
prediction in DNA sequences (256). However, GCNs may require
meticulous graph construction and preprocessing, and they can be
computationally intensive, especially for large graphs, which can
hinder their scalability.

Graph attention network (GAT) is a type of neural network
that incorporates attention mechanisms to learn the importance of
neighboring nodes in a graph. GATs are suitable for tasks involving
relational data, as they can adaptively weigh the contributions of
neighboring nodes, enabling more flexible and accurate learning
on graph-structured data (260). However, GATs may be sensitive
to noisy or sparse graphs, and designing optimal attention
mechanisms can be challenging, impacting their performance
in certain scenarios. Long short-term memory (LSTM) is a
type of recurrent neural network designed to capture long-term
dependencies in sequential data. LSTMs are effective in DNA
sequence analysis for tasks such as hypersensitive DNA sequence
classification (261). LSTMs can retain information over long
sequences and are suitable for tasks requiring memory of past
events, making them ideal for tasks such as classification of DNA
sequences (261). However, LSTMs may encounter vanishing or
exploding gradient problems during training, which can affect their
ability to capture long-term dependencies accurately. Bidirectional
long short-term memory (BiLSTM) is an extension of LSTM that
processes sequences in both forward and backward directions.
BiLSTMs are advantageous in DNA sequence analysis for tasks
where contextual information from both past and future is essential
(262). BiLSTMs can capture dependencies in both directions and
are effective in tasks requiring bidirectional context understanding
(262). However, BiLSTMs may be computationally intensive due
to processing sequences in two directions, which can impact their
training and inference speed. Bidirectional gated recurrent unit
(BiGRU) is another type of recurrent neural network that combines
the advantages of bidirectionality and gating mechanisms. BiGRUs
can capture bidirectional dependencies efficiently and are known
for their simpler architecture compared to LSTMs, making them
computationally more efficient (256). However, BiGRUs may
struggle with capturing very long-term dependencies compared
to LSTMs, which can limit their effectiveness in tasks requiring
extensive memory retention.

For different DNA sequence analysis tasks, eight contemporary
language models, namely, ELECTRA, ALBERT, Transformer-
XL, XLnet, Transformer, ULMFit, GPT-3, and BERT have been
used in two different settings. In first setting, the addition of
classification layers to these language models adapts the general-
purpose language models to specific classification tasks by learning
to map the rich contextual embeddings to the desired output
classes. In second setting, rich contextual embeddings of these
8 language models are passed to standalone machine learning
algorithms, deep learning algorithms, and ensemble or hybrid
algorithms for accurate classification of DNA sequences.

A total of five hybrid algorithms combine different types
of models to leverage the strengths of each component.
LSTM + CNN, CNN + BiLSTM, CNN + BiLSTM + BiGRU,
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RF + CNN (76), and CNN + BiGRU are some of the
examples of hybrid algorithms that integrate deep learning
and traditional machine learning techniques to enhance predictive
performance (263) for different DNA sequence analysis tasks.
These hybrid models aim to capitalize on the complementary
advantages of different algorithms to achieve superior results in
various tasks.

8 Uncovering evaluation measures for
DNA sequence analysis predictive
pipelines

AI-driven DNA sequence analysis predictive pipelines are
evaluated using two different experimental settings: (1) k-fold
cross-validation (48, 78) and (2) Train-test split (108, 110). In k-
fold cross-validation, dataset is splitted into k folds, where k − 1
folds are used for training and one fold is used for testing. In
next iterations, from k-folds, another fold is reserved for testing
whereas remaining k − 1 folds are used for training. In this way,
pipelines are trained and tested k times on whole data. This method
offers more precise assessment of model generalization capability.
Specifically for deep learning models (236), an additional set,
known as validation set, is created from training set which typically
uses 10% of training data. This validation set is used to optimize the
model’s hyperparameters. In train-test split experimental setting,
data are divided into two distinct sets: (a) train set and (b) test
set. Train set comprises majority of data (usually 70%–80%), while
test set contains remaining 20%–30%. Similar to k-fold cross-
validation, validation set is also created from train set for deep
learning models.

Among 127 DNA sequence analysis studies, 67 studies have
utilized 5-fold cross-validation-based experimental setting. Thirty
five studies have used 10-fold cross-validation-based setting and 17
studies have used train test split-based setting. Eight studies have
used both k-fold cross validation and train test split-based setting.
Performance and effectiveness of trained predictive pipelines highly
depends on ability to handles new and unseen data. To assess
effectiveness and performance of predictive pipelines from different
perspectives, various evaluation measures have been proposed.
Based on task type, these measures are categorized into four
classes: binary (92, 153)/multi-class classification (27, 173), multi-
label classification (111, 112), regression (102, 103), and clustering
(21). Following subsections summarize details of all four types of
evaluation measures.

8.1 Binary or multi-class classification
evaluation criteria

Most commonly used evaluation measures in this category are
accuracy (152, 153, 264), precision (137, 152), recall (152, 153),
specificity (137, 153), F1 Score (137, 152), and MCC (137, 153).
These measures are typically calculated using confusion matrix,
which consists of four entities: true positives (TP), false positives
(FP), true negatives (TN), and false negatives (FN) (265). Figure 6

FIGURE 6

Overview of confusion matrix.

makes use of aforementioned four entities to compute distinct
evaluation measures.

It can be seen in Figure 6 that TP and TN indicate
correct positive and negative predictions, while FP and
FN signify incorrect positive and negative predictions.
Equation 10 embodies mathematical expressions to compute
aforementioned measures.

f (x)balanced =























































Accuracy (Acc) = TP+TN
TP+FP+TN+FN

Precision (PR) = TP
TP+FP

Recall (REC) = TP
TP+FN

F1− Score = 2∗Pr∗R
Pr+R

Specificity (Sp) = TN
TN+FP

MCC = (TP×TN )−(FP×FN )√
(TP+FP)(TP+FN )(TN+FP)(TN+FN )

(10)

An in-depth assessment of existing DNA sequence analysis
predictive pipelines reveals that most widely used evaluation
measures for balanced datasets are F1-score, precision, accuracy,
recall, specificity, and Matthews correlation coefficient (MCC).
However, for imbalanced datasets, micro, macro, and weighted
versions of these measures are used. To address class imbalance
issue, weighted precision (266) considers both precision and
relative weight of each class. Precision of a class is ratio of
true positives to total number of positives for that class, while
relative weight is proportion of samples of that class relative to
total number of samples. Similarly, weighted recall (266) and
weighted F1-score (27) are calculated by determining weights,
recall, and F1-score for each class. Macro precision (146) calculates
precision for each class independently and then averages these
values. Macro recall (146) and macro F1-score (146) average recall
and F1-score across all classes by considering each class equally
regardless of size. In contrast, micro precision (146) calculates
precision globally by considering all true positives and false
positives across all classes together. Micro recall (146) and micro
F1-score (146) aggregate TP, FP, and FN across all classes and
provides a fair and balanced evaluation of predictor performance.
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Equation 11 provides mathematical expressions for computing
these measures.

f (x)imbalanced =
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where TP
i, FPi, and FN

i refer to true positives, false positive, and
false negatives in class i, respectively. Pri, Ri, and F1− scorei signify
precision, recall, and F1-score of class i. wi indicates relative weight
of class i, and i refers to ith class among n classes.

8.2 Multi-label classification evaluation
measures

Performance evaluation of multi-label classification predictive
pipelines is more challenging compared to binary and multi-
class classification predictive pipelines (267). In binary or multi-
class classification, each sample is assigned to only one class
at a time, so predicted class label will be either true or false.
Contrarily, in multi-label classification, a sample belongs to two
or more labels simultaneously and predictive pipelines predicts
multiple labels (267). Among predicted labels, some labels can
be correct, some labels can be incorrect, or all predicted labels
can be correct or incorrect. This partial correctness introduces
complexity. To address this problem, researchers have developed
various evaluation measures, namely, accuracy (268), precision
(268), recall (268), and hamming loss (269).

Equation 12 illustrates the mathematical expressions for these
evaluation measures.

f (x)multi−label =
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In these equations, N represents total number of samples,
ni denotes ith sample out of N samples, Ai is actual class
label, and Pi is the predicted label for ni sample. l represents
sample length, j denotes class index, ∨ signifies logical OR
operator, and ∧ represents logical AND operator. Similar to
evaluation measures in binary or multi-class classification and
includes micro precision, micro recall, micro F1-score, macro
precision, macro recall, macro F1-score, weighted precision,
weighted recall, and weighted F1-score. A rigorous analysis of
existing literature on multi-label classification tasks in DNA
sequence analysis reveals that most widely used evaluation
metrics are accuracy, precision, recall, F1-score, MCC, sensitivity,
and specificity.

8.3 Regression evaluation criteria

Regression tasks differ fundamentally from classification
tasks where model predicts continuous numerical values rather
than discrete class labels. Regression task-related predictive
pipelines are evaluated using distinct evaluation measures
including mean squared error (MSE) (270), mean absolute error
(MAE) (271), mean bias error (MBE) (272), mean absolute
percentage error (MAPE) (273), root mean square error (RMSE)
(271), R2 (274), relative mean absolute error (rMAE) (275),
relative mean square error (rMSE) (275), relative root mean
square error (rRMSE) (275), and relative mean bias error
(rMBE) (275).

MAE assesses predictor performance by measuring absolute
difference between predicted and actual values (271). MSE
quantifies deviation by averaging squared differences between
actual and predicted values (270). Similarly, RMSE calculates
standard deviation of prediction errors and demonstrates how
tightly data points cluster around regression line (271). MBE
assesses predictor performance in terms of under and overfitting by
enumerating average difference between predicted and actual value
(272). MAPE calculates percentage variation between predicted
and actual values (273). Smaller the values of MAE, MBE,
MSE, and MAPE, better will be predictor performance. Higher
value of R2 score signifies promising predictor performance
as it measures proportion of variance in predicted dependent
variable explained by independent variable to determine strength
of relationship.

MAE, MSE, RMSE, and MAPE measures compute average
error value for N number of data points. Relative performance
evaluation can improve quality of performance evaluation by
reducing the noise from data. For relative performance evaluation,
the percentage error of each metric is computed relative to the
average of actual values (275). It facilitates in controlling factors
that influence predictor performance by relatively calculating
ratio of particular error with average of actual values (275).
Since data continuously vary and produce varying predicted
values at different time intervals, an overall percentage error is
computed to obtain relative error of all data points. Equation 13
embodies mathematical expressions for aforementioned
evaluation metrics.

f (x)regression =
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(13)

In Equation 13, M denotes total number of samples, Ai

represents actual value, and Pi is predicted value where i
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denotes the sample number and Ā is the average of total
actual values.

8.4 Clustering evaluation measures

In contrast to first three categories explained, clustering
tasks aim to group similar samples based on their features
without predefined class labels. In this task, prime objective is
to use clustering algorithms and identify inherent patterns or
structures within data. In these tasks, clusters of data samples
with similar features are created, and predictors assign new data
points to appropriate clusters (276). A higher similarity to a
cluster indicates that data sample belongs to that cluster (276).
To assess clustering predictive pipeline performance, researchers
have introduced various evaluation measures including accuracy
(277), normalized mutual information (NMI) (277), silhouette
score (SS) (278), dunn index (DI) (279), and Davies-Bouldin index
(DBI) (280).

Accuracy (277) is the proportion of correctly predicted
samples to total number of samples. NMI (277) quantifies
quality of predictor by measuring mutual information between
predicted clusters and actual clusters. Mutual information refers
to computed joint probability between predicted clusters and
actual clusters. Silhouette score (278) measures how similar
data samples are within a cluster compared to other clusters.
BDI (280) evaluates average similarity ratio of each cluster with
its most similar cluster. DI (279) computes ratio of minimum
inter-cluster distance to maximum intra-cluster distance.
Equation 14 embodies mathematical expressions for these
evaluations measures.

f (x)clustering =
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In Equation 14, yi refers to predicted cluster, ci and cj indicate
ith and jth clusters among n clusters. Moreover, I(yi, ci) signifies
mutual information, H(yi) and H(ci) show entropy of predicted
and actual clusters. d(yi) is the average distance from yi to all
points in other clusters, and a(yi) is the average distance of yi to
all points in that clusters. d(ci, cj) represents inter-cluster distance
between cluster i and cluster j, S̄i represents mean distance from
cluster mean for all observations in cluster i, while S̄i denotes
mean distance from cluster median for all observations in cluster
j. An extensive analysis of existing literature reveals that most
commonly used evaluation measures are accuracy and normalized
mutual information.

9 Open-source DNA sequence
analysis predictive models

The public availability of predictor source codes, pretrained
language models, and word embeddings significantly benefits
researchers by preventing the need to reinvent the wheel.
These resources enable researchers to build on existing work,
utilizing pre-trained models and complete predictive pipelines to
develop new, enhanced applications. By integrating new strategies
into these established pipelines, they can create more powerful
predictors. In addition, open-source access to these codes allows for
the reproduction of predictor performance, fostering transparency
and reliability in research. To expedite the establishment of more
precise, robust, reliable, and efficient AI models for DNA sequence
analysis and ultimately accelerate advancements in genomics and
bioinformatics research, this section provides a summary of open
source predictive pipelines developed using two representation
learning approaches: word embeddings and large language models
for 44 different DNA sequence analysis tasks.

Our analysis reveals that, out of 39 existing word embedding
based DNA sequence analysis studies, only 25 studies have made
the source codes of their predictive pipelines publicly accessible.
In addition, source code of only 38 studies is publicly available
out of 67 existing DNA sequence analysis studies based on large
language models. Tables 4, 5 offer details on open-source codes
for DNA sequence analysis predictive pipelines based on word
embeddings and large language models, respectively. They also
provide a summary of the representation learning methods and
machine/deep learning predictors employed, along with links to the
corresponding source codes.

A close look at Table 4 reveals that 25 AI-driven predictive
pipelines are developed for 16 unique DNA sequence analysis
tasks. These tasks include disease gene identification, phage-host
interactions prediction, nucleosome position detection, enhancer
identification, promoter identification, enhancer-promoter
interactions prediction, YY1-mediated chromatin loop prediction,
methylcytosine site prediction, methyladenine site prediction,
essential gene identification, disease gene prediction, pseudogene
function prediction, mutation susceptibility analysis, target gene
classification, gene taxonomy classification, protein-DNA binding
sites identification, and recombination spots identification. In
addition, a high-level overview of Table 4 illustrates that a total
of 2 node2vec and OPA2Vec word embedding approaches along
with MLP and RF classifiers have made their source code publicly
available for disease gene identification. In addition, source code
of 4 Word2vec and FastText word embedding approach-based
predictive pipelines is publicly available for promoter and enhancer
identification tasks. Furthermore, two open-source FastText and
node2vec word embedding approach-based predictive pipelines
are developed for essential gene identification. Moreover, four
Word2vec and one FastText word embeddings based predictive
pipelines are developed for DNA methylation modification
predictive pipelines.

Overall, Table 4 encompasses source codes of 7 unique word
embedding approaches (Word2Vec, FastText, GloVe, Node2Vec,
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TABLE 4 Summary of open-source word embedding based models in existing studies.

References Task Embedding approach Classifier Source Code

Ratajczak et al. (340) Disease genes identification Node2Vec MLP https://github.com/fratajcz/speos

Pan et al. (177) Phage-host interactions prediction SDNE, Word2Vec MLP https://github.com/NWUJiePan/Code

Chen et al. (341) Chromatin accessibility prediction Graph2Vec NA https://github.com/pinellolab/simba

Han et al. (342) Nucleosome position detection Word2Vec CNN + BiLSTM + BiGRU https://github.com/lliqi-echo/Nucleosome-positioning-based-on

-DNA-sequence-word-vector-and-deep-learning

Liao et al. (58) Enhancer identification Word2Vec CNN + BiLSTM https://github.com/WamesM/iEnhancer-DCLA

Inayat et al. (59) Enhancer identification FastText MLP https://github.com/salman-khan-mrd/IEnhancer-DFH

Zhang et al. (76) Promoter identification Word2Vec RF + CNN https://github.com/HaoWuLab-Bioinformatics/iPro-WAEL

Le et al. (78) Promoter identification FastText CNN https://github.com/khanhlee/deepPromoter

Hong et al. (82) Enhancer-promoter interactions prediction Word2Vec CNN + BiGRU https://github.com/hzy95/EPIVAN

Min et al. (49) Enhancer-promoter interactions prediction Word2Vec CNN + BiGRU + Matching Heauristic https://github.com/Xzenglab/EPI-DLMH

Dao et al. (45) YY1-mediated chromatin loops prediction Word2Vec CNN http://lin-group.cn/server/DeepYY1

Tran et al. (153) Methylcytosine sites prediction FastText XGBoost https://github.com/khucnam/5mC_Pred

Zulfiqar et al. (136) Methylcytosine sites prediction Word2Vec CNN https://github.com/linDing-groups/Deep-4mCW2V

Fang et al. (137) Methylcytosine sites prediction Word2Vec CNN https://github.com/mat310/W2VC

Khanal et al. (138) Methylcytosine sites prediction Word2Vec CNN http://nsclbio.jbnu.ac.kr/tools/4mC-w2vec/

Huang et al. (151) Methyladenine sites prediction Word2Vec BiLSTM http://39.100.246.211:5004/6mA_Pred/

Le et al. (105) Essential genes identification FastText Ensemble (kNN + RF + SVM +MLP + CNN) https://github.com/khanhlee/eDNN-EG

Zhang et al. (106) Essential genes identification Node2Vec MLP https://github.com/xzhang2016/DeepHE

Nunes et al. (110) Disease genes prediction OPA2Vec RF https://github.com/liseda-lab/KGE_Predictions_GD

Fan et al. (111) Pseudogene function prediction Node2Vec GCN https://github.com/yanzhanglab/Pseudo2GO

Yilmaz et al. (173) Mutation susceptibility analysis Word2Vec Cosine similarity https://github.com/alperyilmaz/dna2vec_snp

Arango et al. (113) Target gene classification FastText MLP https://bitbucket.org/gaarangoa/metamlp/src/master

Shi et al. (122) Gene taxonomy classification LSH + FastText MLP https://github.com/Lizhen0909/LSHVec

Li et al. (23) DNA-binding proteins binding sites identification Word2Vec, FastText, GloVe CNN, DCNN, CNN + BiLSTM, DCNN + BiLSTM http://bliulab.net/BioSeq-BLM/

Do et al. (165) Recombination spots identification FastText SVM https://github.com/khanhlee/fastspot
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TABLE 5 Summary of open-source language model-based models in existing studies.

References Task name Language model Classifier Pre-train/Self-train Source code

Zhang et al. (31) Chromatin accessibility prediction Transformer Transformer Self-train https://github.com/ykzhang0126/semantic-CAP

Nguyen et al. (44) Species classification, chromatin accessibility
prediction

Transformer Transformer Self-train https://github.com/HazyResearch/hyena-dna

Luo et al. (96) Protein-DNA binding sites prediction BERT BERT Self-train https://github.com/lhy0322/TFBert

Liu et al. (53) Protein-DNA binding sites prediction BERT CNN Pretrained https://github.com/YAndrewL/clape

Gao et al. (36) Long-range chromatin interaction prediction,
prediction of context-specific functional impact of
genetic variants

Transformer Transformer Self-train https://github.com/ZjGaothu/EpiGePT

Ni et al. (83) Enhancer-promoter interaction prediction Transformer Transformer Self-train https://github.com/NWAFUniyu/EPI-Mind

Reddy et al. (102) Gene expression prediction Transformer CNN Self-train https://github.com/anikethjr/promoter-models

Fishman et al. (32) Gene expression prediction Transformer Transformer Self-train https://github.com/AIRI-Institute/GENA_LM

Osseni et al. (180) Tumor type prediction Transformer Transformer Self-train https://github.com/dizam92/multiomic-predictions

Le et al. (281) Methyladenine sites prediction BERT CNN Self-train https://github.com/khanhlee/bert-dna

Tsukiyama et al. (144) Methyladenine sites prediction BERT CNN + BiLSTM Self-train https://github.com/kuratahiroyuki/BERT-6mA.git

Wang et al. (158) Methylation sites prediction Transformer Transformer Self-train https://github.com/sb111169/tf-5mc

Zhou et al. (250) Methylation sites prediction Transformer Transformer Self-train https://github.com/LieberInstitute/INTERACT

Jeong et al. (159) Methylation sites prediction BERT BERT Self-train https://github.com/CompEpigen/methyl-seq_simulation

Huson et al. (248) Methylation sites prediction BERT CRF Self-train https://github.com/husonlab/MR-DNA

Yu et al. (154) Methylation sites prediction BERT BERT Pretrained https://github.com/YUYING07/iDNA_ABT

Zhou et al. (155) Methylation sites prediction BERT BERT Pretrained https://github.com/wrab12/StableDNAm

Jin et al. (157) Methylation sites prediction BERT FGM Pretrained https://github.com/FakeEnd/iDNA_ABF

Stanojevic et al. (152) Methylcytosine sites prediction Transformer Transformer Pretrained https://github.com/lbcb-sci/rockfish

Wang et al. (282) Methylcytosine site prediction BERT BERT Self-train https://zenodo.org/records/10143217

Yang et al. (143) Methylcytosine sites prediction BERT CatBoost Pretrained https://github.com/abcair/4mCBERT

Yang et al. (249) Conserved non-coding element classification Transformer, ALBERT Transformer, ALBERT Self-train https://github.com/melobio/LOGO

Fazeel et al. (29) Nucleosome positioning prediction BERT LSTM Self-train https://github.com/FAhtisham/Nucleosome-position-prediction

Dalla et al. (100) Promoter identification, enhancers identification,
splice site identification, chromatin accessibility
prediction

Transformer Transformer Self-train https://github.com/instadeepai/nucleotide-transformer

Ji et al. (93) Promoter prediction, splice sites prediction,
transcription factor binding sites prediction

BERT BERT Self-train https://github.com/jerryji1993/DNABERT

(Continued)
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OPA2Vec, Graph2Vec, SDNE). Furthermore, a total of 3 machine
learning classifiers, namely, RF, SVM, and XGBoost, 4 standalone
deep learning classifiers, namely, MLP, CNN, GCN, and BiLSTM,
and 6 hybrid deep learning models are used for the development of
26 predictive pipelines for 19 distinct DNA sequence analysis tasks.

Analysis of Table 5 demonstrates that 38 predictive pipelines
are developed using 4 unique large language models, namely,
BERT, ALBERT, GPT, and Transformer, and 9 unique classifiers,
namely, RF, CatBoost, DF, MLP, CRF, CNN, LSTM, FGM,
and hybrid (CNN, BiLSTM). Overall, these 38 large language
models based predictive models are evaluated across 24 unique
DNA sequence analysis tasks. These 24 tasks include chromatin
accessibility prediction, species classification, protein-DNA
binding site prediction, long-range chromatin interaction
prediction, prediction of context-specific functional impact of
genetic variants, enhancer-promoter interaction prediction, gene
expression prediction, tumor type prediction, methyladenine
modification prediction, methylation modification prediction,
methylcytosine modification prediction, conserved non-coding
element classification, nucleosome position prediction, promoter
identification, splice site prediction, transcription factor binding
site prediction, transcription factor binding affinity prediction,
transcription site prediction, translation initiation site prediction,
dna replication origin prediction, enhancer identification, gene
function prediction, protein-dna interface hotspots prediction, and
candidate gene prioritization and selection. A high level overview
of Table 5 reveals that a total of two open-source chromatin
accessibility predictive pipelines and two open-source gene
expression prediction pipelines use transformers. In contrast, two
open-source protein-DNA binding site identification pipelines and
two open-source transcription factor binding site identification
pipelines use BERT. In addition, three open-source transcription
factor binding affinity prediction pipelines use GPT and BERT
language models, whereas 8 methyl-adenine and 4 methyl-cytosine
modification prediction pipelines use BERT and transformers.

Predictive pipelines can use language models in two different
ways: (1) training a language model from scratch (self-training)
on a large corpus and (2) leveraging a pre-trained open-source
language model and fine-tuning it for specific downstream tasks.
Overall, a critical analysis of existing studies reveals that source
codes of 20 BERT, 13 Transformer, 4 GPT, and 1 Transformer-XL
based predictive pipelines are publicly available. A holistic view of
Table 5 reveals that 23 open-source predictive pipelines perform
self-training of different language models from scratch for 20 tasks,
whereas 15 open-source predictive pipelines have used pre-trained
language models for 11 different tasks.

Specifically in 20 BERT-based predictive pipelines, 9 BERT
models are self-trained from scratch for nine different tasks,
namely, protein-DNA binding site prediction (96), 6mA-methyl
adenine modification prediction (144, 281), DNA methylation
modification prediction (159, 248), 5mC-methyl cytosine
modification prediction (282), nucleosome positioning prediction
(29), promoter prediction (93), splice site prediction (93),
transcription factor binding site prediction (93), and transcription
factor binding affinity prediction (52). In contrast, 11 pre-
trained BERT models are utilized to perform 7 downstream
tasks, namely, protein-DNA binding site prediction (53), DNA
methylation modification (154, 155, 157), 4mC-methyl cytosine
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TABLE 6 Summary of uniquely pre-trained language models along with pre-training data for DNA sequence analysis tasks.

Language
model

Pre-trained data Language
model

Pre-trained data Language
model

Pre-trained data

Zhang et al.,
Transformer (31)

Human reference
Genome Sequences
GRCh37 data

Stanojevic et al.,
Transformer (152)

893k sequences from ONT
GM24385 Dataset

Elnaggar et al.
BERT (345)

UniRef100 and BFD-100 datasets

Nguyen et al.,
Transformer (44)

Human reference
Genome Sequences
GRCh37 data

Clauwaert et al.,
Transformer-XL
(50)

2.7M Genome Data for
TSSs, TISs, MethSMRT for
the 4mC-Methylations

Devlin et al., BERT
(244)

BooksCorpus (800M words),
English Wikipedia (2,500M words)

Gao et al.,
Transformer (36)

EpiGenomic data Luo et al., BERT
(96)

690 ChIP-Seq Dataset
(20,464,149 Samples)

Lai et al., BERT
(346)

PubMed abstracts

Ni et al.,
Transformer (83)

Human reference
Genome Sequences

Le at al., BERT
(281)

Cased Text in the top 104
Languages with the Largest
Corpus

Yang et al.,
Transformer,
ALBERT (249)

Human reference
Genome Sequences hg19 data

Reddy et al.,
Transformer (102)

MPRA data Tsukiyama et al.,
BERT (144)

R. chinensis Zhang et al., GPT
(344)

Genomes from 9 species:
(Arabidopsis thaliana,
Caenorhabditis elegans, Bos taurus,

Danio rerio, Drosophila

melanogaster, Escherichia coli gca

001721525, Homo sapiens, Mus

musculus, Saccharomyces

cerevisiae)

Fishman et al.,
Transformer (32)

Human T2T v2
Genome

Jeong et al., BERT
(159)

HG19, MM10 Zhang et al., GPT
(344)

(a) approx.10B bps
(b) approx. 200B bps

Osseni et al.,
Transformer (180)

Omics dataset Huson et al., BERT
(248)

DNAMethylation and
taxonomy Data

Cui et al., GPT
(347)

NCBI text descriptions of
individual genes

Wang et al.,
Transformer (158)

WGBS dataset Wang et al., BERT
(282)

1,825,095 Promoter
Sequences

Toufiq et al., GPT 4
(114)

Co–expression gene set (M9.2)
from the BloodGen3 repertoire
associated with circulating
erythroid cells

Zhou et al.,
Transformer (250)

WGBS dataset Fazeel et al., BERT
(29)

Human reference
Genome Sequences with the
length of sequences between
5 and 510 with 3-mer

Toufiq et al., Claud
(114)

Co-expression gene set (M9.2)
from the BloodGen3 repertoire
associated with circulating
erythroid cells

Dalla et al.,
Transformer (100)

A total of 850 species,
whose Genomes add up
to 174B nucleotides

Ji et al., BERT (93) Human reference
Genome Sequences

_ _

Clauwaert et al.,
Transformer (91)

9 283 204 full genome
sequence

Xu et al., BERT (52) ATAC-Seq dataset with over
13M nucleotide sequences

_ _

modification prediction (143), transcription factor binding affinity
prediction (94), DNA replication origin prediction (25), enhancer
identification (60, 61, 283), and protein-DNA interface hotspots
prediction (284). To facilitate readers, we have summarized
uniquely pre-trained language models along with pre-training data
for DNA sequence analysis tasks in Table 6.

10 DNA sequence analysis predictive
pipeline performance analysis

This section facilitates AI researchers by providing details of
performance figures achieved over diverse benchmark datasets for
all three kinds of predictive pipelines, namely, word embedding,
language models, and nucleotide compositional and positional
information across 44 distinct DNA sequence analysis tasks. To
assist researchers for developing novel predictive pipelines, we have
thoroughly analyzed literature and identified the current state-of-
the-art predictor for each task. Section 3 provides categorization
of 44 DNA sequence analysis tasks into 8 different categories.

In this section, we have summarized the performance values of
the predictive pipelines for these 44 tasks into 7 different Tables.
Each Table corresponds to the predictive pipelines of tasks within
one category, except for 1 Table that includes predictive pipelines
related to tasks from 3 different categories. Within these Tables,
highlighted predictors represent state-of-the-art performance
values on public datasets across each task. Furthermore, this section
also facilitates crucial information that which of the tasks of every
goal offer more room for improvement through the development
of more robust and effective predictive pipelines.

Table 7 summarizes the crucial details of seven DNA
sequence analysis tasks classified under the hood of genome
structure and stability. Overall, for genome structure and stability
goal, four unique representation learning methods, namely,
BERT, Transformer, Word2vec, and multi-scale convolution, in
conjunction with bi-directional gated recurrent unit methods are
used across seven different tasks. Similarly, six unique classifiers,
namely, BERT, LSTM, Transformer, CNN+LSTM, CapsNet, and
CNN, are used in seven different task predictive pipelines. Most
commonly used representation learning scheme for this goal is
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TABLE 7 Genome structure and stability related 10 distinct DNA sequence analysis task predictive pipeline performance.

Task
type

Task name References Dataset Representation
learning

Classifier Performance evaluation

Binary
classification

DNA replication
origins prediction

(25) Gao et al. Dataset (A.

thaliana)

BERT _ A. thaliana: AUROC = 0.9811

(329) Wu et al. Datasets (S.
cerevisiae Dataset, S. pombe

Dataset, K. lactis Dataset, P.
pastoris Dataset)

Word2Vec CNN Accuracy [S. cerevisiae (S1): 0.975,
S. pombe (S2): 0.765, K. lactis (S3):
0.885, P. pastoris (S4): 0.967]; MCC
[S. cerevisiae (S1): 0.940, S. pombe

(S2): 0.530, K. lactis (S3): 0.771, P.
pastoris (S4): 0.934]; AUC [S.
cerevisiae (S1): 0.975, S. pombe

(S2): 0.800, K. lactis (S3): 0.888, P.
pastoris (S4): 0.981]

Nucleosome
position detection

(29) Gangi et al. Dataset 1 [a. C.

elegans (CE), b. D.

melanogester (DM), c. S.

cerevisiae (YS), d.H.

sapiens (HM)], Gangi et al.

Dataset 2 (DM-5U,

DM-PM, DM-LC, HM-5U,

HM-PM, HM-LC, YS-PM,

YS-WG)

BERT LSTM Dataset 1 a. CE: Acc = 90.5, Sn =

91.8, Sp = 92.1, Precision = 91.8,

MCC = 80.5, AUROC = 95.8 b.

DM: Acc = 85.1, Sn = 84.8, Sp =

85.6, Precision = 85.3, MCC =

70.5, AUROC = 92.4 c. YS: Acc =

100, Sn = 100, Sp = 99.8, Precision

= 99.8, MCC = 99.82, AUROC =

100 d. HM: Acc = 88.3, Sn = 88.3,

Sp = 88.4, Precision = 88.5, MCC

= 76.8, AUROC = 94.4 Dataset 2

a. DM-5U: Acc = 69.5, Sn = 41.1,

Sp = 85.8, Precision = 63.8, MCC

= 30.8, AUROC = 68.3 b. DM-PM:

Acc = 73.6, Sn = 40.1, Sp = 93.6,

Precision = 80.4, MCC = 42.0,

AUROC = 73.7 c. DM-LC: Acc =

71.3, Sn = 43.1, Sp = 90.0,

Precision = 75.2, MCC = 38.7,

AUROC = 72.0 d. HM-5U: Acc =

81.8, Sn = 51.6, Sp = 94.3,

Precision = 80.0, MCC = 53.4,

AUROC = 80.2 e. HM-LC: Acc =

91.1, Sn = 83.7, Sp = 96.1,

Precision = 93.7, MCC = 81.7,

AUROC = 95.1 f. HM-PM: Acc =

85.1, Sn = 75.8, Sp = 92.4,

Precision = 89.1, MCC = 70.1,

AUROC = 90.4 g. YS-PM: Acc =

92.4, Sn = 63.1, Sp = 97.2,

Precision = 79.6, MCC = 66.3,

AUROC = 93.5 h. YS-WG: Acc =

94.3, Sn = 60.3, Sp = 98.4,

Precision = 94.3, MCC = 67.2,

AUROC = 94.5

Chromatin
accessibility
prediction

(32) DeepSEA dataset (TF &

DHS)

BERT _ TF: AUROC = 96.81 ± 0.1 DHS:

AUROC = 92.8 ± 0.03

(31) DNase-Seq experiment

Data

Transformer _ Average AUROC = 0.8977

Average AUPRC = 0.8983

Binary
classification

YY1-mediated
chromatin loops
prediction

(39) 1. HCT116 2. K562 Word2Vec CNN+LSTM K562: AUROC = 98.2, Acc = 92.9
HCT116: AUROC = 95.7, Acc =
88.5

(38) 1. HCT116 2. K562 MSC+BiGRU CapsNet 10-fold cross-validation HCT116:

Acc = 0.9544, AUROC = 0.9886

K562: Acc = 0.9680, AUROC =

0.9924 Independent test setting
HCT116: Acc = 0.9622, AUROC =
0.9913, AUPRC = 0.9917, F1-score
= 0.9564 K562: Acc = 0.9560,
AUROC = 0.9912, AUPRC =
0.9920, F1-score = 0.9583

(45) 1. HCT116 2. K562 Word2Vec CNN 1. AUROC = 0.93 2. AUROC = 0.93

(Continued)
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TABLE 7 (Continued)

Task
type

Task name References Dataset Representation
learning

Classifier Performance evaluation

Multi-class
classification

Genome structure
analysis

(27) NCycDB BERT _ Macro F1-score = 61.8, Weighted
F1-score = 65.4

Chromatin
feature prediction

(34) Yang et al. Datasets 1.
LOGO-919, 2. LOGO-2002
(TF & DHS), LOGO-3357
(TF & DHS)

Transformer _ LOGO-919: AUROC = 0.703
LOGO-2002: TF: AUROC = 0.954,
DHSs: AUROC = 0.913, HM:
AUROC = 0.883 LOGO-3357: TF:
AUROC = 0.926, DHSs: AUROC =
0.928, HM: AUROC = 0.883

Interaction Long range
chromatin
interaction
prediction

(36) ChIP-seq Dataset Transformer _ AUPRC = 0.647

Bold values highlight top performers on unique datasets related to distinct tasks.

BERT followed by Transformer. BERT is most commonly used
with a self-classifier for three different tasks and used with LSTM
classifier for one task. Transformer is used with only self-classifier
for three different tasks. Word2vec potential is explored with
CNN-based classifiers for two different tasks and multi-scale
convolution in conjunction with bi-directional gated recurrent
unit method is only explored with CNN classifier for one task.
Overall, among all predictive pipelines, BERT with self-classifier
or LSTM classifier manages to achieve top performance figures
as compared to transformer-based predictive pipelines. Among
all 7 tasks, genome structure analysis and long range chromatin
interaction prediction tasks provide a lot of room for improvement
as the performance of their predictive models fall below 70%.
BERT or Transformer with CapsNet classifier-based predictive
pipeline can potentially enhance the performance on either or both
of these tasks.

Furthermore, Table 8 provides a high-level overview of
the performance achieved by 48 predictors for 9 DNA
sequence analysis tasks classified under the hood of gene
expression regulation. Overall, for gene expression regulation
goal, 10 unique representation learning methods, namely,
ULMFiT, BERT, One-hot encoding, Word2vec, FastText,
C2+NCP, Node2vec+SocDim+Grarep, ELECTRA, ALBERT, and
Transformer, are used across 9 different tasks. Overall, 14 unique
classifiers are employed in these predictive pipelines, namely,
CNN, MLP, DF, CNN+BiLSTM, CNN+LSTM, SVM, Siamese
network, DenseNet, CatBoost, TCN, XGBoost, RF+CNN, LSTM,
BiGRU, and CNN+BiGRU.

For this goal, most commonly used representation learning
approach is BERT. BERT is used with five different classifiers across
six unique tasks. BERT with self-classifier is evaluated across all six
unique tasks, whereas BERT with other four classifiers is evaluated
on some of these six tasks. Specifically, BERT with CNN classifier is
evaluated on four common tasks, namely, enhancer identification,
promoter identification, protein-DNA binding site prediction, and
transcription factor binding site prediction. BERT with DF, RF,
and XGBoost is evaluated on one common task each including
enhancer identification, protein-DNA binding site prediction,
and promoter identification. Among all BERT-based predictive
pipelines, BERT achieves the best performance with CNN classifier
on two tasks, namely, transcription factor binding site prediction

and protein-DNA binding site prediction. Second most common
representation learning approach for this goal is Word2vec that
is explored with seven different classifiers for four different
tasks. Specifically, Word2Vec with CNN and CNN+BiLSTM is
used for one task, with LSTM, TCN, and RF+CNN for one
task, with BiGRU for one task, and with CNN+BiGRU for one
task. Among all Word2vec-based predictive pipelines, Word2Vec
achieves the best performance with CNN+BiGRU classifier on
enhancer-promoter interaction prediction task. From two most
common approaches, BERT with CNN and self-classifiers manages
to yield top performance values as compared to Word2vec-based
predictive pipelines. Beyond BERT and Word2vec, transformer-
XL is used with CNN for two different tasks, ALBERT and
ELECTRA are used with self-classifiers for a single task, and
ULMFiT is used with CNN for a single task. In addition, potential
of transformer is explored with CNN for one task and with a
self-classifier for two tasks. FastText-based representation learning
is used with MLP and SVM classifiers for a single task and
potential of three graph embedding, namely, Node2Vec, SocDim,
and GraRep, is explored with CatBoost classifier for a single
task. Overall, among all approaches, ULMFiT manages to achieve
best performance with CNN classifier on enhancer identification
task. From all nine tasks, protein-DNA binding site prediction
and protein-DNA binding affinity prediction have some room for
improvement. Considering the promising performance trends for
this goal, Word2vec potential can be explored with CNN+BiGRU
classifier and ULMFiT potential can be explored with standalone
CNN as well as ensemble CNN+BiGRU classifier to enhance the
performance of under-performing tasks.

In addition, Table 9 summarizes predictive models developed
for seven different DNA sequence analysis tasks classified under
the hood of gene analysis. For gene analysis goal, 12 unique
representation learning methods are used that include Gapped
K-mer Encoding, ESM-2, Flux Sampling, Node2Vec, FastText,
OPA2Vec, Transformer, Laplacian eigenmaps + Locally linear
Embedding + DeepWalk + Node2Vec, and GPT. Overall, eight
unique classifiers, namely, GCNN, GNN, GAT, kNN, RF, SVM,
CNN, and MLP, are used in different predictive pipelines. Most
commonly used representation learning scheme for this goal is
Node2vec followed by FastText. Node2vec is used with GCNN
classifier for three different tasks and with GAT andMLP classifiers
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TABLE 8 Gene expression regulation related 48 distinct DNA sequence analysis task predictive pipeline performance.

Task
type

Task name References Dataset Representation
learning

Classifier Performance evaluation

Binary
classification

Enhancer
identification

(57) Liu et al. dataset (1, 2) ULMFiT CNN 1. Enhancer/ Non-Enhancer
Cross-Validation: Acc = 0.946, Sn =
0.946, Sp = 0.949, MCC = 0.892
Independent: Acc = 0.843, Sn =
0.842, Sp = 0.87, MCC = 0.686 2.
Weak/ Strong-Enhancer

Cross-Validation: Acc = 0.90, Sn =

0.90, Sp = 0.896, MCC = 0.8

Independent: Acc = 0.875, Sn =

0.873, Sp = 0.75, MCC = 0.774

(56) Liu et al. dataset 1 BERT CNN Sn = 1.00, Sp = 1.00, Acc = 1.00,

MCC = 1.00, AUROC = 1.00

(55) 1. DiseaseEnhancer

2. EnDisease

3. CancerEnD

One-hot Encoding MLP 1. AUROC = 0.9645 ± 0.0057,

AUPRC = 0.9647 ± 0.0043, Acc =

0.8986 ± 0.0169, Precision =

0.8765 ± 0.0266, Recall = 0.9290

± 0.0132, F1-score = 0.9018 ±

0.0169 2. AUROC = 0.9546 ±

0.0036, AUPRC = 0.9474 ±

0.0118, Acc = 0.8959 ± 0.0141,

Precision = 0.8583 ± 0.0261,

Recall = 0.9469 ± 0.0103,

F1-score = 0.9003 ± 0.0182 3.

AUROC = 0.9755 ± 0.0026,

AUPRC = 0.9673 ± 0.0047, Acc =

0.9306 ± 0.0053, Precision =

0.9373 ± 0.0051, Recall = 0.9261

± 0.0085, F1-score = 0.9317 ±

0.0053

(67) Liu et al. dataset 1, Basith
et al. dataset (HEK293,

NHEK, K652, GN12878,

HMEC, HSMM, NHLF,

HUVEC)

BERT _ (Liu et al. dataset 1) Acc = 0.8300,
Sn = 0.8000, Sp = 0.8600, MCC =
0.6612, AUROC = 0.8560 (Basith’s
dataset) HEK293: Acc = 0.8732,

Sn = 0.8666, Sp = 0.8798, MCC =

0.7283, AUROC = 0.9443 NHEK:

Acc = 0.7766, Sn = 0.7229, Sp =

0.8303, MCC = 0.5453, AUROC =

0.8716 K652: Acc = 0.7974, Sn =

0.8180, Sp = 0.7767, MCC =

0.5679, AUROC = 0.8712

GM12878: Acc = 0.8222, Sn =

0.7564, Sp = 0.8879, MCC =

0.6475, AUROC = 0.9179 HMEC:

Acc = 0.7645, Sn = 0.7638, Sp =

0.7652, MCC = 0.5068, AUROC =

0.8631 HSMM: Acc = 0.7193, Sn =

0.7191, Sp = 0.7194, MCC =

0.4179, AUROC = 0.7948 NHLF:

Acc = 0.7884, Sn = 0.8236, Sp =

0.7532, MCC = 0.5479, AUROC =

0.8623 HUVEC: Acc = 0.7334, Sn

= 0.7691, Sp = 0.6977, MCC =

0.4417, AUROC = 0.8045

(61) Liu et al. dataset BERT DF AUROC = 0.808, Acc = 0.822,
MCC = 0.655, Sn = 0.834, Sp =
0.810

(58) Liu et al. dataset (1, 2) Word2Vec CNN +
BiLSTM

1: Acc = 83.32, Sn = 84.18, Sp =
82.45, MCC = 0.6668 2: Acc =
83.30, Sn = 89.27, Sp = 77.33, MCC
= 0.6736

(65) Liu et al. dataset (1, 2) FastText LSTM +
CNN

Enhancer Prediction: Acc = 0.7525,
MCC = 0.5051; Enhancer type
Prediction: Acc = 0.6972, MCC =
0.3954;

(59) Liu et al. dataset (1, 2) FastText MLP 1: Sn = 85.81, Sp = 86.35, Acc =
86.07, MCC = 0.722; 2: Sn = 69.90,
Sp = 69.32, Acc = 69.59, MCC =
0.392

(Continued)
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TABLE 8 (Continued)

Task
type

Task name References Dataset Representation
learning

Classifier Performance evaluation

(66) Liu et al. dataset (1, 2) Word2Vec CNN 1: Acc = 0.784, Sn = 0.811, Sp =
0.758, MCC = 0.567; 2: Acc =
0.749, Sn = 0.961, Sp = 0.537, MCC
= 0.505

(60) Liu et al. dataset BERT CNN Sn = 80, Sp = 71.2, Acc = 75.6,
MCC = 0.514

(47) Liu et al. dataset (1, 2) Word2Vec CNN 1: Sn = 75.88, Sp = 88.88, Acc =
80.63, MCC = 0.6929, AUROC =
0.8957 2: Sn = 73.64, Sp = 76.80,
Acc = 76.43, MCC = 0.4505,
AUROC = 0.8109

(64) Liu et al. dataset (1, 2) FastText SVM Cross-validation 1: Sn = 81.1, Sp =
83.5, Acc = 82.3, MCC = 0.65 2: Sn
= 75.3, Sp = 60.8, Acc = 68.1, MCC
= 0.37 independent 1: Sn = 82, Sp =
76, Acc = 79, MCC = 0.58 2: Sn =
74, Sp = 53, Acc = 63.5, MCC =
0.28

Promoter
identification

(77) Yang et al. dataset One-hot encoding Siamese

network

Acc = 96.80, Sn = 95.08, Sp =

98.56, MCC = 0.9367

(251) Xiao et al. dataset 1 BERT _ MCC = 0.81, AUPRC = 0.98

(331) Xiao et al. dataset (1, 2) C2 + NCP DenseNet 1: Sn = 0.9389 ± 0.0106, Sp =

0.9471 ± 0.0117, Acc = 0.9429 ±

0.0038, MCC = 0.8865 ± 0.0076,

AUROC = 0.9774 ± 0.0017,

F1-score = 0.9432 ± 0.0040 2: Sn

= 0.8711 ± 0.0168, Sp = 0.9211 ±

0.0088, Acc = 0.8967 ± 0.0086,

MCC = 0.7947 ± 0.0165, AUROC

= 0.9353 ± 0.0042, F1-score =

0.8880 ± 0.0117

(236) Wang et al., Datasets (1-8) Node2Vec+

SocDim+ GraRep

CatBoost 1.H. Sapiens-I: Sn = 0.9565, Sp =

0.9782, Acc = 0.9673, MCC =

0.9350, Precision = 0.9772,

F1-score = 0.9670, AUROC =

0.9952 2.H. Sapiens-II: Sn =

0.8646, Sp = 0.9849, Acc = 0.9248,

MCC = 0.8558, Precision =

0.9829, F1-score = 0.9199,

AUROC = 0.9844 3. R.

Norvegicus-I: Sn = 0.9113, Sp =

0.9757, Acc = 0.9424, MCC =

0.8908, Precision = 0.9761,

F1-score = 0.9425, AUROC =

0.9975 4. R. Norvegicus-II: Sn =

0.8905, Sp = 0.9849, Acc = 0.9377,

MCC = 0.8793, Precision =

0.9833, F1-score = 0.9346,

AUROC = 0.9832 5.D.

melanogaster-I: Sn = 0.9350, Sp =

0.9670, Acc = 0.9560, MCC =

0.9123, Precision = 0.9662,

F1-score = 0.9555, AUROC =

0.9923 6.D. melanogaster-II: Sn =

0.9425, Sp = 0.7819, Acc = 0.8596,

MCC = 0.7281, Precision =

0.8112, F1-score = 0.8697,

AUROC = 0.9448 7. Z. mays-I: Sn

= 0.934, Sp = 0.9450, Acc =

0.9395, MCC = 0.8791, Precision

= 0.9444, F1-score = 0.9392,

AUROC = 0.9841 8. Z. mays-II:

Sn = 0.9516, Sp = 0.7806, Acc =

0.8661, MCC = 0.7433, Precision

= 0.8127, F1-score = 0.8767,

AUROC = 0.9485
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TABLE 8 (Continued)

Task
type

Task name References Dataset Representation
learning

Classifier Performance evaluation

(235) Xiao et al. dataset 1 Word2Vec TCN Acc = 91.86, Sn = 92.74, Sp = 91

(348) Ji et al. Dataset BERT _ Acc = 0.8613, AUROC = 0.9354,

MCC = 0.7226, Precision =

0.8569, Recall = 0.8624

(349) Liu et al. dataset (1, 2) BERT XGBoost 1. Promoter Identification: Sn =

84.34, Sp = 86.56, Acc = 85.45 2.

Promoter strength classification:

Sn = 70.85, Sp = 81.63, Acc =

76.92

(89) Human dataset ELECTRA _ Acc = 0.862, AUROC = 0.935,
F1-score = 0.862, MCC = 0.725,
Precision = 0.863, Recall = 0.862

(76) 1. K562 2. GM12878 3.

HeLa-S3 4. HUVEC

Word2Vec RF + CNN 1. AUROC = 0.9809, Acc = 0.9415,

MCC = 0.8831 2. AUROC =

0.9783, Acc = 0.9334, MCC =

0.8668 3. AUROC = 0.9824, Acc =

0.9374, MCC = 0.8749 4. AUROC

= 0.9847, Acc = 0.9481, MCC =

0.8963

(48) Xiao et al. dataset Word2Vec LSTM Acc = 90.59, MCC = 0.8114, Sn =
90.28, Sp = 90.94

(249) Yang et al. dataset ALBERT _ AUROC = 0.743

(90) Ji et al. dataset BERT CNN Precision = 0.805, Recall = 0.803,
Acc = 0.894

(90) Ji et al. dataset BERT _ Precision = 0.805, Recall = 0.803,
Acc = 0.894

(34) Yang et al. dataset Transformer _ Recall = 0.921, Precision = 0.940,
F1-score = 0.933

(93) Human dataset BERT _ AUROC = 0.981, AUPRC = 0.982

(79) Xiao et al. dataset (1, 2) Word2Vec CNN 1: Acc = 91.42 2: Acc = 82.42

(78) Xiao et al. dataset (1, 2) FastText CNN 1: Acc = 85.41 2: Acc = 73.1

Transcription
sites prediction

(50) Clauwaert et al. Dataeset Transformer-XL CNN AUROC = 0.977

Transcription
factor binding
sites prediction

(94) ChIP-Seq Dataset BERT CNN AUROC = 0.949, AUPRC = 0.326

(89) 690 ChIP-Seq dataset ELECTRA _ Acc = 0.856, AUROC = 0.935,

F1-score = 0.851, MCC = 0.727,

Precision = 0.859, Recall = 0.856

(90) TF ChIP-Seq dataset BERT _ Precision = 0.937, Recall = 0.935,

Acc = 0.989

(91) TSSs dataset Transformer CNN AUROC = 0.981. AUPRC = 0.141

(93) 497 TF ChIP-Seq dataset BERT _ Mean Acc = 0.903, Mean AUROC

= 0.954, Mean F1-score = 0.901,

Mean MCC = 0.807, Mean

Precision = 0.898, Mean Recall =

0.909

(92) 1. A549 dataset 2. MCF-7
dataset 3. H1-HESC dataset
4. HUVEC dataset

Word2Vec BiGRU HUVEC: Average Precision =
0.9618, Average AUROC = 0.9608
MCF7: Average Precision = 0.9653,
Average AUROC = 0.9643 A549:
Average Precision = 0.9608,
Average AUROC = 0.9593
H1-HESC: Average Precision =
0.9528, Average AUROC = 0.9524

(Continued)

Frontiers inMedicine 41 frontiersin.org

https://doi.org/10.3389/fmed.2025.1503229
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Asim et al. 10.3389/fmed.2025.1503229

TABLE 8 (Continued)

Task
type

Task name References Dataset Representation
learning

Classifier Performance evaluation

Splice sites
prediction

(97) Splice-junction Gene
sequence dataset

_ LSTM Acc = 0.98, Precision = 0.98, Recall
= 0.99, F1-score = 0.98

(98) Degroeve et al. Dataset _ CNN F1-score = 0.9187 ± 0.0070, MCC

= 0.9028 ± 0.0085

(99) Liu et al. Dataset One-hot Encoding MLP Donor: Acc = 96.57 Acceptor: Acc

= 95.82

(100) Wang et al. Dataset Transformer _ AUPRC = 0.984

(93) Ji et al. Dataset BERT _ Acc = 0.939, AUROC = 0.992,

F1-score = 0.937, MCC = 0.903,

Precision = 0.961, Recall = 0.919

Translation
initiation site
prediction

(101) Kalkatawi et al. TIS dataset k-mer Embedding Bi-GRU Acc = 96.40, AUROC = 96.40,
AUPRC = 94.87

(50) TIS dataset Transformer-XL CNN AUROC = 0.998

Interaction Enhancer-
promoter
interactions
prediction

(350) Whalen et al. datasets

(GM12878, HUVEC,

HeLa-S3, IMR90, K562,

NHEK)

GCN, K-mer GCN F1-score: GM12878 = 0.8679,

HUVEC = 0.8954, HeLa-S3 =

0.9175, IMR90 = 0.7949, NHEK =

0.6085

(233) Whalen et al. datasets
(HMEC, IMR90, K562,
NHEK)

Transformer Multi-Scale
CNN

HMEC: AUROC = 0.9344, AUPRC
= 0.6852, IMR90 AUROC = 0.8936,
AUPRC = 0.5878, K562 AUROC =
0.8513, AUPRC = 0.2101, NHEK
AUROC = 0.8243, AUPRC =
0.4760

(332) Zheng et al. Datasets
(GM12878, HeLa)

Deeptools RF 1. Sn = 0.578, Sp = 0.964, Precision
= 0.799, Acc = 0.887, AUROC =
0.919, AUPRC = 0.773, 2. Sn =
0.363, Sp = 0.953, Precision =
0.660, Acc = 0.836, AUROC =
0.831, AUPRC = 0.601

(177) ESKAPE dataset SDNE, Word2Vec MLP Acc = 86.65± 1.55, Sn = 88.40±
1.81, Sp = 84.91± 1.96, Precision =
85.43± 1.74, F1-score = 86.88±
1.53, AUROC = 0.9208± 0.0119

(249) Yang et al. Datasets (FoeT,

Mon, nCD4, tB, tCD4,

tCD8)

Transformer MLP FoeT: AUPRC = 0.9447, Mon:

AUPRC = 0.9414, nCD4: AUPRC

= 0.9457, tB: AUPRC = 0.9474,

tCD4: AUPRC = 0.9475, tCD8:

AUPRC = 0.9387

(82) Whalen et al. Datasets
(GM12878, HUVEC,
HeLa-S3, IMR90, K562,
NHEK)

Word2Vec CNN +
BiGRU

GM12878: AUROC = 0.965,
AUPRC = 0.819, HUVEC: AUROC
= 0.950, AUPRC = 0.773, HeLa-S3:
AUROC = 0.960, AUPRC = 0.820,
IMR90: AUROC = 0.962, AUPRC
= 0.801, K562: AUROC = 0.959,
AUPRC = 0.814, NHEK: AUROC =
0.985, AUPRC = 0.899

(49) Whalen et al. Datasets
(GM12878, HUVEC,
HeLa-S3, IMR90, K562,
NHEK)

Word2Vec CNN+BiGRU GM12878: AUROC = 0.949,
AUPRC = 0.819, F1-score = 0.766,
HUVEC: AUROC = 0.948, AUPRC
= 0.720, F1-score = 0.649, HeLa-S3:
AUROC = 0.952, AUPRC = 0.824,
F1-score = 0.78, IMR90: AUROC =
0.948, AUPRC = 0.818, F1-score =
0.778, K562: AUROC = 0.955,
AUPRC = 0.826, F1-score = 0.795,
NHEK: AUROC = 0.977, AUPRC =
0.893, F1-score = 0.861

(Continued)
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TABLE 8 (Continued)

Task
type

Task name References Dataset Representation
learning

Classifier Performance evaluation

Protein-DNA
binding sites
prediction

(53) Patiyal et al. dataset

(dataset 1)

Xia et al. dataset (dataset 2)

BERT CNN dataset 1: TE46 Sp = 0.835, Recall

= 0.747, Precision = 0.306,

F1-score = 0.434, MCC = 0.401,

AUROC = 0.871 dataset 2: TE129

Sp = 0.955, Recall = 0.464,

Precision = 0.396, F1-score =

0.427, MCC = 0.389, AUROC =

0.881

(96) 690 ChIP-Seq Dataset BERT _ AUROC = 0.947 ± 0.041, Acc =

0.880 ± 0.062, Precision = 0.882

± 0.061, Recall = 0.880 ± 0.062,

F1-score = 0.880 ± 0.062, MCC =

0.762 ± 0.122

(95) Liu et al., Dataset, Tian

et al., Dataset

BERT RF dataset 1: Sp = 0.529, Precision =

0.106, Recall = 0.574, F1-score =

0.179, AUROC = 0.551, MCC =

0.025 dataset 2: Sp = 0.724,

Precision = 0.119, Recall = 0.536,

F1-score = 0.194, AUROC =

0.630, MCC = 0.067

Regression Transcription
factor binding
affinity prediction

(52) 1. Weirauch et al. dataset,

2. Jolma et al. dataset

BERT _ 1: Average PCC = 0.649

2: Average R2 = 0.977

Bold values highlight top performers on unique datasets related to distinct tasks.

for two different tasks, whereas FastText is used with an ensemble
and MLP classifiers for two different tasks. From most commonly
used approaches, Node2Vec performs better in themajority of tasks
and achieve top performance with GAT classifier as compared to
FastText approach. Apart from Node2Vec and FastText, potential
of ESM-2 along with a self-classifier and flux sampling with GNN
is explored for a single task, transformer with CNN is evaluated
for two different tasks, and GPT is used with a self-classifier for
two tasks. In addition, OPA2Vec is used with RF for one task,
Gapped K-mer encoding with GCN classifier is used for one task,
and potential of Laplacian eigenmaps, Locally linear Embedding,
DeepWalk, and Node2Vec is explored with RF for one task. In
the holistic view, among all approaches, Gapped K-mer Encoding
approach with GCNN classifier achieves the best performance for
essential gene identification task. Among all seven distinct tasks,
multi-label classification task, namely, gene function prediction
provides a lot of room for improvement as the performance of
its respective predictive pipeline based on Node2vec and GCNN
classifier fall below 60%. Considering the promising performance
of Gapped K-mer Encoding method, Gapped K-mer Encoding
method and GCNN-based predictive pipeline can prove fruitful for
various low performance tasks such as gene function prediction.

Moreover, Table 10 summarizes eight DNA sequence analysis
tasks classified across three unique biological goals, namely, DNA
modification prediction, environmental and microbial genomics,
and gene network analysis. For DNA modification prediction
goal, across 4 DNA sequence analysis tasks, 27 predictors
are developed. In the predictive pipelines, overall 10 unique
representation learning methods are used which include PSeKNC,
BERT, nucleotide physico-chemical properties and occurrence
frequency based encoder, Transformer-XL, Word2Vec, One-hot
encoding, FastText, ULMFIT, and BERT+ ALBERT+XLNet+

ELECTRA. Similarly, nine unique classifiers, namely, Structural
Sparse Regularized Random Vector Functional Link Network,
CatBoost, KNN, CNN, BiLSTM, CNN+BiLSTM, SVM, XGBoost,
and FGM, are employed in different predictive pipelines.
For DNA modification prediction goal, most commonly used
representation learning approach is BERT. BERT is used with
five different classifiers for all four tasks. Specifically, BERT
with a self-classifier is evaluated for three tasks, namely, 4mC-
methyl cytosine, 5mC-methyl cytosine, and DNA methylation
modification prediction. BERT is also used with two other
classifiers, namely, CatBoost, and FGM, for two common
tasks, namely, 4mC-methyl cytosine modification prediction, and
DNA methylation modification prediction. In addition, BERT
is used with CNN and CNN+BiLSTM classifier for one task,
namely, 6mA-methyl adenine modification prediction. Among
all BERT-based predictive pipelines, BERT with a self-classifier
showed top performance values for two tasks, namely, 5mC-
methyl cytosine modification prediction, and DNA methylation
modification prediction.

Second most commonly used representation learning approach
in this goal is Word2vec which is explored with two unique
classifiers for two different tasks. Specifically, Word2vec with
CNN classifier is used for one task, namely, 4mC-cytosine
modification prediction, and with BiLSTM for one task, namely,
6mA-methyl adenine modification prediction. From most
common approaches, BERT manages to achieve best performance
with a self-classifier as compared to Word2vec-based predictive
pipeline. Apart from BERT and Word2vec, Transformer with a
self-classifier is used for three tasks, namely, 5mC-methycyctosine
modification prediction, 6mA-methyl adenine modification
prediction, and DNA methylation modification prediction.
Transformer is also used with CNN classifier on one of the
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TABLE 9 Gene analysis related 15 distinct DNA sequence analysis task predictive pipeline performance.

Task
type

Task name References dataset Representation
learning

Classifier Performance evaluation

Binary
classification

Essential genes
identification

(333) Hu et al. dataset (D.

melanogaster, M.

maripaludis,H. sapiens, C.

elegans)

Gapped K-mer

encoding

GCNN 1. Sn = 0.8333, Sp = 0.9939, Acc =

0.9847, MCC = 0.8545, AUROC =

0.8283

2. Sn = 0.9052, Sp = 0.9304, Acc =

0.9221, MCC = 0.8265, AUROC =

0.8422

3. Sn = 0.9048, Sp = 0.9566, Acc =

0.9501, MCC = 0.7961, AUROC =

0.8655

4. Sn = 0.8362, Sp = 0.9368, Acc =

0.9242, MCC = 0.6983, AUROC =

0.7834

(109) Ma et al. dataset
(S.cerevisiae, E.coli,
H.sapiens, D.melanogaster)

ESM-2 _ _

(104) Campos et al. dataset Flux sampling GNN Acc = 0.871 ± 0.012, Precision =

0.769 ± 0.030, Recall = 0.718 ±

0.037, F1-score = 0.743 ± 0.023

(108) Ma et al. dataset (S.

cerevisiae, E. coli,H.

sapiens,D. melanogaster)

Node2Vec GAT AUROC S. cerevisiae: (DIP: 76.57

± 0.74, BioGrid: 87.66 ± 2.58,

STRING: 90.13 ± 1.08); E.coli:

(DIP: 79.96 ± 2.20, BioGrid:

92.35 ± 1.15, STRING: 97.02 ±

0.50); H.sapiens: (DIP: 75.61 ±

0.90, BioGrid: 88.39 ± 0.52,

STRING: 90.95 ± 0.54);

D.melanogaster: (DIP: 32.90 ±

5.34, BioGrid: 78.78 ± 4.24,

STRING: 77.82 ± 1.95)

(105) Hu et al. dataset FastText kNN + RF +
SVM + CNN

Sn = 60.2, Sp = 84.6, Acc = 76.3,
MCC = 0.449, AUROC = 0.814

(106) Zhang et al. dataset Node2Vec MLP AUROC = 94.15, Sp = 94.75,
Average Precision = 90.64, Acc =
90.88

(107) Xiao et al. dataset Node2Vec MLP Average AUROC = 95.17, AUPRC
= 92.21, Acc = 91.59, F1-score =
78.71

Binary
classification

Target gene
classification

(113) Argoty et al. dataset FastText MLP Precision = 0.99, Recall = 0.99

Binary
classification

Disease genes
prediction

(110) Nunes et al. dataset OPA2Vec RF Median WAF score = 0.768

Multi-label
classification

Gene function
prediction

(112) (1). 1,000 human gene set

from gene ontology, (2).

100 omic gene set

GPT _ Semantic similarity = 0.50, Gene

covered = 30

Multi-class
classification

Gene expression
prediction

(102) Reddy et al. dataset (Jurkat,

K-562, THP-1)

Transformer CNN (1). Jurkat PCC = 0.6389 ±

0.0036, SRCC = 0.5996 ± 0.0093

(2). K-562 PCC = 0.6152 ±

0.0082, SRCC = 0.6043 ± 0.0045

(3). THP-1 PCC = 0.5672 ±

0.0131, SRCC = 0.4742 ± 0.0136

(103) Al Taweraqi et al. dataset Laplacian eigenmaps
+ Locally linear
Embedding +
DeepWalk +
Node2Vec

RF _

Multi-class
classification

Pseudo-gene
function
prediction

(111) Fan et al. dataset (CC, MF,
BP)

Node2Vec GCN CC: (AUPRC = 0.587± 0.02,
F1-score = 0.380± 0.01)
MF: (AUPRC = 0.463± 0.02,
F1-score = 0.319± 0.01)
BP: (AUPRC = 0.362± 0.01,
F1-score = 0.193± 0.01)

Multi-class
classification

Candidate gene
prioritization &
Selection

(114) Toufiq et al. dataset GPT _ _

Bold values highlight top performers on unique datasets related to distinct tasks.

Frontiers inMedicine 44 frontiersin.org

https://doi.org/10.3389/fmed.2025.1503229
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Asim et al. 10.3389/fmed.2025.1503229

TABLE 10 Distinct predictive pipeline performance related to DNA modification, environmental and microbial genomics tasks, and gene network

analysis.

Task
type

Task name References Dataset Representation
learning

Classifier Performance
evaluation

Goal: DNA modification prediction

Binary
classification

4-Methylcytosine
(4mc)
modification
prediction

(134) Chen et al. datasets

(1-6)

PseKNC Structural

Sparse

Regularized

Random

Vector

Functional

Link

Network

1. Acc = 0.8761, Sn = 0.8630,

Sp = 0.8893, MCC = 0.7530

2. Acc = 0.8753, Sn = 0.8739,

Sp = 0.8768, MCC = 0.7512

3. Acc = 0.8278, Sn = 0.8256,

Sp = 0.8301, MCC = 0.6566

4. Acc = 0.9601, Sn = 0.8641,

Sp = 0.9562, MCC = 0.9210

5. Acc = 0.9011, Sn = 0.8895,

Sp = 0.9127, MCC = 0.8031

6. Acc = 0.9139, Sn = 0.9087,

Sp = 0.9190, MCC = 0.8289

(143) Yang et al. dataset (A.

thaliana, C.elegans, D.

melanogaster, E. coli, G.

pickeringii, G.

subterraneous)

BERT CatBoost A. thaliana: MCC = 0.6954,

F1-score = 0.8521

C. elegans: MCC = 0.8326,

F1-score = 0.9183

D. melanogaster: MCC =

0.7924, F1-score = 0.8986

E. coli: MCC = 0.9356,

F1-score = 0.9679

G. pickeringii: MCC =

0.8904, F1-score = 0.9431

G. subterraneous: MCC =

0.8796, F1-score = 0.9363

(351) Chen et al. dataset BERT _ AUROC = 0.897, AUPRC =
0.907

(135) Khanal et al. dataset (C.

elegans, D.

melanogaster, A.

thaliana, E. coli, G.

subterraneus, G.

pickeringi, F. vesca, R.

chinensis)

Number of codons, Number

of occurrences of each

codon, Proportion of each

codon, Number of

Nucleotides, Average

number of Nucleotides per

codon, Percentage of GC,

Percentage of purines AG,

Percentage of pyrimidines

CT, Percentage of AT,

Molecular weight of the

sequence, Melting

temperature, Proportion of

Nucleotide DNA sequence,

Protein sequence from DNA

sequence, Number of amino

acids, Percentage of amino

acids, Aromaticity,

Instability index, Isoelectric

point, Molecular weight of

Portion, Gravy

KNN C.elegans: Acc = 92.20,

AUROC = 91.99, Precision =

89.47, Recall = 95.67

D. melanogaster: Acc = 92.79,

AUROC = 92.80, Precision =

88.54, Recall = 98.30

A. thaliana: Acc = 90.27,

AUROC = 90.28, Precision =

87.52, Recall = 93.93

E. coli: Acc = 91.02, AUROC

= 91.03, Precision = 86.36,

Recall = 97.43

G. subterraneus: Acc = 93.09,

AUROC = 93.09, Precision =

91.48, Recall = 95.02

G. pickeringi: Acc = 90.78,

AUROC = 90.79, Precision =

87.20, Recall = 95.61 F.

vesca: Acc = 90.67, AUROC =

90.68, Precision = 85.31,

Recall = 98.26

R. chinensis: Acc = 91.87,

AUROC = 91.88, Precision =

87.35, Recall = 97.93

(136) Zulifiqar et al. dataset Word2Vec CNN Acc = 0.946, Sn = 0.938, Sp =

0.881, MCC = 0.778, AUROC

= 0.989

(50) Clauwaert et al. dataset Transformer-XL CNN AUROC = 0.985

(138) Khanal et al. dataset (F.
vesca, R. chinensis)

Word2Vec CNN F. vesca: Sn = 0.8976, Sp =
0.8417, Acc = 0.8697, MCC =
0.7407, AUROC = 0.9400 R.
chinensis: Sn = 0.8219, Sp =
0.8854, Acc = 0.8541, MCC =
0.7093, AUROC = 0.9370

(137) Zeng et al. dataset Word2Vec CNN Acc = 0.9321, MCC = 0.8559,

Sn = 0.9508, Sp = 0.9161,

AUROC = 0.9712

(Continued)
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TABLE 10 (Continued)

Task
type

Task name References Dataset Representation
learning

Classifier Performance
evaluation

Methyladenine
(6ma)
modification
Prediction

(149) 1. A. thaliana

2.D. melanogaster

3. 6mA-rice-Chen

4. 6mA-rice-Lv

5. Rosaceae

One-hot Encoding BiLSTM 1. Sn = 0.896, Sp = 0.935, Acc

= 0.915, MCC = 0.831,

AUROC = 0.967

2. Sn = 0.903, Sp = 0.952, Acc

= 0.927, MCC = 0.855,

AUROC = 0.963

3. Sn = 0.850, Sp = 0.917, Acc

= 0.882, MCC = 0.763,

AUROC = 0.947

4. Sn = 0.947, Sp = 0.930, Acc

= 0.938, MCC = 0.877,

AUROC = 0.976

5. Sn = 0.962, Sp = 0.961, Acc

= 0.962, MCC = 0.924,

AUROC = 0.990

(150) 1. Homo sapiens dataset

(Train, Independent)

2. Mus musculus dataset

Transformer CNN Homo sapiens (Train): Acc =

96.5 Homo sapiens

(Independent): Acc = 93.75

Mus musculus: Acc = 96.86

(144) Lv et al. dataset (A.
thaliana, C. elegans, C.

equisetispolia, D.

melanogaster, F. vesva, H.
sapiens, R. chinensis, S.
cerevisiae, T.

thermophilus, Ts.
SUP5-1, Xoc. BLS256)

BERT CNN +
BiLSTM

A. thaliana: AUROC = 0.927
C. elegans: AUROC = 0.962
C. equisetifpolia: AUROC =
0.800
D. melanogaster: AUROC =
0.967
F. vesca: AUROC = 0.976
H. sapiens: AUROC = 0.963
R. chinensis: AUROC = 0.876
S. cerevisiae: AUROC = 0.892
T. thermophilus: AUROC =
0.938 Ts. SUP5-1: AUROC =
0.829 Xoc. BLS256: AUROC =
0.937

(281) DNA 6 mA dataset BERT CNN Cross-Validation Sn = 86.4,

Sp = 68.8, Acc = 77.6, MCC =

0.651 Independent Sn = 84.3,

Sp = 73.1, Acc = 79.3, MCC =

0.580

(145) A. thaliana dataset Transformer _ Acc = 0.9633, Sn = 0.9655, Sp
= 0.9611, MCC = 0.9266

(151) 1. Rice dataset 2. Mus
musculus dataset

Word2Vec BiLSTM Rice dataset: Sn = 95.66, Sp =
92.38, Acc = 94.02, MCC =
0.88, AUROC = 0.981 Mus
musculus: Sn = 93.28, Sp =
100, Acc = 96.73, MCC = 0.93

(234) Chen et al. dataset FastText SVM Sn = 86.48, Sp = 89.09, Acc =
87.78, MCC = 0.756

5-methylcytosine
(5mc)
modification
prediction

(282) Wang et al. dataset BERT _ Acc = 0.932, MCC = 0.653,

AUROC = 0.966

(153) Wang et al. dataset FastText XGBoost Acc = 91.8, Sp = 92.0, Sn =
89.9, MCC = 0.626, AUROC =
0.962

(152) Stanojevic et al. datasets

(GM24385, NA12878,

NA19240, HIESc, K562,

HX1)

Transformer _ GM24385: Acc = 0.9988,

Precision = 0.9990, Recall =

0.9988, FPR = 0.0011,

F1-score = 0.9989 NA12878:

Acc = 0.9936, Precision =

0.9921, Recall = 0.9953, FPR

= 0.0081, F1-score = 0.9937

NA19240: Acc = 0.9872,

Precision = 0.9678, Recall =

0.9765, FPR = 0.0096,

F1-score = 0.9721 H1ESc:

Acc = 0.9938, Precision =

0.9995, Recall = 0.9935, FPR

= 0.0040, F1-score = 0.9965

(Continued)
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TABLE 10 (Continued)

Task
type

Task name References Dataset Representation
learning

Classifier Performance
evaluation

K562: Acc = 0.9972,

Precision = 0.9512, Recall =

0.9964, FPR = 0.0028,

F1-score = 0.9733 HX1: Acc

= 0.9950, Precision = 0.9993,

Recall = 0.9951, FPR =

0.0057, F1-score = 0.9972

Methylation
modification
prediction

(159) Jeong et al. dataset BERT _ Precision = 0.98

(351) Yu et al. dataset BERT _ AUROC = 0.897, AUPRC =
0.907

(155) Lv et al. datasets (5hmc:
M. musculus, H. sapiens,
4mc: C. equisetifolia, F.
vesca, S. cerevisiae,

Tolypocladium, 6mA: A.
thaliana, C. elegans, C.

equisetifolia, D.

melanogaster, F. vesca, H.

sapiens, R. chinensis, S.

cerevisiae, T.

thermophile,

Tolypocladium,
XocBLS256)

BERT _ 5hmC_M. sapiens: Acc =
0.949, AUROC = 0.967, MCC
= 0.900 5hmC_M. musculus:
Acc = 0.968, AUROC = 0.981,
MCC = 0.936 4mC_C.
equisetifolia: Acc = 0.853,
AUROC = 0.896, MCC =
0.706 4mC_F. vesca: Acc =
0.853, AUROC = 0.928, MCC
= 0.706 4mC_S. cerevisiae:
Acc = 0.710, AUROC = 0.776,
MCC = 0.423
4mC_Tolypocladium: Acc =
0.743, AUROC = 0.819, MCC
= 0.487 6mA_A. thaliana: Acc
= 0.861, AUROC = 0.934,
MCC = 0.722 6mA_C. elegans:
Acc = 0.909, AUROC = 0.966,
MCC = 0.818 6mA_C.
equisetifolia: Acc = 0.745,
AUROC = 0.816, MCC =
0.494 6mA_D. melanogaster:
Acc = 0.923, AUROC = 0.971,
MCC = 0.846 6mA_F. vesca:
Acc = 0.939, AUROC = 0.981,
MCC = 0.878 6mA_H.
sapiens: Acc = 0.907, AUROC
= 0.969, MCC = 0.815
6mA_R. chinensis: Acc =
0.818, AUROC = 0.881, MCC
= 0.635 6mA_S. cerevisiae:
Acc = 0.827, AUROC = 0.905,
MCC = 0.654 6mA_T.
thermophile: Acc = 0.882,
AUROC = 0.944, MCC =
0.772 6mA_Tolypocladium:
Acc = 0.768, AUROC = 0.845,
MCC = 0.538
6mA_XocBLS256: Acc =
0.877, AUROC = 0.949, MCC
= 0.756

(158) CCLE dataset Transformer _ Sn = 0.831, Sp = 0.991, Acc =
0.978, MCC = 0.871, AUROC
= 0.989

(156) Lv et al. datasets (5hmc:

M. musculus,H. sapiens,

4mc: C. equisetifolia, F.

vesca, S. cerevisiae,

Tolypocladium, 6mA: A.

thaliana, C. elegans, C.

equisetifolia, D.

melanogaster, F. vesca,

H. sapiens, R. chinensis,

S. cerevisiae,

BERT + ALBERT + XLNet +

ELECTRA

_ (6mA) T. thermophile:

AUROC = 0.9467, Acc =

0.8840, F1-score = 0.8923,

Recall = 0.9611, AUPRC =

0.9321 A. thaliana: AUROC

= 0.9378, Acc = 0.8649,

F1-score = 0.8615, Recall =

0.8401, AUPRC = 0.9423H.

sapiens: AUROC = 0.9687,

Acc = 0.9077, F1-score =

0.9068, Recall = 0.8975,

(Continued)
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TABLE 10 (Continued)

Task
type

Task name References Dataset Representation
learning

Classifier Performance
evaluation

T. thermophile,

Tolypocladium,

XocBLS256

AUPRC = 0.9721 Xoc.

BLS256: AUROC = 0.9446,

Acc = 0.8742, F1-score =

0.8712, Recall = 0.8511,

AUPRC = 0.9421 D.

melanogaster: AUROC =

0.9730, Acc = 0.9276,

F1-score = 0.9275, Recall =

0.9258, AUPRC = 0.9761 C.

elegans: AUROC = 0.9684,

Acc = 0.9131, F1-score =

0.9138, Recall = 0.9219,

AUPRC = 0.9674 C.

equisetifolia: AUROC =

0.8350, Acc = 0.7590,

F1-score = 0.7481, Recall =

0.7158, AUPRC = 0.8492 S.

cerevisiae: AUROC = 0.9082,

Acc = 0.8325, F1-score =

0.8233, Recall = 0.7802,

AUPRC = 0.9198

Tolypocladium: AUROC =

0.8669, Acc = 0.7895,

F1-score = 0.7824, Recall =

0.7567, AUPRC = 0.8730 F.

vesca: AUROC = 0.9821, Acc

= 0.9407, F1-score = 0.9403,

Recall = 0.9336, AUPRC =

0.9831 R. chinensis: AUROC

= 0.9654, Acc = 0.9164,

F1-score = 0.9167, Recall =

0.9197, AUPRC = 0.9691

(4mC) C. equisetifolia:

AUROC = 0.9108, Acc =

0.8333, F1-score = 0.8272,

Recall = 0.7978, AUPRC =

0.9221 F. vesca: AUROC =

0.9256, Acc = 0.8522,

F1-score = 0.8554, Recall =

0.8739, AUPRC = 0.9144 S.

cerevisiae: AUROC = 0.8064,

Acc = 0.7376, F1-score =

0.7253, Recall = 0.6926,

AUPRC = 0.8215

Tolypocladium: AUROC =

0.8149, Acc = 0.7380,

F1-score = 0.7285, Recall =

0.7031, AUPRC = 0.80889

(5hmC)M. musculus:

AUROC = 0.9817, Acc =

0.9649, F1-score = 0.9651,

Recall = 0.9685, AUPRC =

0.9782H. sapiens: AUROC =

0.9680, Acc = 0.9484,

F1-score = 0.9500, Recall =

0.9787, AUPRC = 0.9485

(157) Lv et al. datasets (5hmc:
M. musculus, H. sapiens,
4mc: C. equisetifolia, F.
vesca, S. cerevisiae,

Tolypocladium, 6mA: A.
thaliana, C. elegans, C.

equisetifolia, D.

melanogaster, F. vesca, H.
sapiens, R. chinensis, S.
cerevisiae, T.
thermophile,
Tolypocladium,
XocBLS256)

BERT FGM 5hmC_H. sapiens: Acc =
0.9501, Sn = 0.9838, Sp =
0.9164, AUROC = 0.9501,
MCC = 0.9022 5hmC_M.

musculus: Acc = 0.9679, Sn =
0.969, Sp = 0.9668, AUROC =
0.9679, MCC = 0.9358
4mC_C. equisetifolia: Acc =
0.8579, Sn = 0.8743, Sp =
0.8415, AUROC = 0.8579,
MCC = 0.7162 4mC_F. vesca:
Acc = 0.8524, Sn = 0.8535, Sp
= 0.8512, AUROC = 0.8524,
MCC = 0.7047 4mC_S.
cerevisiae: Acc = 0.723, Sn =

(Continued)
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TABLE 10 (Continued)

Task
type

Task name References Dataset Representation
learning

Classifier Performance
evaluation

0.6876, Sp = 0.7583, AUROC
= 0.723, MCC = 0.447
4mC_Tolypocladium: Acc =
0.7434, Sn = 0.7385, Sp =
0.7483, AUROC = 0.7434,
MCC = 0.4868 6mA_A.
thaliana: Acc = 0.8603, Sn =
0.8264, Sp = 0.8942, AUROC
= 0.8603, MCC = 0.7223
6mA_C. elegans: Acc =
0.9138, Sn = 0.9256, Sp =
0.902, AUROC = 0.9138,
MCC = 0.8279 6mA_C.
equisetifolia: Acc = 0.7399, Sn
= 0.6713, Sp = 0.8084,
AUROC = 0.7399, MCC =
0.4843 6mA_D. melanogaster:
Acc = 0.9228, Sn = 0.9301, Sp
= 0.9155, AUROC = 0.9228,
MCC = 0.8457 6mA_F. vesca:
Acc = 0.9413, Sn = 0.9452, Sp
= 0.9375, AUROC = 0.9413,
MCC = 0.8827 6mA_R.
chinensis: Acc = 0.8629, Sn =
0.8328, Sp = 0.893, AUROC =
0.8629, MCC = 0.7271
6mA_S. cerevisiae: Acc =
0.8278, Sn = 0.7966, Sp =
0.859, AUROC = 0.8278,
MCC = 0.6569 6mA_T.
thermophile: Acc = 0.8804, Sn
= 0.9442, Sp = 0.8167,
AUROC = 0.8804, MCC =
0.7671 6mA_Tolypocladium:
Acc = 0.7771, Sn = 0.7649, Sp
= 0.7892, AUROC = 0.7771,
MCC = 0.5543 6mA_Xoc
BLS256: Acc = 0.8817, Sn =
0.8808, Sp = 0.8827, AUROC
= 0.8817, MCC = 0.7634

(250) DNAm dataset (Brain,
Blood, Buccal, Saliva)

Transformer _ SRCC: (Brain: Mean = 0.82,
SD = 0.004) (Blood: Mean =
0.78, SD = 0.005) (Buccal:
Mean = 0.79, SD = 0.007)
(Saliva: Mean = 0.79, SD =
0.010)
Mean squared error: (Brain:
Mean = 0.030, SD = 0.0026)
(Blood: Mean = 0.043, SD =
0.0023) (Buccal: Mean =
0.049, SD = 0.0080) (Saliva:
Mean = 0.040, SD = 0.055)

(146) 1. Maize 5mC dataset
2. Nipponbare 5mC
dataset
3. 6mA Chen dataset
4. 6mA Lv dataset

ULMFiT _ 1. Maize 5mC Acc = 0.9524,
AUNP = 0.97, AUNU = 0.95,
Macro precision = 0.9378,
Min precision = 0.9524,
Macro Sn = 0.9188, Micro Sn
= 0.9524, Macro F1-score =
0.9269, Min F1-score = 0.9524
2. Nipponbare 5mC Acc =
0.8106, AUNP = 0.88, AUNU
= 0.88, Macro precision =
80.74, Min precision = 81.93,
Macro Sn = 81.93, Micro Sn =
81.93, Macro F1-score =
80.32, Min F1-score = 81.93
3. 6mA Chen Sn = 0.9303, Sp
= 0.9225, Acc = 0.9265, MCC
= 0.85, AUROC = 0.93
4. 6mA Lv Sn = 0.9605, Sp =
0.9248, Acc = 0.9426, MCC =
0.89, AUROC = 0.94

(Continued)
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TABLE 10 (Continued)

Task
type

Task name References Dataset Representation
learning

Classifier Performance
evaluation

(154) Lv et al. datasets (5hmc:
M. musculus, H. sapiens,
4mc: C. equisetifolia, F.
vesca, S. cerevisiae,

Tolypocladium, 6mA: A.
thaliana, C. elegans, C.

equisetifolia, D.

melanogaster, F. vesca, H.
sapiens, R. chinensis, S.
cerevisiae, T.

thermophile,

Tolypocladium,
XocBLS256)

BERT _ 5hmC_H. sapiens: Acc =
94.92, Sn = 98.63, Sp = 91.21,
MCC = 90.09, AUROC =
95.53, F1-score = 95.1
5hmC_M. musculus: Acc =
96.85, Sn = 97.06, Sp = 96.63,
MCC = 93.69, AUROC =
97.57, F1-score = 96.85
4mC_C. equisetifolia: Acc =
82.51, Sn = 79.23, Sp = 85.79,
MCC = 65.17, AUROC =
85.55, F1-score = 81.92
4mC_F. vesca: Acc = 84.2, Sn
= 85.2, Sp = 83.21, MCC =
68.42, AUROC = 90.7,
F1-score = 84.36 4mC_S.
cerevisiae: Acc = 70.27, Sn =
66.94, Sp = 73.61, MCC =
40.64, AUROC = 75.37,
F1-score = 69.25
4mC_Tolypocladium: Acc =
73.83, Sn = 72.16, Sp = 75.49,
MCC = 47.68, AUROC =
80.57, F1-score = 73.39
6mA_A. thaliana: Acc =
85.38, Sn = 82.33, Sp = 88.42,
MCC = 70.88, AUROC =
91.84, F1-score = 84.92
6mA_C. elegans: Acc = 89.03,
Sn = 88.17, Sp = 89.9, MCC =
78.08, AUROC = 94.33,
F1-score = 88.94 6mA_C.
equisetifolia: Acc = 73.28, Sn =
68.91, Sp = 77.65, MCC =
46.73, AUROC = 79.02,
F1-score = 72.06 6mA_D.
melanogaster: Acc = 91.22, Sn
= 90.38, Sp = 92.05, MCC =
82.44, AUROC = 95.44,
F1-score = 91.14 6mA_F.
vesca: Acc = 92.68, Sn = 92.33,
Sp = 93.04, MCC = 82.44,
AUROC = 95.44, F1-score =
92.66 6mA_H. sapiens: Acc =
89.8, Sn = 89.4, Sp = 90.2,
MCC = 79.6, AUROC = 95.1,
F1-score = 89.76 6mA_R.
chinensis: Acc = 82.61, Sn =
80.94, Sp = 84.28, MCC =
65.25, AUROC = 87.89,
F1-score = 82.31 6mA_S.
cerevisiae: Acc = 80.11, Sn =
72. 37, Sp = 87.85, MCC =
60.96, AUROC = 87.09,
F1-score = 78.44 6mA_T.
thermophile: Acc = 87.4, Sn =
93.34, Sp = 81.54, MCC =
75.4, AUROC = 93.1, F1-score
= 88.14 6mA_Tolypocladium:
Acc = 77.38, Sn = 71.76, Sp =
83.01, MCC = 55.12, AUROC
= 83.61, F1-score = 76.04
6mA_Xoc BLS256: Acc =
86.94, Sn = 88.9, Sp = 84.92,
MCC = 73.94, AUROC =
92.61, F1-score = 87.2

Goal: environmental and microbial genomics tasks

Multi-class
classification

Nitrogen cycle
prediction

(27) NCycDB BERT _ Macro F1-score = 99.5,
Weighted F1-score = 99.2

(Continued)
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TABLE 10 (Continued)

Task
type

Task name References Dataset Representation
learning

Classifier Performance
evaluation

Goal: gene network analysis

Multi-class
classification

Gene taxonomy
classification

(121) Verma et al. dataset FastText MLP Macro F1-score = 0.92±
0.0054

(123) Mock et al. dataset

(Superkingdom,

Phylum)

BERT _ Superkingdom: Acc = 94.78

Phylum: Acc = 85.55

(122) ActinoMock dataset
(LSH, Decimal, FNV)

LSH+FastText MLP LSH: Acc = 1.00, Precision =
1.00, Recall = 1.00, F1-score =
0.99 Decimal: Acc = 0.93,
Precision = 0.94, Recall =
0.93, F1-score = 0.91 FNV:
Acc = 0.937, Precision = 0.94,
Recall = 0.94, F1-score = 0.92

Binary
classification

Gene network
reconstruction

(127) DREAM4 10, DREAM4
100, E. coli cold

_ LightGBM DREAM4 10: AUROC =
0.956, AUPRC = 0.891
DREAM4 100: AUROC =
0.909, AUPRC = 0.445 E. coli
cold: AUROC = 0.602,
AUPRC = 0.030

(126) Pio et al. dataset Metabolic feature encoding Clustering _

(128) Ceci et al. datasets Node2Vec PCT _

Bold values highlight top performers on unique datasets related to distinct tasks.

common task, namely, 6mA-methyl adenine modification
prediction. Furthermore, potential of transformer-XL is explored
with CNN classifier for one task, ULMFiT and hybrid encoding
scheme (BERT+ALBERT+XLNet+ELECTRA) with self-classifier
for one task, FastText with SVM classifier for one task and FastText
with XGBoost classifier for one task. Overall, among all approaches,
PseKNC encoding approach with structural sparse regularized
random vector functional link network classifier manages to
achieve best predictive performance on 4mC-methylcytosine
modification prediction. Among all four tasks, DNA methylation
modification prediction and 5mC-methyl cytosine modification
prediction have some room for improvement. Building on the
performance trends of predictive pipelines developed for different
tasks of this goal, potential of BERT or PseKNC representation
learning approach with structural sparse regularized random
vector functional link network classifier can be explored to enhance
the performance of under-performing tasks.

For environmental and microbial genomics goal, only potential
of BERT representation learning is explored with a self-classifier.
However, the potential of neural word embeddings and domain
specific encoders based predictive pipelines remains unexplored.

For gene network analysis goal, across two different tasks,
four unique representation learning approaches, namely, FastText,
Node2vec, BERT, and metabolic encoding, along with four unique
classifiers, namely, MLP, LightGBM, Clustering algorithm, and
PCT, are used by six predictors. FastText representation learning
is most commonly used among all approaches. Specifically,
FastText along with MLP classifier is used for gene taxonomy
classification task. Second most common representation learning
approach is BERT that is used with a self-classifier for same
gene taxonomy classification task. Apart from this, Node2Vec
representation is explored with PCT classifier and metabolic

feature encoding is explored with clustering algorithm for gene
network reconstruction task. Among all approaches, FastText
and MLP classifier-based predictive pipeline manages to achieve
best performance for gene taxonomy classification task. Among
all tasks of this goal, gene taxonomy classification offers some
room for improvement. Building on promising performance
achieved by contemporary language models for different sequence
analysis tasks, hierarchical graph transformer and sophisticated
machine or deep learning-based ensemble classifier can further
raise the predictive performance on gene taxonomy classification
task. Furthermore, advanced graph-based representation learning
methods, GraRep, HOPE, and LINE with deep classifiers can also
potentially raise the predictive performance on gene taxonomy
classification task.

In addition, Table 11 provides an overview of six DNA
sequence analysis tasks classified under the goal of DNA
functional analysis. For this goal, four unique representation
learning methods, namely, Word2Vec, Transformer, BERT, and
FastText, are used in conjunction with three different predictors,
namely, LogR, SVM, and cosine similarity. Among all four
representation learning methods, Transformer is most commonly
used followed by Word2vec and BERT. Transformer is used in
three different tasks with self-classifier, Word2vec, and BERT
are used with LogR and self-classifier in two different tasks.
In addition, potential of FastText is explored with SVM for 1
task. Among all representation learning methods, Transformer
with self-classifier manages to achieve top performance for tumor
type prediction. Among all six tasks, disease risk estimation task
offers a room for improvement as its respective BERT and self-
classifier-based predictive pipeline accuracy falls approximately
56%. Hybrid approaches combining the powers of Transformer,
BERT, andWord2vec with sophisticatedmachine learning classifier
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TABLE 11 DNA functional analysis task predictive pipeline performance.

Task
type

Task name References Dataset Representation
learning

Classifier Performance evaluation

Binary
classification

Conserved
non-coding
elements
classification

(163) Polychronopoulos et al.
dataset (D1, D2, D3)

Word2Vec LogR D1: F1-score = 83.0, D2: F1-score =
85.5, D3: F1-score = 77.4

Multi-class
classification

Functional
prioritization of
non-coding
variant

(34) Yang et al. dataset
(LOGO-919, LOGO-2002,
LOGO-3357)

Transformer _ _

Binary
classification

Exon and intron
region
classification

(164) Akalin et al. dataset BERT _ Precision = 100, Sn = 75, Sp = 100,

Acc = 88.88, F1-score = 85.71

Binary
classification

Recombination
spots
identification

(165) Liu et al. dataset FastText SVM Sn = 90, Sp = 94.76, Acc = 92.6,

MCC = 0.851

Multi-class
classification

Species
classification

(44) 1. Mouse enhancers dataset
2. Coding vs. intergenomic
dataset
3. Human vs. worm dataset
4. Human enhancers cohn
dataset
5. Human enhancers
ensembl dataset
6. Human regulatory dataset
7. Human nontata promoter
dataset
8. Human OCR ensembl
dataset

Transformer _ Mouse enhancers: Acc = 85.1
Coding vs. Intergenomic: Acc =
91.3 human vs. worm: Acc = 96.6
human enhancers cohn: Acc = 74.2
human enhancers ensembl: Acc =
89.2 human regulatory: Acc = 93.8
human nontata promoter: Acc =
96.6 human OCR ensembl: Acc =
80.9

Interaction Prediction of
context-specific
functional impact
of genetic variants

(36) eQTLs dataset Transformer _ AUPRC = 0.922

Bold values highlight top performers on unique datasets related to distinct tasks.

such as deep forest or deep learning classifiers such as CNN
and CNN+BiGRU can potentially enhance the performance
on under-performing tasks. Furthermore, except for two tasks,
namely, species classification and functional prioritization, of
non-coding variants, all other four tasks are evaluated on a
single benchmark dataset. Considering deep learning models
require huge amount of data to achieve promising performance,
development, and utilization of more datasets in model building
and validation can also prove fruitful for enhancing the
predictive performance.

Finally, Table 12 summarizes predictive models developed
for seven unique DNA sequence analysis tasks categorized
under the goal of disease analysis. For this goal, seven unique
representation learning methods, namely, Node2Vec, Graph2Vec,
BERT, Graph Embedding, SDNE, Word2Vec, and Transformer,
and five predictors, namely, MLP, RF, cosine similarity, clustering,
and BERT self-classifier, are used in different tasks. Among all
representation learning approaches, BERT and Word2vec are
most commonly used. BERT is used with self-classifier on two
different tasks, and word2vec is used with cosine similarity for
a multi-class classification task, namely, mutation susceptibility
analysis and with clustering algorithm for an only clustering task,
namely, phylogenetic analysis. Apart from BERT and Word2vec,
other representation learning methods Node2vec+Graph2vec,
Graph Embedding, SDNE+Word2vec, and Transformer are used

on one classification task each with MLP and self-classifiers.
Overall, among all approaches, Transformer with self-classifier-
based predictive pipelines manages to achieve best performance
on tumor type prediction task. Among all seven tasks, disease
risk estimation task offers a lot of room for improvement as
its respective BERT with self-classifier-based predictive pipeline
performance falls approximately 56%. Taking the transformer
performance trends into account, latest sophisticated language
models such as hierarchical graph transformer, ELECTRA, and
GPT-4 along with ensemble machine or deep learning predictors
can achieve significance performance rise in under-performing
classification and clustering tasks.

In a nutshell, a comprehensive analysis of state-of-the-art
predictive pipelines developed using word embeddings, language
models, and nucleotide compositional and positional information-
based encoders reveals interesting trends. From 44 DNA sequence
analysis tasks classified under the hood of 8 major biological goals,
24 tasks belong to binary classification, 4 belong to interaction
prediction, 11 belong to multi-class classification, only 3 belong
to multi-label classification, 1 belong to regression, and 1 belong
to clustering. Overall, 25 unique representation learning methods
and 28 predictors are explored for developing robust predictive
pipelines for 44 DNA sequence analysis tasks classified under the
hood of 8 major biological goals. Across all eight goals, language
model-based representation learning approaches and deep learning
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TABLE 12 Disease analysis task predictive pipeline performance.

Task
type

Task name References Dataset Representation
learning

Classifier Performance evaluation

Binary
classification

Pathogen
signatures
identification

(171) DS500 dataset, DS5000
dataset

Node2Vec+Graph2Vec MLP 1. Acc = 73.49, 2. Acc = 89.7

Disease risks
estimation

(90) HSCR-RET,

HSCR-RET-Long

BERT _ HSCR-RET: Precision = 0.770,

Recall = 0.519, Acc = 0.562;

HSCR-RET-Long: Precision =

0.768, Recall = 0.513, Acc = 0.541

Interaction Phage-host
interactions
prediction

(175) Qiu et al. dataset _ RF Acc = 0.801, Recall = 0.801, Sp =

0.801, Precision = 0.803, F1-score

= 0.801, AUROC = 0.801

(176) Wang et al. dataset Graph Embedding MLP AUROC = 0.88317

(177) ESKAPE dataset SDNE+Word2Vec MLP Acc = 86.65± 1.55, Sn = 88.40±
1.81, Sp = 84.91± 1.96, Precision =
85.43± 1.74, F1-score = 86.88±
1.53, AUROC = 0.9208± 0.0119

Multi-class
classification

Mutation
susceptibility
analysis

(173) Yilmaz et al. dataset

(Human, Mouse)

Word2Vec Cosine

similarity

Human data: Acc = 0.7974, mouse

data: Acc = 0.8322

Tumor type
prediction

(180) TCGA pan-cancer dataset Transformer _ Acc = 98.4, Precision = 98.50,

Recall = 98.4, F1-score = 98.37

Pathogenicity
potential
assessment

(27) E-K12, CARD-A, CARD-D,
CARD-R, VFDB, ENZYME,
PATRIC, NCycDB

BERT _ E-K12: Macro F1-score = 61.8,
Weighted F1-score = 65.4;
CARD-A AMR: Macro F1-score =
78.6, Weighted F1-score = 90.1;
CARD-D: Macro F1-score = 57.4,
Weighted F1-score = 85.2;
CARD-R: Macro F1-score = 69.4,
Weighted F1-score = 91.4; VFDB:
Macro F1-score = 75.7, Weighted
F1-score = 90.2; ENZYME: Macro
F1-score = 99.1, Weighted F1-score
= 98.8; PATRIC: Macro F1-score =
99.3, Weighted F1-score = 99.0;
NCycDB: Macro F1-score = 99.5,
Weighted F1-score = 99.2

Clustering Phylogenetic
analysis

(21) Ren et al. dataset Word2Vec Clustering Acc = 0.84

Bold values highlight top performers on unique datasets related to distinct tasks.

classifiers are achieving better performance across majority of
the tasks. Researchers can explore the performance potential of
latest transformer-based language models such as Hierarchical
graph transformer, GPT-4, and hybrid representation learning
methods along with sophisticated ensemble machine learning or
deep learning predictors for different classification, regression, and
clustering tasks.

11 Publisher and journal-wise
distribution of research articles

This section provides an overview of 44 distinct DNA sequence
analysis task-related articles distribution across conferences,
journals, and publishers. Before paper submission, identification
of relevant journals for a study publication in the interdisciplinary
field of AI applications in DNA sequence analysis is an important
task. There are three types of journals in AI and DNA sequence
analysis fields: (1) Journals focusing on core AI algorithms, (2)
Journals dedicated to core biological findings, (3) Hybrid journals

that publish research integrating both AI algorithms and biological
data. Researchers often face desk rejections when submitting to core
AI or biology journals. Instead, they should target hybrid journals.
While many tools exist to find suitable journals, this comprehensive
guide provides detailed information to help researchers to identify
journals where applications using word embeddings and large
language models for DNA sequence analysis are published.

Figure 7 graphically depicts distribution of 127 studies across 53
journals, 1 transactions, 3 conferences, and 2 pre-print repositories.
Among all journals, more studies are published in Briefings
in Bioinformatics followed by Bioinformatics, Computational
Biology, and Chemistry, and International Journal of Molecular
Sciences. Similarly, among all conferences, more studies are
published in the International Conference on Bioinformatics and
Biomedicine (BIBM) followed by the 11th Hellenic Conference
on Artificial Intelligence, Proceedings of the 12th and 13th

ACM International Conference on Bioinformatics, Computational
Biology, and Health Informatics. Moreover, 5 studies are published
in ACM transaction of computational biology. In the light of
rapid development in research findings, researchers have also
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FIGURE 7

Publication distribution of DNA sequence analysis literature across diverse journals and conferences from 2018 to 2024.

published 24 studies in bioRxiv, ArXiV, and MedXiv platforms.
However, researchers generally prefer journal publications for their
sustained impact.

Furthermore, Figure 8 illustrate that 127 DNA sequence
analysis studies are published by 17 different publishers, namely,
Springer,9 Elsevier (see text footnote 3), Oxford University Press,10

Cold Spring Harbor Laboratory,11 IEEE,12 Ozer UYGUN,13 ACS
Publication,14 Frontier Media SA,15 Gazi University,16 Marry Ann
Liebert,17 MDPI,18 National Acad Sciences,19 Nature Publishing
GroupUK London,20 PeerJ Inc.,21 Public Library of science,22 ACM
(see text footnote 2), and pre-prints.23 Notably, approximately 60
out of 127 DNA sequence analysis studies are published by Oxford
University Press, Elsevier, and Cold Spring Harbor Laboratory. In
addition, IEEE, Springer, and MDPI have contributed 30 relevant
papers. Furthermore, 32 DNA sequence analysis research articles
are published by ACS Publications, Frontiers Media SA, Mary Ann

9 https://www.springer.com/in

10 https://global.oup.com/academic/

11 https://www.cshlpress.com/

12 https://www.ieee.org/

13 https://dergipark.org.tr/en/pub/@ozeruygun

14 https://pubs.acs.org/

15 https://www.frontiersin.org/

16 https://gazi.edu.tr/

17 https://www.liebertpub.com/

18 https://www.mdpi.com/

19 https://www.nasonline.org/

20 https://www.nature.com/

21 https://peerj.com/

22 https://plos.org/

23 https://arxiv.org/

Liebert, Inc., National Acad Sciences, Nature Publishing Group
UK London, Public Library of Science, PeerJ Inc, and others.
Collectively, 96 are journal publications, 6 are conference papers,
1 is transaction articles, and 24 are pre-prints out of 127 DNA
sequence analysis studies published by 21 different publishers.
This comprehensive analysis across various journals, conferences,
transactions, and pre-print repositories highlights diverse and
extensive research landscape in DNA sequence analysis.

12 Discussion

We acknowledge that “DNA sequence analysis” encompasses a
much broader range of bioinformatics applications than covered in
this review. Our focus is specifically on AI-based approaches that
analyze raw DNA sequence data to predict biological functions and
features. Other important areas of bioinformatics such as genome
assembly, comprehensive variant analysis, phylogenomics, and
many aspects of population genetics utilize different computational
approaches and would benefit from separate dedicated reviews.
A comprehensive review of existing literature on AI-driven DNA
sequence analysis tasks reveals a significant inconsistency in
the evaluation of predictive pipelines across similar datasets.
Researchers have developed numerous datasets tailored to specific
tasks, and most of the researchers have evaluated their proposed
predictors solely on their own datasets.

The creation of new datasets is essential because public
databases are frequently updated with new sequence information.
These new datasets can incorporate the most recent sequence data
alongside existing information. Moreover, existing datasets tend
to be smaller, while deep learning models perform better with
larger datasets. To address performance comparison inconsistency,
there is an urgent need to standardize dataset utilization. One
potential solution is to benchmark existing predictors on newly
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FIGURE 8

Distribution of publishers involved in the publication of DNA sequence analysis literature from 2018 to 2024.

developed datasets and compare the performance of proposed
predictors against these benchmarks. This approach would provide
a more objective evaluation of proposed predictor performance.
However, in this context, a significant challenge is the limited
availability of source codes for existing predictors. Many studies
make their source code private, hindering the reproducibility
of results and direct comparison with other methods. To
streamline the integration of innovative methods and ensure
methodological advancement, it is crucial to analyze task-specific
datasets and create standardized datasets with detailed descriptions.
By benchmarking the performance of existing predictors on these
standardized datasets, researchers can establish a common ground
for comparison and facilitate more accurate evaluations of models.
This approach would enhance transparency and reproducibility in
DNA sequence analysis studies.

The development of AI-driven predictive pipelines for
DNA sequence analysis relies heavily on effective sequence
representation learning methods and appropriate machine or deep
learning models. Machine and deep learning models inherently
depend on statistical vectors and cannot process raw DNA
sequences directly. Therefore, the role of representation learning
methods in these pipelines is crucial. Thesemethods are responsible
for transforming raw DNA sequences into statistical vectors by
capturing and encoding the most informative nucleotide patterns.

In the current landscape of AI-driven DNA sequence analysis,
researchers have employed a variety of representation learning
methods, including 12 distinct word embedding techniques and
8 language models. However, when it comes to other genetic
molecules such as RNA and proteins, researchers have explored
an additional set of 17 word embedding methods and 13 language
models that have not yet been applied to DNA sequence analysis.
These unexplored word embedding methods include DANE (285),
ELMo (286–288), GATNE (289), GEMSEC (290), MetaGraph2Vec
(291), HAKE (292), HIN2Vec (293), HOPE (294, 295), LINE
(296–298), Mashup (299, 300), Random Watcher-Walker (RW2)
(301), RotatE (292, 302, 303), RWR (304), Struc2Vec (305,
306), SVD (307, 308), Topo2Vec (309), and TransE (310),

while the unexplored language models include AlphaFold (311–
315), AlphaFold2 (316, 317), BigBird (318), ESM-1 (315, 319,
320), ESM-2 (109, 286, 316, 320), Graph Transformer Network
(321), Heterogeneous Graph Transformer (322), IgFold (323),
LongFormer (318), RoBERTa (324, 325), T5 (320, 326–328),
and Vision Transformer (288). Integrating these advanced word
embedding techniques and large language models into AI-driven
DNA sequence analysis pipelines could potentially enhance their
performance and robustness.

Within 127 AI-driven DNA sequence analysis predictive
pipelines, researchers have utilized 18 machine and deep learning
algorithms at the predictor level. In some cases, they have
developed meta-predictors by combining multiple machine
learning and deep learning algorithms to enhance predictive
performance. However, similar to the representation learning stage,
there are 24 distinct methods at the predictor level that have not
yet been explored, representing untapped potential for improving
the accuracy and robustness of these AI-driven pipelines.

Our categorization of 44 distinct tasks into 8 biological
goals provides a structured framework that serves as a valuable
starting taxonomy for both computer scientists and life scientists.
This organization is informed by both computational and
biological literature and creates a common reference point
that bridges these disciplines while facilitating interdisciplinary
communication. We recognize the inherent complexity of
biological systems and the interconnected nature of many of these
tasks. For example, enhancer identification categorized under
gene expression regulation shares biological connections with
chromatin accessibility prediction categorized under genome
structure and stability. Nevertheless, this framework offers a
practical organizing principle that will naturally evolve and be
refined over time. The taxonomy presented here lays groundwork
that future collaborative efforts between AI researchers and
domain specialists in genomics can build upon. We anticipate
gradual development into a more nuanced framework that
maintains practical utility while better reflecting biological
realities. Similar to many scientific classification systems, we expect
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this taxonomy to mature through iterative refinement as the
field advances.

13 Conclusion

This review serves as a comprehensive resource for researchers
working at the intersection of AI and DNA sequence analysis.
It provides a structured foundation for future innovations
in the rapidly evolving field of computational genomics. It
bridges the critical gap between molecular biology and artificial
intelligence by systematically analyzing 44 different DNA sequence
analysis tasks, their associated databases, datasets, and AI
methodologies. It identifies 36 biological databases and 140
benchmark datasets that provide a robust foundation for
developing and evaluating AI predictors. Furthermore, our
examination of existing predictive pipelines demonstrates the
successful application of 39 word embeddings and 67 language
models across various DNA sequence analysis tasks. Our
analysis reveals that while significant progress has been made
in developing AI-driven predictive pipelines for DNA sequence
analysis, several challenges and opportunities remain unexplored.
Several promising directions emerge for the advancement of this
field. First, the integration of 17 unexplored word embedding
methods and 13 language models (currently utilized only for RNA
and protein analysis) could significantly enhance DNA sequence
analysis capabilities. Second, the development of standardized
benchmark datasets and evaluation protocols would facilitate fair
comparisons between different predictive models and accelerate
progress in the field. Third, the adoption of 24 untapped
machine learning and deep learning algorithms at the predictor
level presents an opportunity to improve prediction accuracy
and robustness.

Future research should focus on developing multi-task
learning frameworks that can simultaneously handle multiple
DNA sequence analysis tasks, thereby improving computational
efficiency and leveraging shared biological features. Furthermore,
ensuring public accessibility of source codes and detailed
documentation of predictive pipelines would foster reproducibility
and collaborative advancement in the field. The establishment
of standardized performance metrics and evaluation protocols
across different DNA sequence analysis tasks would enable
more meaningful comparisons between various approaches and
guide future developments. As DNA sequence data continue to
grow exponentially, the integration of more sophisticated AI
architectures, particularly those capable of handling large-scale
genomic data efficiently, will become increasingly important. Our
categorization of 44 tasks reflects common AI applications in
DNA sequence analysis literature and provides a starting point for
interdisciplinary discourse. We recognize that deeper collaboration

between AI researchers and life scientists would further strengthen
the biological relevance of this framework. A greater amount of
input from geneticists and bioinformaticians would be essential
to develop a more comprehensive and biologically relevant
tasks taxonomy.
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