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Background: Macular edema (ME) is an ophthalmic disease that poses a serious 
threat to human vision. Anti-vascular endothelial growth factor (anti-VEGF) 
therapy has become the first-line treatment for ME due to its safety and high 
efficacy. However, there are still cases of refractory macular edema and non-
responding patients. Therefore, it is crucial to develop automated and efficient 
methods for predicting therapeutic outcomes.

Methods: We have developed a predictive model for the surgical efficacy in 
ME patients based on deep learning and optical coherence tomography 
(OCT) imaging, aimed at predicting the treatment outcomes at different time 
points. This model innovatively introduces group convolution and multiple 
convolutional kernels to handle multidimensional features based on traditional 
attention mechanisms for visual recognition tasks, while utilizing spatial pyramid 
pooling (SPP) to combine and extract the most useful features. Additionally, the 
model uses ResNet50 as a pre-trained model, integrating multiple knowledge 
through model fusion.

Results: Our proposed model demonstrated the best performance across 
various experiments. In the ablation study, the model achieved an F1 score of 
0.9937, an MCC of 0.7653, an AUC of 0.9928, and an ACC of 0.9877  in the 
test conducted on the first day after surgery. In comparison experiments, the 
ACC of our model was 0.9930 and 0.9915  in the first and the third months 
post-surgery, respectively, with AUC values of 0.9998 and 0.9996, significantly 
outperforming other models. In conclusion, our model consistently exhibited 
superior performance in predicting outcomes at various time points, validating 
its excellence in processing OCT images and predicting postoperative efficacy.

Conclusion: Through precise prediction of the response to anti-VEGF therapy 
in ME patients, deep learning technology provides a revolutionary tool for the 
treatment of ophthalmic diseases, significantly enhancing treatment outcomes 
and improving patients’ quality of life.
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1 Introduction

Macular edema (ME) is the leading cause of vision loss in patients 
(1). The macula is an important central area of the retina that is 
responsible for ensuring fine vision. Fluid buildup in this area can lead 
to severe loss of visual function. Retinal vein occlusion (RVO), 
diabetic retinopathy (DR), and age-related macular degeneration 
(AMD) are common retinal vascular diseases in developed countries, 
and they are significant causes of blindness and visual impairment in 
both working-age and elderly populations. The common 
pathophysiologic mechanisms that lead to ME in RVO, DR, and AMD 
include vascular injury, inflammatory response, and disruption of the 
blood–retinal barrier. Together, these factors lead to increased 
permeability and fluid accumulation in the retinal vasculature (2–4). 
This overexpression of growth factors such as VEGF promotes 
vascular leakage and neovascularization, further exacerbating the 
pathological process of macular edema (5).

Strategies for the treatment of macular edema (ME) include the 
use of anti-vascular endothelial growth factor (anti-VEGF) drugs, 
glucocorticoids, and laser photocoagulation, with the goal of reducing 
macular edema and improving vision. Among them, anti-VEGF drugs 
are effective in reducing macular edema and improving vision 
prognosis by inhibiting the VEGF receptor signaling pathway. 
Vitreous cavity injection of anti-VEGF drugs has become the first line 
of treatment for ME, which marks a shift in treatment strategy from 
merely preserving vision to restoring vision. Despite the revolutionary 
nature of this treatment, different treatment options and disease 
severity require frequent injections to be effective. For example, the 
efficacy of treatment-on-demand (PRN) or treatment-extension 
(T&E) depends on a subjective judgment of macular central recess 
edema. This not only places a significant treatment burden on the 
patient but also carries a risk of complications. At the same time, some 
patients do not respond completely to these treatments. Effective 
control of ME or prevention of post-treatment recurrence is essential 
to preserve vision.

Optical coherence tomography (OCT) is a non-invasive imaging 
modality for assessing the microstructure of the retinal layers, which 
is capable of rapidly generating images of ocular tissues and can 
provide high-resolution cross-sectional images of the retina to help 
physicians assess the morphologic and structural changes in the 
macula and to reveal characteristic changes in the retina, such as 
changes in the thickness of the macula, cyst formation, and subretinal 
fluid, which can provide an important basis for clinical treatment (6). 
OCT is widely used to assess treatment efficacy and recurrence in ME, 
and it is capable of quantifying the thickness of the macular central 
pucker (7). Although optical coherence tomography (OCT) has a well-
established research base for quantitative and qualitative analysis of 
macular edema (ME), physicians cannot rely solely on these findings 
to directly predict the long-term severity of the condition and its 
impact on visual function. At the same time, frequent follow-up visits 
and examinations increase the burden on patients and strain 
healthcare resources. Statistics from clinical studies show that patients 
treated for diabetic macular edema (DME) do not complete a full 
course of anti-VEGF injections exactly as prescribed (8).

Therefore, exploring the validity of early macular edema 
morphology in predicting long-term prognosis is necessary for better 
individualized treatment planning, reducing the number of injections 
in patients, and predicting the prognosis of patients with varying 

degrees of macular edema. Manual interpretation of OCT images 
usually requires a professionally trained ophthalmologist, which 
involves a certain learning curve and accumulation of experience and 
is extremely challenging, especially for primary care hospitals. In 
recent years, artificial intelligence (AI) has shown great potential in 
the field of medical image analysis; in particular, machine learning 
(ML) and deep learning (DL) systems have been demonstrated to 
detect and quantify retinal effusions based on OCT images, which 
play a standardized quantitative role in the diagnosis and classification 
of ME (9, 10). This not only accelerates the clinical workflow but also 
helps to identify patients who require further evaluation or treatment 
by specialists. Especially in settings with limited healthcare resources, 
the use of this technology can greatly improve the accessibility and 
quality of healthcare services. In predicting the recurrence of macular 
edema associated with retinal vein occlusion (RVO-ME), a 
multimodal fusion deep migratory learning model using OCT 
angiography (OCTA) images has been successful. This technique 
provides new ideas for clinicians to determine the duration of 
follow-up of patients after anti-VEGF therapy. Nevertheless, the 
limited size of the database used in the study may affect the model 
generalization ability and the complex model may lead to overfitting 
problems (11, 12). The goal of this study was to create a deep learning 
model that predicts the response to intravitreal anti-VEGF injections 
in patients with macular edema due to retinal vascular disease. The 
goal of our study is to develop a deep learning model that is capable 
of predicting the response to anti-VEGF therapy in patients with ME 
by analyzing OCT images, thereby providing a more accurate and 
personalized treatment plan for the clinic. By combining multimodal 
image data and advanced deep learning techniques, we  expect to 
improve the predictive accuracy of the model and bring innovative 
improvements to the diagnosis and treatment of ophthalmic diseases.

In this paper, we propose a predictive model for surgical outcomes 
of macular edema patients based on deep learning and OCT imaging, 
combining traditional attention mechanisms, grouped convolution, 
and SPP techniques, and using ResNet50 for model fusion. 
Experimental results show that the model performs well in the binary 
categorization task on the first day, first month, and third month after 
surgery, and the effectiveness of grouped convolution and SPP is 
verified by ablation experiments. To address the category imbalance 
problem, a weighting strategy and sampling technique are introduced 
to significantly enhance the recognition of minority class samples. The 
model performs well in the diagnosis and grading process and has 
potential clinical applications that can provide reliable support for the 
postoperative efficacy assessment of macular edema patients and help 
optimize personalized treatment plans to improve patient prognosis 
(Figure 1 shows the workflow).

2 Methods

2.1 Patient collection

2.1.1 General information
Seventy-two patients (72 eyes) with RVO, DR, and CNV 

combined with ME admitted to the Department of Ophthalmology of 
Beijing Shijingshan Hospital from January 2023 to May 2024 were 
retrospectively collected for the study. The study followed the 
Declaration of Helsinki, which was reviewed and approved by the 
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ethical committee of Beijing Shijingshan Hospital (Ethical Number: 
2024–22), and the enrolled patients signed an informed consent form.

The inclusion criteria for this study were as follows: (1) decreased 
central visual acuity, with corrected visual acuity ranging from 0.01 to 
0.8; (2) presence of macular edema and/or combined choroidal 
neovascularization, as shown on OCT, including retinal vein 
occlusion, diabetic retinal disease, and various types of choroidal 
neovascularization secondary to macular edema with a CST > 250 μm; 
(3) age between 20 and 91 years; and (4) no history of vitrectomy and 
high compliance. The exclusion criteria were as follows: (1) those with 
systemic diseases that could not tolerate anti-VEGF treatment; (2) 
those with combined ocular trauma, inflammation, and tumor, after 
vitrectomy treatment; (3) those with other underlying fundus diseases 
that affect the measurement of the thickness of the macular area, such 
as macular anterior membranes, macular vitreous pulling syndrome, 
macular splitting, and macular lentigines; (4) those with silicone oil in 
the eyes; (5) those with psychiatric disorders; and (6) pregnant women.

2.1.2 Screening methods
Fundus fluorescein angiography combined with fundus 

indocyanine green angiography (FFA + ICGA) (HRA, Heidelberg 
Engineering, Germany) or optical coherence tomography angiography 
(OCTA) (Heidelberg Engineering, Germany) were used to determine 
the ME criteria.

FFA + ICGA was performed in patients with normal liver and 
renal function, and after a negative skin test for fluorescein sodium, 
the pupils of the eyes were dilated with compound tropicamide eye 
drops. After the pupils were sufficiently dilated, the pupils were 
examined using Heidelberg fundus fluorescein angiography 
(Heidelberg Engineering, Germany), and intravenous fluorescein 
sodium (20%, 3 mL) combined with indocyanine green (2 mL) was 
injected, and all the examinations were performed by a physician with 
12 years of work experience. The judgment criteria were as follows: a. 
cystic edema, with cystic or even petal-like fluorescent leakage in the 

macula; b. diffuse edema, with diffuse hyperfluorescent leakage in the 
posterior pole involving the macula; and c. limited edema, with 
mottled flaky hyperfluorescent leakage in the macula. The presence of 
retinal ischemia and choroidal neovascularization leakage was also 
observed. Patients who could not tolerate fundus fluorescein 
angiography and had a good refractive interstitial quality were 
examined using OCTA to determine the presence of 
neovascularization in the choroidal area, the density of blood flow in 
each layer of the retina, the presence of non-perfused areas, the 
presence of microangiomas, and the presence of macular edema. The 
patients were seated, and a rectangular scan of the posterior pole was 
performed with the macular central sulcus as the center.

All patients completed the Heidelberg Spectralis OCT (Heidelberg 
Engineering, Germany) to further define the extent, degree, and cause 
of ME. Frequency-domain optical coherence tomography (OCT) 
scanning was performed using a star-shaped scan with fine encryption. 
Scanning images were superimposed 100 times to obtain the highest 
thickness within a 1 mm2 area of the macular central concavity 
(measured as the vertical distance from the inner limiting membrane 
to Bruch’s membrane), which was recorded as the macular central 
subfield thickness (CST). Each patient was scanned at 48 levels to 
complete the ME or CNV coverage of the maximum extent of the 
macular lesion. ME was determined as: a. cystic edema, cystic 
hypoechoic areas within the neuroepithelium; b. cystic degeneration, 
elliptical hypoechoic areas of varying sizes within the neuroepithelium; 
and c. diffuse edema and thickening, with a lack of structural hierarchy 
of the neuroepithelial layer and overall thickening. After scanning, the 
CST was measured using the tool provided by the system, with a CST 
>250 μm used as the criterion for determining ME. The diagnosis of 
ME was confirmed by two physicians.

2.1.3 Treatment regimen
A treatment regimen was developed for patients who met the 

enrollment criteria. Anti-VEGF injections are given once a month for 

FIGURE 1

Workflow, (A) Data acquisition, collecting patient OCT data. (B) Model construction and testing. (C) Model visualization.
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three consecutive months. Ranibizumab (RBZ) 0.5 mg/0.05 mL 
intravitreal intraocular injection (IVI) was administered, with 
follow-up visits scheduled once a month for 3 months. BCVA and CST 
were recorded on day 1, month 1, and month 3 after anti-VEGF 
treatment. The effectiveness of the treatment was assessed by 
comparing these measurements to the baseline at each of the three 
time points. The criteria for improvement were as follows: (1) a 
decrease in CST on OCT compared to the last follow-up; (2) a 
decrease in intraretinal or subretinal fluid on OCT; and (3) an 
improvement or no change in naked-eye visual acuity. The criteria for 
no improvement were: (1) a significant increase in CST on OCT 
compared to the baseline, or the presence of hemorrhage or ischemia; 
(2) worsening of the structural disorder in the macular layers on OCT 
compared to the previous scan; and (3) a decrease in naked-eye 
visual acuity.

2.2 Data preprocessing

In order for the model to adapt and recognize the variable medical 
images in the real world, we performed data enhancement techniques, 
such as rotation, translation, and reflection, to the OCT images used 
for training. These operations were designed to mimic the variations 
that may be encountered in real OCT image acquisition, allowing the 
model to recognize the key features even if the images are rotated or 
shifted. At the same time, we made sure that all images were resized 
appropriately so that the model could process them uniformly.

2.3 An efficacy prediction model based on 
OCT images and deep learning

2.3.1 Introducing related models
Packet convolution was first used on AlexNet to distribute models 

across multiple GPUs as an engineering compromise. Later, however, 
the use of models such as ResNeXt has shown that this module can 
be used to improve classification accuracy. Specifically, computational 
efficiency and feature diversity can be  improved by processing 
convolutional operations in groups, but this approach may fall short 
of capturing global information (13). Spatial pyramid pooling (SPP) 
is a pooling layer, proposed by He  in 2014 (14), that removes the 

fixed-size constraints of the network, allowing for the pooling of 
features and the generation of fixed-length outputs, which are then fed 
into the fully connected layer (or other classifiers). In other words, 
we can do some information aggregation at a deeper stage of the 
network hierarchy (between the convolutional and fully connected 
layers) to avoid cropping or distorting at the beginning, but this 
approach has a higher computational complexity.

2.3.2 Our proposed model
To enhance feature extraction and improve prediction accuracy, 

we  propose a deep convolutional neural network that integrates 
grouped convolution, spatial pyramid pooling (SPP) techniques, and 
a traditional attention mechanism, with ResNet50 as the pre-trained 
backbone for model fusion (see Figure 2). This architecture combines 
the strengths of these techniques while addressing their respective 
limitations, significantly improving the model’s overall performance 
and adaptability. Group convolution is a technique for grouping 
convolution operations, which divides the feature channels into 
multiple groups and performs convolution operations on each group 
separately. This method can not only significantly reduce the amount 
of computation but also increase the diversity of feature extraction. 
Spatial pyramid pooling is a technique to enhance the ability of multi-
scale feature extraction. By performing block pooling operations on 
the input feature map with different grid sizes, SPP is able to capture 
information at both local and global levels.

Specifically, ResNet50 is used as the base model to extract global 
features, and we build upon it by introducing four layers of residual 
connectivity. These layers include our designed GroupResNetLayer, 
which incorporates a 3 × 3 grouped convolution, batch normalization 
(BN), a ReLU activation function, followed by another 3 × 3 grouped 
convolution, BN, and a residual connection. This structure enhances 
feature diversity and computational efficiency.

Additionally, we integrate a cross-attention mechanism that allows 
for dynamic information exchange between the features produced by 
different GroupResNetLayers. The cross-attention operation 
emphasizes critical features by assigning weights to the interdependent 
feature maps, which is particularly important for identifying subtle 
pathological changes in OCT images. For optimal performance, the 
feature map resolution is set to 32 × 32, and the number of feature 
channels is set to 128, balancing computational cost and 
representation power.

FIGURE 2

Model design, (A) Overall model architecture. (B) Group Resnet Layer structure.
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The attention outputs are then merged and subjected to a pooling 
operation, which leverages SPP to aggregate multi-scale features. 
Finally, all extracted features are concatenated and input into the final 
classification layer, ensuring that both local and global information 
contribute to the predictive outcome. This carefully designed 
architecture effectively captures and processes complex OCT features, 
resulting in superior predictive performance, as demonstrated in our 
experimental results.

2.3.3 Model comparison
In this study, we present a predictive model for surgical outcomes 

of macular edema patients based on OCT imaging and deep learning 
and compare it with several currently used models. Existing studies 
have applied several models to solve problems related to macular 
edema surgery. For example, generative adversarial networks (GANs) 
were used to predict the long-term outcome of patients with diabetic 
macular edema, demonstrating its potential to generate high-quality 
post-processed OCT images (15). Tang et al. successfully detected and 
classified macular edema by analyzing the images from multiple 
commercial OCT devices using a multi-task deep learning system, 
demonstrating a high degree of DME detection and central DME 
differentiation with high accuracy; furthermore, the U-Net model 
improved early recognition after surgery in a macular edema 
segmentation task (16). Another study used multiple machine 
learning algorithms to predict visual acuity recovery after anti-VEGF 
treatment and achieved good predictive performance (17).

In contrast to these models, our model combines grouped 
convolution and spatial pyramid pooling (SPP) techniques and uses 
ResNet50 as a pre-trained model for fusion. While retaining the 
advantages of other models, our model improves the computational 
efficiency and diversity of feature representations through grouped 
convolution, SPP enhances the extraction of multi-scale features, and 
the attention mechanism strengthens the focus on key features. These 
designs enable our model to have higher potential and reliability in 
predicting macular edema surgical outcomes. Compared to GANs, 
our model not only enhances and refines OCT images for better 
visualization but also provides predictive insights into surgical efficacy. 
Compared to multi-task deep learning systems, our model excels in 
multi-scale feature extraction and key feature focus. Compared to 
U-Net and traditional machine learning algorithms, our model shows 
improvement in terms of computational efficiency and feature 
representation, validating its potential value and effectiveness in 
clinical applications.

2.4 Experimental setup

In the process of validating the model’s effectiveness, we conducted 
three dichotomous experiments at the following time points: the first 
day after surgery, the first month after surgery, and the third month 
after surgery, to determine whether the patient had improved (yes/
no). These experiments involved comparing our model with other 
deep learning models while gradually introducing innovations to 
verify the performance improvement effect of each innovation. 
We used the ResNet50 pre-trained model as the base model and then 
gradually introduced grouped convolution and SPP to observe 
performance changes. Binary classification and ablation experiments 
at these three time points were used to validate the effectiveness of the 

proposed model and to demonstrate the important role of grouped 
convolution and SPP in performance improvement. Prior to training, 
we partitioned the dataset into training and test sets with a ratio of 8:2. 
The partitioned dataset was used for training, test comparison 
experiments, and ablation experiments. The ultimate goal of this study 
was to comprehensively validate the performance of the model in the 
efficacy prediction process and to demonstrate that each model 
component is effective in improving the model performance.

To support the training and evaluation of this model, 
we performed all tasks in Windows 11 operating system and used a 
CPU with AMD Ryzen 75800H (16 GB RAM) and a GPU with 
GeForce RTX™ 4,090 (24 GB RAM) for computation. The 
experimental programming language used was Python 3.10, and the 
deep learning framework used was PyTorch version 1.8.0.

2.5 Statistical analysis

Evaluation metrics are critical for assessing the performance of 
machine learning models. These quantitative metrics are essential for 
objectively assessing the performance of report generation models and 
guiding their development and improvement. In this experiment, 
we used a variety of metrics to measure the strengths and weaknesses 
of each model, including accuracy (ACC), precision (Precision), recall 
(Recall), F1 value (F1), and area under the subject’s work characteristic 
curve (AUC), which were obtained by calculating the relationship 
between true positives (TP), false negatives (FN), true negatives (TN), 
false positives (FP), AUC, and other metrics.

Accuracy: the percentage of correctly predicted results in the 
total sample.

Accuracy 
( )

( )
TP TN

TP TN FP FN
+

=
+ + +

Precision: the probability of all samples that are predicted to 
be positive actually being positive.

 ( )
Precision TP

TP FP
=

+

The Matthews correlation coefficient (MCC) takes into account 
the four scenarios of true positive (TP), false negative (FN), true 
negative (TN), and false positive (FP) and is able to provide a balanced 
assessment of performance.

 ( )( )( )( )
MCC TP TN FP FN

TP FP TP FN TN FP TN FN
∗ − ∗

=
+ + + +

F1, combining the performance of both precision and recall:

 ( )
2F1

Precision Recall
Precision Recall∗ ∗

=
+
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In addition to this, we  also plot ROC curves and confusion 
matrices to visualize the model results. The ROC curves are graphs 
that assess the performance of the classification model by plotting the 
true positive rate (TPR) and the false positive rate (FPR).

In addition, the data were analyzed using SPSS 22.0 statistical 
software for the patients’ baseline information. Measurement 
information that obeyed normal distribution with chi-square was 
expressed as mean ± standard deviation and paired-sample t-test 
was used for pre- and post-treatment comparisons. Measurement 
information that did not obey normal distribution was expressed as 
median and interquartile spacing, and the paired-sample Wilcoxon 
test was used for comparison before and after treatment. The above 
differences were considered statistically significant at a p-value 
of ≤0.05.

3 Results

3.1 Basic patient statistics

3.1.1 Statistical results of patients’ baseline 
information

The statistical results of baseline information are shown in Table 1. 
The basic information of the study subjects was as follows: disease 
distribution was 24 eyes in DME patients, 34 eyes in RVO-ME patients, 
and 13 eyes in CNV-ME patients; 36 right eyes and 35 left eyes; gender 
distribution was 40 male patients and 31 female patients; and the age 
range was from 21 to 91 years old, with a mean age of 59.45 ± 13.27 years. 
The pre-treatment central retinal thickness (CST) ranged from 252 to 
954 μm, with a mean of 568.00 ± 21.46 μm; the standardized visual 
acuity chart showed that the pre-treatment best-corrected visual acuity 
(BCVA) Log MAR values ranged from −2.00 to −0.10, with a mean of 
−0.88 ± 0.05. The intraocular pressure (IOP) was examined using a 
non-contact tonometer (Full Auto IOP) manufactured by Canon, 
Japan, and the results showed that the patients’ intraocular pressure was 
within the normal range. No ocular adverse events such as 
subconjunctival hemorrhage, endophthalmitis, retinal detachment, or 

systemic serious adverse events such as cardiovascular and 
cerebrovascular accidents occurred during the treatment.

3.1.2 Comparison of treatment improvement at 
three time points after treatment

The number of cases completing the OCT examination on the first 
day after treatment was 60, with 50 cases showing improvement and 1 
case showing no improvement. On the first month after treatment, 54 
cases completed the OCT examination, with 49 cases showing 
improvement and 5 cases showing no improvement. By the third month 
after treatment, 43 cases completed the OCT examination, with 27 cases 
showing improvement and 16 cases showing no improvement. In the 
improved patients, CST decreased and BCVA increased at all three-time 
points after treatment compared to before treatment, and the differences 
were statistically significant. Among the degrees of CST decrease, the 
average decreases at 24 h, 1 month, and 3 months after treatment were 
135.78, 220.78, and 238.96 μm, respectively (as shown in Table 2).

3.2 Results of model ablation experiments

The results of the ablation experiments showed that the gradual 
introduction of grouped convolution and SPP techniques significantly 
improved the model performance (see Figure 3 and Table 3). In the 
test on the first postoperative day, compared to the baseline model, the 
F1, MCC, AUC, and ACC were 0.7559, 0.2062, 0.9855, and 0.6189, 
respectively, and the metrics were somewhat improved by adding 
grouped convolution, and the performance was further improved by 
combining SPP. Eventually, our model reached the highest values 
across all metrics, with F1 at 0.9937, MCC at 0.7653, AUC at 0.9928, 
and ACC at 0.9877. Similar enhancements were verified in the tests in 
the first and third postoperative months, and the final model exceeded 
the baseline model in all metrics. Overall, the introduction of grouped 
convolution and SPP techniques substantially improved the predictive 
performance of the model, validating the effectiveness of these 
techniques in processing OCT images and predicting the efficacy of 
macular edema after surgery.

TABLE 1 Comparison of BCVA and CST before and after treatment.

After treatment item N (cases) Pre-treatment Post-treatment Z-value p-value

24 h BCVA 50 −0.82(−1.30 ~ −0.60) −0.60(−1.00 ~ 0.52) −5.59 <0.001

CST 601.50(442.25 ~ 716.25) 435.50(336.00 ~ 534.25)

1 m BCVA 49 −0.70(−1.30 ~ −0.65) −0.52(−1.00 ~ −0.40) −5.37 <0.001

CST 586.00(428.50 ~ 689.00) 326.00(241.50 ~ 427.00)

3 m BCVA 27 −0.70(−1.00 ~ −0.60) −0.40(−0.70 ~ −0.30) −4.16 <0.001

Remarks: the difference between BCVA and CST at 24 h and 1 month after treatment and before treatment, and the difference between BCVA and before treatment at 3 months after treatment 
did not follow a normal distribution. Statistical significance was determined using the Wilcoxon test, a non-parametric test.

TABLE 2 Comparison of BCVA and CST before and after treatment.

After treatment
Item

N (cases) Pre-treatment Post-treatment t-value p-value

3 m CST 27 572.81 ± 182.11 333.85 ± 147.14 −5.86 <0.001

The difference between CST at 3 months after treatment and before treatment follows a normal distribution, and the difference is statistically significant using the paired-sample t-test.
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3.3 Model comparison experimental results

Our proposed new model performed well in tests at different 
postoperative time points (see Figure 4 and Table 4 for details). 
On the first postoperative day, the model’s F1, MCC, AUC, and 

ACC reached 0.9937, 0.7653, 0.9928, and 0.9877, respectively. On 
the first postoperative month, the F1 and MCC were 0.9961 and 
0.998, respectively, and in the test on the third postoperative 
month, the model’s F1 and AUC were 0.9939 and 0.9996. These 
results indicate that our model achieved excellent performance in 

FIGURE 3

Results of ablation experiments at three time points.

TABLE 3 Results of ablation experiments for the proposed model.

Test Model F1 MCC AUC ACC

First day

Baseline 0.7559 0.2062 0.9855 0.6189

Groupconv 0.9697 0.4998 0.9867 0.9426

Groupconv + SPP 0.9851 0.6421 0.9904 0.9713

Our 0.9937 0.7653 0.9928 0.9877

First month

Baseline 0.9422 0.5847 0.9306 0.8996

Groupconv 0.9427 0.6262 0.9656 0.9014

Groupconv + SPP 0.9853 0.8574 0.9916 0.9736

Our 0.9961 0.9980 0.9998 0.9930

Third month

Baseline 0.8820 0.6780 0.9028 0.8471

Groupconv 0.9180 0.7812 0.9632 0.8938

Groupconv + SPP 0.9786 0.9304 0.9854 0.9703

Our 0.9939 0.9803 0.9996 0.9915

Group Convolution partitions input channels into separate groups, each processed independently, reducing computational complexity and enhancing feature independence. Spatial Pyramid 
Pooling (SPP) employs multi-scale pooling and feature concatenation, enabling the network to handle varying input sizes and improve multi-scale feature extraction.

FIGURE 4

Comparative experimental results at three time points.
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prediction at all time points, showing excellent accuracy 
and reliability.

Comparing the results of the other models, on the first 
postoperative day, the F1 and ACC scores for ResNet18 and ViT were 
approximately 0.9854 and 0.9713, while DenseNet and ResNet50 
performed slightly worse. In the first postoperative month, the F1 
scores for ViT and ResNet50 were 0.9951 and 0.9832, respectively, 
with DenseNet and ResNet18 performing slightly worse. Three 
months after surgery, the F1 score and AUC value for ResNet50 were 
0.986 and 0.9983, respectively, followed by ViT and DenseNet. 
ResNet18 and CNN performed relatively poorly. In contrast, our 
proposed model shows superior performance at all time points and 
on most metrics, validating its superior performance in processing 
OCT images and predicting postoperative outcomes.

3.4 Model interpretability analysis

The model we constructed can be used to interpret the prediction 
results using Grad-CAM visualization technology, highlighting the 
image regions that the model focuses on, thus helping us to understand 
the decision-making process of the model. In the prediction task of OCT 
images, Grad-CAM was able to clearly show the lesion regions involved 
in the model’s prediction (see Figure 5), which not only validated the 
accuracy of the model but also provided valuable clinical insights.

4 Discussion

In this study, we  proposed a deep convolutional neural 
network model that integrates group convolution and spatial 

pyramid pooling (SPP) for predicting postoperative efficacy in 
patients with macular edema. In ablation experiments, our model 
achieved F1, MCC, AUC, and ACC scores of 0.9937, 0.7653, 
0.9928, and 0.9877, respectively, on the first postoperative day, 
significantly outperforming other models. In comparison 
experiments, the model achieved ACC scores of 0.9930 and 
0.9915  in the first and third months after surgery, with AUC 
values of 0.9998 and 0.9996. These experimental results 
demonstrate that our model exhibited excellent predictive 
performance at various time points, confirming its superiority in 
processing OCT images and predicting postoperative efficacy, and 
highlighting its significant clinical application value (15–17).

The superior performance of our model is primarily attributed 
to the high compatibility between the model architecture and the 
prediction task. The model combines traditional attention 
mechanisms, group convolution, and spatial pyramid pooling 
(SPP) techniques, using ResNet50 for pre-training and fusion. 
Group convolution improves computational efficiency and feature 
diversity, while SPP enhances multi-scale feature extraction 
capabilities. Weighted strategies and sampling techniques 
effectively addressed the issue of class imbalance. When 
processing OCT images, the model accurately captures subtle 
pathological changes in the images through multi-scale feature 
extraction and attention mechanisms, which is especially 
important for detecting subtle changes in macular edema. 
Specifically, the group convolution in our model improves 
computational efficiency and enhances feature diversity; the SPP 
technology significantly improves the ability to capture lesion 
features through multi-scale feature pooling; and the cross-
attention mechanism further strengthens the information 
interaction between different features. The synergy of these 

TABLE 4 Comparison of the performance of the models.

Test Model F1 MCC AUC ACC

First day

ResNet18 0.9854 0.9713 0.8529 0.9713

VIT 0.9854 0.9713 0.9898 0.9713

CNN 0.8000 0.2329 0.9741 0.6762

Desnet 0.9348 0.4131 0.9916 0.8811

Resnet50 0.9652 0.4725 0.9892 0.9344

Our 0.9937 0.7653 0.9928 0.9877

First month

ResNet18 0.9672 0.7237 0.9719 0.9419

VIT 0.9951 0.9541 0.9985 0.9912

CNN 0.8633 0.3701 0.8718 0.7782

Desnet 0.955 0.7182 0.9911 0.9225

ResNet50 0.9832 0.848 0.9893 0.9701

Our 0.9961 0.998 0.9998 0.993

Third month

ResNet18 0.6449 0.4202 0.7963 0.6306

VIT 0.9147 0.7566 0.9234 0.8875

CNN 0.8706 0.5141 0.8966 0.7962

Desnet 0.9406 0.8155 0.9688 0.9193

ResNet50 0.986 0.9558 0.9983 0.9809

Our 0.9939 0.9803 0.9996 0.9915

In this study, the version details of CNN, ViT, and DesNet are LeNet-5, ViT-B/16 (pre-trained), and DenseNet-121, respectively.
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modules enables our model to perform well in microstructural 
analysis and lesion localization of OCT images. In particular, by 
combining traditional architectures such as ResNet50, our model 
achieves a good balance between complexity and performance.

The clinical interpretability of the model was significantly 
enhanced through Grad-CAM technology. The heatmaps 
generated by Grad-CAM revealed the regions of the OCT images 
the model focused on when making predictions, providing 
insights into the model’s decision-making basis. This visualization 
method allows clinicians to intuitively observe the key 
pathological areas the model focuses on, such as the specific 
location of macular edema, enhancing trust in the model’s 
predictions. The heatmaps generated by Grad-CAM were 
consistent with clinical observations, validating the model’s 
effectiveness. By clearly identifying the regions of interest, 
clinicians can better understand and verify the model’s 
predictions, improving the accuracy and efficiency of clinical 
decision-making.

RBZ is a recombinant monoclonal antibody fragment that has 
been shown to effectively inhibit vascular endothelial growth 
factor (VEGF) (18). Previous studies have mainly analyzed 
baseline factors before treatment to predict the short-term or 
long-term efficacy of anti-VEGF therapy in ME (19, 20). A 
pre-treatment study (21) indicated that ranibizumab IVI 
significantly reduced VEGF levels in the aqueous humor within 

24 to 72 h post-injection. Therefore, this study uses OCT imaging 
at 24 h post-treatment to assess the long-term efficacy of therapy, 
including the extent and severity of macular edema, the area and 
morphology of CNV, and other factors. In this study, 
we established clear criteria for evaluating treatment outcomes. 
Improvement was defined as a reduction in central retinal 
thickness (CST) compared to the previous follow-up, as observed 
by optical coherence tomography (OCT), with a reduction in 
intraretinal or subretinal fluid and an improvement or stabilization 
of visual acuity. Conversely, if OCT showed a significant increase 
in CST from baseline, accompanied by hemorrhage or ischemia, 
exacerbation of structural disorganization in the macula, or a 
decline in visual acuity, the treatment was considered ineffective. 
These criteria helped us objectively evaluate the efficacy of 
the treatment.

This study observed the recovery level of patients 3 months after 
anti-VEGF treatment using a monthly intravitreal injection (IVI) 
regimen, which was consistent with previous classical studies (22). 
The study showed that after anti-VEGF treatment, the central retinal 
thickness (CST) decreased significantly at 3 weeks, which is 
consistent with the 1-month observation in this study. A review study 
reported that for every 100 μm decrease in CST, the logMAR visual 
acuity increased by 0.21. In this study, the 24-h CST decreased by 
166 μm, and the logMAR visual acuity increased by 0.22, which was 
basically consistent with Ref. (2). This shows that anti-VEGF 

FIGURE 5

Activation heatmap visualization region for deep learning models.
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treatment has a rapid and positive effect on ME patients and can 
improve retinal conditions in a short period of time. This treatment 
effect is consistent with the results of previous studies and further 
confirms the effectiveness of anti-VEGF therapy in the treatment of 
ME. Although anti-VEGF treatment significantly improves ME and 
enhances visual function in patients, persistent macular edema, 
refractory macular edema, and non-responsive cases prevent patients 
from achieving a good prognosis even after multiple consecutive IVIs 
(2). At the same time, anti-VEGF can only inhibit the development 
of neovascular glaucoma (NVG) in RVO-ME but cannot prevent it 
(23). The core goal of this study is to explore the relief of macular 
edema within 24 h after anti-VEGF therapy, using this as a key 
indicator to predict the potential response value of patients to long-
term treatment through model analysis. For patients with poor 
prognosis identified through early screening, this study advocates the 
early adoption of combined treatment plans to enhance the treatment 
effect, improve the patient’s visual prognosis, and correspondingly 
reduce the economic burden caused by the disease. Through this 
study, we hope to provide clinicians with more accurate treatment 
decision support and accurately grasp the individualized treatment 
needs of patients.

This study focused on analyzing the therapeutic effects of 
treating macular edema (ME) caused by retinal vascular diseases; 
however, it has some limitations. First, the sample size is restricted 
by logistical challenges in completing OCT examinations within 
24-h post-surgery and by the single-center data source, limiting 
generalizability across different imaging protocols and devices. 
Second, differences in pathophysiological processes among the 
three included disease types (DME, RVO, and AMD) may affect 
model applicability. Future studies should expand the sample size 
and stratify analyses by disease type. Additionally, incorporating 
multimodal biomarkers such as systemic or genetic data could 
enhance the model’s predictive power and sensitivity. Finally, 
external validation using independent datasets and prospective 
clinical trials is needed to ensure the model’s robustness and real-
world clinical utility.

5 Conclusion

This study focused on the short-term efficacy of anti-VEGF 
therapy in macular edema patients by evaluating changes in 
central retinal thickness (CST) and best-corrected visual acuity 
(BCVA) within 24 h before and after treatment. We proposed an 
innovative deep learning model that combines group convolution 
and spatial pyramid pooling (SPP) techniques to accurately 
predict patients’ treatment responses using OCT images. Ablation 
experiments demonstrated that the model’s performance 
significantly improved as key technologies were progressively 
introduced. The results showed that the model exhibited excellent 
predictive performance in tests conducted on the first day, first 
month, and third month post-surgery, significantly 
outperforming traditional methods. Despite these positive 
results, the study had a small sample size. Future research should 
expand the sample size and incorporate biomarkers to further 
optimize the model’s prognostic prediction capabilities. Through 
this research, we aim to provide more accurate decision support 
for clinical treatment, ultimately improving patient outcomes and 
long-term visual prognosis.
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