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Background: Pulmonary embolism (PE) is a common and potentially fatal 
condition. Timely and accurate risk assessment in patients with acute deep vein 
thrombosis (DVT) is crucial. This study aims to develop a deep learning-based, 
precise, and efficient PE risk prediction model (PE-Mind) to overcome the 
limitations of current clinical tools and provide a more targeted risk evaluation 
solution.

Methods: We analyzed clinical data from patients by first simplifying and 
organizing the collected features. From these, 37 key clinical features were 
selected based on their importance. These features were categorized and 
analyzed to identify potential relationships. Our prediction model uses a 
convolutional neural network (CNN), enhanced with three custom-designed 
modules for better performance. To validate its effectiveness, we compared this 
model with five commonly used prediction models.

Results: PE-Mind demonstrated the highest accuracy and reliability, achieving 
0.7826 accuracy and an area under the receiver operating characteristic curve 
of 0.8641 on the prospective test set, surpassing other models. Based on this, 
we  have also developed a Web server, PulmoRiskAI, for real-time clinician 
operation.

Conclusion: The PE-Mind model improves prediction accuracy and reliability 
for assessing PE risk in acute DVT patients. Its convolutional architecture and 
residual modules substantially enhance predictive performance.
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1 Background

Pulmonary Embolism (PE) and Deep Venous Thrombosis (DVT) 
are the third most common acute cardiovascular diseases worldwide, 
following coronary heart disease and stroke (1). In epidemiological 
studies, the incidence of PE ranges from be 39–115 per 100,000 people 
annually (2). PE may cause symptoms such as shortness of breath, 
chest pain, syncope, and, in severe cases, sudden death. Its harmful 
effects primarily involve the impact on cardiopulmonary function. 
When the pulmonary artery is obstructed, the right ventricular load 
increases rapidly, leading to acute right ventricular dysfunction, 
cardiogenic shock, and even cardiac arrest.

Studies indicate that the all-cause mortality rate for PE is 1.9–2.9% 
at 7 days and 4.9–6.6% at 30 days (3). It is estimated that the mortality 
rate for untreated pulmonary embolism is about 30%, but with timely 
and effective treatment, the mortality rate can be reduced to less than 
8%. Due to its insidious onset and often underestimated severity, PE 
is frequently unnoticed. Early, accurate diagnosis and prompt 
treatment are crucial for patients (4). The 2019 European Society of 
Cardiology Guidelines emphasize the importance of clinical evaluation 
for suspected PE and propose that assessing PE likelihood is critical 
for diagnosis (5). Research on predicting pulmonary embolism risk in 
DVT patients can help identify high-risk patient populations, optimize 
clinical treatment strategies, and reduce patient mortality and 
complications (6). Although the Wells score (7) and the revised 
Geneva score (8) are commonly used tools for assessing suspected PE, 
they do not specifically address the risk of PE development in patients 
with acute DVT. In clinical practice, accurately assessing the likelihood 
of PE in acute DVT patients is essential for understanding disease 
severity and progression. These assessments can guide clinicians in 
creating individualized management plans. Therefore, developing a 
dedicated PE risk prediction model for acute DVT patients is crucial.

In recent years, artificial intelligence (AI) has shown substantial 
potential in medical applications, particularly for disease risk 
prediction. Deep learning algorithms, such as convolutional neural 
networks (CNNs) and recurrent neural networks, are especially 
effective for processing medical imaging and time-series data (9–11). 
Furthermore, deep learning models can analyze electronic health 
record text data to identify high-risk factors in patients (12). However, 
challenges remain in applying AI to PE risk prediction, including data 
quality variability, model robustness, and interpretability (13). To 
address these issues, methods for optimizing feature selection and 
model architecture have been proposed, aiming to enhance 
interpretability without compromising accuracy (14).

This study aims to develop a novel deep learning model, PE-Mind, 
to more precisely evaluate PE risk in acute DVT patients. By 
incorporating multi-source clinical data, PE-Mind aspires to provide 
clinicians with a personalized decision-support tool. With further 

model validation, we expect PE-Mind to offer a viable solution in PE 
risk prediction, supporting improved clinical risk assessment.

2 Methods

The overall workflow of this study is shown in Figure 1.

2.1 Patients

This study was approved by the Ethics Committee of Shanxi 
Bethune Hospital (YXLL-223-097), and for all study participants the 
consent of the patients themselves or their guardians was obtained.

We collected data on 49 variables from patients diagnosed with 
acute lower extremity DVT in the Vascular Surgery Department of 
Shanxi Bethune Hospital from August 2020 to March 2023. Cases 
from August 2020 to December 2022 were retrospective data used for 
training the PE prediction model for DVT patients, and cases from 
January 2023 to March 2023 were prospective data used for testing the 
PE prediction model for DVT patients. The diagnostic criteria for 
acute lower limb DVT were onset time within 2 weeks and color 
Doppler ultrasound confirmation of the presence of a thrombus in the 
deep veins of the lower limbs. The diagnostic criteria for PE were 
computed tomography pulmonary angiography (CTPA) confirmation 
of the presence of a thrombus in the pulmonary artery. Based on these 
results, patients with PE were designated as the case group, and 
patients without PE were designated as the control group.

The inclusion criteria for this study were patients with acute lower 
limb DVT, and completion of CTPA examination within 3 days after 
DVT diagnosis. Exclusion criteria were patients who initially 
presented with PE, and the diagnosis of PE was made before the 
diagnosis of DVT, and special cases where CTPA examination could 
not clearly diagnose the presence of pulmonary embolism. Patients 
who refused to participate or had incomplete medical records or 
laboratory examination data were also excluded. Finally, 424 patients 
were included in the study, of which 379 were in the training set and 
45 were in the validation set. The patient selection process is illustrated 
in Supplementary Figure 1.

2.2 Feature selection and processing

This study aims to develop a predictive model for PE risk by 
reducing the dimensionality of 49 clinical features associated with 
PE. Initially, we collected 49 clinical features from the clinical data of 
patients with acute DVT. To ensure equal contribution of each feature 
in the principal component analysis (PCA), we first standardized the 
data using the StandardScaler from sklearn.preprocessing (15–17).

Subsequently, PCA was applied to the standardized features, and 
the minimum number of principal components that explained at least 
95% of the cumulative variance was selected. We further analyzed the 
contribution of each original feature to the principal components and 
excluded features with low variance (i.e., those with minimal variation 
in the patient population or limited contribution to PE risk prediction).

Ultimately, 37 features were retained, encompassing clinical, 
demographic, and laboratory variables, and their importance in the 
model was evaluated based on PCA loadings. These steps ensured that 

Abbreviations: PE, Pulmonary embolism; DVT, Deep venous Thrombosis; AI, 

Artificial intelligence; CNNs, Convolutional neural networks; CTPA, Computed 

tomography pulmonary angiography; PCA, Principal component analysis; SMOTE, 

Synthetic Minority Over-Sampling Technique; LGBM, LightGBM; XGB, XGBoost; 

RF, Random Forest; MLP, Multilayer Perceptron; GBDT, Gradient Boosted Decision 

Trees; ACC, Accuracy; Prec, Precision; AUC, Area under the curve; ROC, Receiver 

operating characteristic; CI, Confidence intervals; FIB, Fibrinogen; PT, Prothrombin 

time; APTT, Activated partial thromboplastin time; VTE, Venous thromboembolism.
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the selected features captured the primary variance in PE risk while 
minimizing redundancy. Through this dimensionality reduction 
approach, we effectively compressed the original 49 features, retaining 
the most predictive features, thereby enhancing the efficiency and 
accuracy of model training and prediction. Given that the selected 
clinical indicators were initially unordered, we transformed them into 
ordered data through grouping and sorting, in line with standard 
clinical data collection protocols, further enhancing the model’s 
predictive power.

2.3 Construction details of the predictive 
model

In this study, we propose a deep learning model called PE-Mind 
for predicting PE. The PE-Mind model utilizes a convolutional 
architecture, consisting of three custom-designed residual modules 
that effectively capture the intrinsic relationship between features and 
disease outcomes while preventing overfitting. The model’s input is a 
tensor of dimensions (batch_size, 1, 38), where batch_size represents 
the number of samples per batch, 1 represents the input channels, and 

38 represents the input feature dimensions. The components of the 
PE-Mind model are as follows (network architecture illustrated in 
Figure 2):

 (1) Convolutional Layer 1: The first convolutional layer used 64 
kernels of size 3, stride 1, and padding ‘same’, resulting in an 
output dimension of (batch_size, 64, 38).

 (2) Batch Normalization Layer 1: The output of Convolutional 
Layer 1 is batch-normalized to accelerate model convergence 
and prevent gradient explosion or vanishing.

 (3) ReLU Activation Function 1: The ReLU activation function is 
applied to the output of Batch Normalization Layer 1.

 (4) Residual Modules: Three residual modules comprise the core 
of the model. Each module includes two convolutional layers, 
two batch normalization layers, a shortcut connection, and a 
ReLU activation function. In the PE-Mind model, three 
residual modules are stacked sequentially to enhance the 
model’s expressiveness.

 (5) Adaptive Average Pooling Layer: An adaptive average pooling 
layer is applied after the final residual module to reduce the 
number of parameters and computational complexity, 

FIGURE 1

Workflow for this study. This figure outlines the sequential steps taken throughout the research, including data preprocessing, model construction, 
evaluation, and analysis. Each stage is highlighted to provide an overview of the study’s methodology.
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compressing the feature maps of each channel to 1 × 1 with an 
output dimension of (batch_size, 64, 1).

 (6) Flatten Layer: The output of the adaptive average pooling layer 
is flattened into a one-dimensional tensor with dimensions 
(batch_size, 64).

 (7) Fully Connected Layer: The fully connected layer transforms 
output from the flattened layer into final predictions, with two 
classes representing normal and PE states, yielding an output 
dimension of (batch_size, 2).

The PE-Mind model was trained using a cross-entropy loss 
function, which measures the difference between predicted and true 
probability distributions. The Adam optimizer was chosen to optimize 
model parameters, as it adaptively adjusts learning rates, accelerating 
convergence during training. Early stopping and learning rate decay 
strategies were utilized during training to prevent overfitting and 
accelerate convergence. A maximum of 200 training iterations was set, 
but in practice, models usually converge before reaching this 
maximum due to early stopping and learning rate decay strategies.

In each iteration, the training set was further subdivided into 
training and validation sets, and the Synthetic Minority Over-
Sampling Technique(SMOTE)method balanced training data to 
address class imbalance. This approach ensured a nearly 1:1 ratio of 
normal to PE samples in the training set. During training, model 
parameters were updated using stochastic gradient descent with a 
batch size of 32. This approach balanced computation and convergence 
speeds while mitigating the influence of local minima. The initial 
learning rate was set to 1e-4, and learning rate adjustments were made 
dynamically based on validation set performance during training. 
Specifically, if validation performance did not improve after 10 
consecutive iterations, the learning rate was halved. A maximum 
learning rate decay limit of five instances was set, with training 
terminating early once this limit was reached.

2.4 Construction of comparative models

In the study methods, we compared the designed model with 
other commonly used machine learning models for PE prediction. 
These models included LightGBM (LGBM), XGBoost (XGB), 
CatBoost, Random Forest (RF) and Multilayer Perceptron (MLP).

2.4.1 LightGBM
LGBM is an efficient machine learning algorithm based on 

Gradient Boosted Decision Trees (GBDT) (18–20). In PE risk 
prediction, LGBM can handle numerous features and samples while 
maintaining high predictive accuracy and low computational 
complexity. Key parameters were set as follows: n_estimators = 400, 
max_depth = 5, and num_leaves = 32 to control the number of trees, 
depth, and leaf nodes.

2.4.2 XGBoost
XGB is also a GBDT-based algorithm, which performs excellently 

in both competitions and practical applications (21, 22). In the field of 
PE risk prediction, XGB has been proven to effectively address 
imbalanced data problems and handle various types of features. The 
key parameters of XGB included n_estimators = 1,000, max_
depth = 5, and learning_rate = 0.0001 to control the number of trees, 
depth, and learning rate.

2.4.3 CatBoost
CatBoost is a novel GBDT-based algorithm specifically suited for 

datasets with categorical features (23). In PE risk prediction, CatBoost 
handles categorical features more effectively and overcomes the 
limitations of other GBDT algorithms in processing such features. In 
this experiment, key parameters were set as follows: iterations = 100, 
learning_rate = 0.001, and depth = 6 to control the number of trees, 
learning rate, and depth.

2.4.4 Random forest
RF is an ensemble learning method that constructs multiple 

decision trees and aggregates their results for prediction (24). In PE 
risk prediction, RF effectively handle complex nonlinear relationships 
and demonstrate good robustness. In this study, we  set n_
estimators = 100, which determines the number of decision trees in 
the forest.

2.4.5 Multilayer perceptron
Additionally, the MLP was also employed for comparison. This 

model is a supervised learning algorithm based on neural networks, 
suitable for handling nonlinear relationships (25). In PE risk 
prediction, the MLP can capture complex patterns hidden within the 
data, thereby improving predictive performance. Specifically, we chose 

FIGURE 2

The model architecture of PE-Mind. (A) illustrates the overall network architecture, including input layers, feature extraction modules, and output 
layers. (B) provides a detailed view of the self-designed residual network architecture, showcasing its unique structural components and flow.
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two hidden layers, each containing 50 nodes, and set max_iter = 5,000 
and learning_rate_init = 0.001 as key parameters.

2.5 Model evaluation

In the model evaluation phase of this study, a variety of metrics 
were used to comprehensively assess the performance of different 
models in PE risk prediction tasks. These metrics included accuracy 
(ACC), recall, precision (Prec), F1-score, and the area under the curve 
(AUC) of the receiver operating characteristic (ROC) curve. In this 
study, the classification threshold was set at 0.5. We conducted five-
fold cross-validation on the training set data and calculated the mean 
values of each model for these metrics, accompanied by 95% 
confidence intervals (CI) to reflect the reliability of the model 
performances. Additionally, the ROC curves for each model were 
plotted to visually demonstrate the classification performance at 
different thresholds.

2.6 System development

Based on the best-performing PE risk prediction model, a 
practical web server named PulmoRiskAI was developed using the 
Streamlit 0.89.0 framework. A concise and intuitive user interface was 
first designed, allowing doctors and researchers to input patients’ 
clinical data easily. Users can easily input various indicators, such as 
age, gender, symptoms, signs, and relevant laboratory test results, 
through simple input boxes and dropdown menus. Basic validation 
and error prompts are provided to ensure the accuracy of the 
input data.

The operating environment for this study was the Windows 10 
operating system, with hardware configurations including an NVIDIA 
RTX 3070 GPU (8GB VRAM), an AMD Ryzen 75800H processor 
(3.20 GHz), and Radeon Graphics. The programming language 
employed in the experiment was Python, based on the PyTorch 1.10.0 
deep learning framework.

3 Results

3.1 Demographics and baseline indicators

The clinical data of 379 patients collected in this study served as 
the training set, while data from 45 patients were used as the test set. 
The dataset contained 49 baseline clinical features. Key features 
potentially related to PE risk were identified through detailed 
statistical analysis of these high-dimensional clinical features (see 
Supplementary Table 1 for baseline analysis results).

3.2 Results of feature screening and 
ranking combinations

Dimensionality reduction was performed on the 49 PE-related 
clinical features through PCA, ultimately screening out 37 principal 
components with a higher explained variance ratio. These principal 
components were related to various clinical features including surgical 

history, coagulation indicators (fibrinogen [FIB], prothrombin time 
[PT], and activated partial thromboplastin time [APTT]), history of 
coronary heart disease, history of hypertension, and their 
contributions are displayed in Supplementary Table 2. Analysis of each 
principal component revealed that surgical history had the highest 
absolute contribution (0.4102) in PC37, while other features such as 
FIB, PT, and APTT also had high contributions. This suggests that 
factors such as surgical history and coagulation indicators may play 
critical roles in predicting PE risk.

As described in the methods section, features were divided into 
six different categories, which allowed features with strong correlations 
to cluster together and facilitated PE-Mind’s capture of relationships 
among features. Within each group, features were ranked according 
to their importance. Subsequently, features from different subgroups 
were connected in the standard order of clinical information gathering 
(basic information, clinical manifestations and causes, personal 
medical history, family medical history, vital signs examination, 
laboratory examinations). This formed a structured feature sequence 
that helped the model better learn the relationships between features, 
thereby improving its predictive performance. The grouping and 
ranking results are shown in Table 1, with the corresponding baseline 
details provided in Supplementary Table 1.

3.3 Results of 5-fold cross-validation for 
the prediction models

In this study, a deep learning model named PE-Mind, 
containing three custom-designed residual modules, was proposed 
to predict the risk of PE. To validate the performance of the 
PE-Mind model, it was compared with other popular machine 
learning models, including LGBM, XGB, CatBoost, RF, and 
MLP. These models were selected because they represent a broad 
range of machine learning and deep learning techniques commonly 
employed in clinical risk prediction tasks. MLP and Random Forest 
are traditional models that have been well-validated in medical 
contexts. LGBM and XGB are known for their strong performance 
in classification tasks, while catboost provides a state-of-the-art 
approach for complex feature learning. A 5-fold cross-validation 
was executed on the training set for all models, and the Acc, recall, 
Prec, F1 score, and AUC values were calculated for each result. The 
performance comparison of the models during cross-validation is 
shown in Table 2, and the corresponding ROC and AUC values are 
displayed in Figure 3.

The results from the 5-fold cross-validation revealed that the 
PE-Mind model outperformed the other models in terms of Acc, 
recall, Prec, and F1 score. Specifically, the average Acc, recall, Prec, and 
F1 score of the PE-Mind model were 79.24, 79.45, 74.23, and 77.22%, 
respectively. In contrast, the performance indicators of the other 
models were lower. In terms of average AUC values, the PE-Mind 
model demonstrated a higher performance (0.8568), which was 
substantially higher than the other models, such as LGBM (0.7945), 
XGB (0.8182), CatBoost (0.8047), RF (0.7870), and MLP (0.7504).

Furthermore, the performance stability of the PE-Mind model 
was exceptional. In the five cross-validations, the variability of 
Acc, recall, Prec, and F1 score was small, indicating excellent 
robustness. For example, the range of accuracy was between 70.67 
and 86.84%, and the range of recall was between 66.67 and 
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TABLE 1 Grouped, sorted and concatenated clinical features for ordered input models.

Category Feature PCA Contribution

Basic information Sex 0.132743

Age 0.090734

Clinical manifestations and etiology Presence of Etiological Factors 0.136228

Unilateral Lower Limb Edema 0.051072

DVT Location 0.044974

Unilateral Lower Limb Pain 0.030719

DVT Affected Side 0.025975

Personal medical history Surgery History 0.410171

Coronary Heart Disease History 0.240626

Arterial Stenosis History 0.177364

Arteriosclerosis History 0.141174

Immobilization History 0.123982

High Blood Pressure History 0.123497

Venous Thrombosis History 0.109457

Cancer History 0.088844

Chronic Lung Disease History 0.074498

Heart Failure History 0.052186

Diabetes History 0.036445

Cerebral Infarction History 0.029569

Arterial Embolism History 0.029569

Family medical history VTE Family History 0.189477

Vital signs Hypertension History 0.217242

Body Temperature 0.137686

Blood Oxygen Saturation 0.10425

Respiratory Rate 0.081267

Heart Rate 0.066132

Laboratory tests Fibrinogen 0.358052

Prothrombin Time 0.348968

Activated Partial Thromboplastin Time 0.310127

D-Dimer 0.187352

Anticoagulant Level III 0.170385

Basophilic Count 0.152981

Blood Platelet Count 0.131469

Thrombin Time 0.125334

Aspartate Aminotransferase 0.074987

Serum Chlorine 0.073202

Alanine Aminotransferase 0.072602

TABLE 2 The results of 5-fold cross-validation for each model.

Model Acc (%) Recall (%) Prec (%) F1 (%)

PE-Mind 77.64 ± 4.19 79.44 ± 4.73 74.23 ± 3.67 77.22 ± 3.64

LGBM 73.37 ± 3.95 67.78 ± 3.45 74.52 ± 4.39 70.83 ± 3.87

XGB 73.34 ± 4.53 64.45 ± 4.62 76.75 ± 8.38 69.25 ± 5.99

CatBoost 74.96 ± 5.49 60.56 ± 6.83 82.31 ± 8.44 69.55 ± 7.15

RF 74.15 ± 7.76 62.22 ± 9.12 78.58 ± 8.79 69.23 ± 8.91

MLP 69.39 ± 3.58 57.22 ± 6.35 72.80 ± 4.15 63.84 ± 4.82

Each indicator is expressed as the mean ± 95% confidence interval (CI) of 5 experiments.
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88.89%. This suggests that the PE-Mind model not only 
outperforms other models in overall performance but also 
maintains stable predictive performance across multiple runs. 

Conversely, other models, such as LGBM, XGB, CatBoost, RF, and 
MLP, exhibited significant fluctuations in performance across 
different validation sets. For instance, the Acc of the LGBM model 
ranged from 67.11 to 78.67%, while the recall of the RF model 
ranged from 44.44 to 75.00%. These results further emphasize the 
PE-Mind model’s robustness and stability.

3.4 Prediction models test results

On the test set, the PE-Mind model exhibited outstanding 
generalization performance, significantly surpassing the other five 
machine learning models (detailed results are shown in Table 3, 
with corresponding ROC curves and AUC values in Figure 4). The 
test results showed that the PE-Mind model achieved the best 
performance in all evaluation metrics, with an Acc of 78.26% and 
an AUC of 0.8641, indicating its excellent generalization capability 
to accurately predict the risk of PE in new patient data. In 
comparison, the other five models demonstrated inferior 
performance. For example, the LGBM and XGB models showed 
lower Acc and AUC values, while the CatBoost and RF models 
had relatively lower recall and Prec. These results reflect that, 
compared to the PE-Mind model, other models may be inadequate 

FIGURE 3

ROC curves and AUC values of each model in 5-fold cross-validation. Subplots (A–F) correspond to PE-Mind, LGBM, XGB, CatBoost, RF, and MLP, 
respectively, demonstrating each model’s performance in terms of sensitivity and specificity under cross-validation.

TABLE 3 The results of each model on the test set.

Model Acc (%) Recall (%) Precision (%) F1 score (%)

PE-Mind 78.26 68.97 95.24 80.00

LGBM 58.70 44.00 68.75 53.66

XGB 65.22 47.37 60.00 52.94

CatBoost 69.57 61.90 68.42 65.00

RF 65.22 61.90 61.90 61.90

MLP 60.87 60.00 54.55 57.14

FIGURE 4

The ROC curve and AUC value of each model on the test set. This 
figure compares the predictive performance of all models when 
applied to unseen test data, highlighting their clinical applicability.
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in capturing key features and identifying underlying patterns 
when working with new patient data.

Additionally, the PE-Mind model exhibited particularly 
remarkable performance in Prec, reaching 95.24%, which was 
considerably higher than other models. This suggests that the 
PE-Mind model is capable of substantially reducing the likelihood 
of false positives in identifying high-risk PE patients, thus 
avoiding unnecessary examinations and treatments. In contrast, 
the other five models may fail to adapt to the complexity and 
potential distribution differences of new patient data, resulting in 
inferior generalization performance. Therefore, the performance 
of the PE-Mind model on the prospective test set validated its 
superiority in predicting PE risk.

3.5 Development and demonstration of 
PulmoRiskAI

Building on the rigorous testing foundation of the model, a web 
server application called PulmoRiskAI was developed using the 
Streamlit framework. The application offers a clean and intuitive user 
interface, enabling clinicians and researchers to effortlessly input 
patient clinical data. Upon data entry, PulmoRiskAI automatically 
invokes the trained PE-Mind model to provide instant PE risk 
prediction for the patient.

To facilitate better understanding of the prediction results, a clear 
and intuitive visualization interface was designed (as seen in 
Supplementary Figure 2). Upon prediction completion, PulmoRiskAI 
presents the user with a risk probability prediction value, visually 
displaying the patient’s probability of developing PE. Moreover, a 
detailed risk assessment report is provided, including patient personal 
information, clinical features, and the predicted PE risk probability. 
These visualization tools aim to assist users in easily interpreting the 
prediction results, thereby offering improved diagnostic support. 
Furthermore, future efforts should focus on enhancing PulmoRiskAI’s 
features and iterating more powerful models to better serve patients 
and clinicians.

4 Discussion

This study developed a machine learning model, PE-Mind, 
aimed at accurately predicting the risk of PE, was undertaken. 
Leveraging the powerful computational capabilities of machine 
learning, we aimed to provide clinicians and researchers with a 
real-time and accurate tool to enhance diagnostic accuracy. To 
achieve this goal, a CNN was adopted as the fundamental 
architecture of the model, and three custom residual modules 
were designed to enhance the model’s expressive power. During 
model training and validation, five-fold cross-validation was 
performed, and performance metrics such as Acc, recall, Prec, F1 
score, and AUC were calculated. The results demonstrated that the 
PE-Mind model outperformed other commonly used machine 
learning models. Furthermore, the PE-Mind model exhibited 
excellent generalization performance on the test set 
(AUC = 0.8641), indicating its potential for practical applications. 
Building upon the PE-Mind model, we  further developed a 
practical web server called PulmoRiskAI. This interactive tool 

enables users to input patients’ clinical data for automated 
prediction of PE risk and provides intuitive visualization of the 
prediction results.

This paper conducted an investigation of 37 selected features 
related to PE. These features encompassed patients’ personal 
information, vital signs, medical history, laboratory tests, clinical 
manifestations, and etiological factors, providing abundant 
information sources for the PE-Mind model. Among these, 
surgical history emerged as one of the most important features, 
potentially closely associated with the occurrence of PE. This is 
also in line with the current mainstream prediction models for PE 
(7, 8). Surgery, as the most closely related factor, may be associated 
with the presence of Virchow’s triad - endothelial injury caused 
by surgical procedures, a hypercoagulable state during the 
perioperative period, and reduced blood flow due to prolonged 
bed rest after surgery. These three factors significantly increase 
the risk of venous thromboembolism (VTE), thereby increasing 
the risk of PE (26). Laboratory indicators, such as FIB, PT, and 
APTT, have a higher weight in the prediction model. These three 
coagulation test predictive values are very consistent with clinical 
features. In existing studies, it has been confirmed that abnormal 
FIB is strongly associated with the formation of venous thrombosis 
(27). A shortened APTT indicates a hypercoagulable state, which 
is an independent related factor for VTE (28). Including these 
three indicators in the model enhances the accuracy of predicting 
PE occurrence. Simultaneously, in the PE-Mind model, some vital 
signs, such as heart rate, blood pressure, and respiratory rate, may 
also be  related to the occurrence of PE. These basic clinical 
indicators reflect the patient’s circulatory and respiratory 
functions and are also important indicators for monitoring PE 
patients in clinical practice. Furthermore, medical history features 
such as a history of coronary heart disease, hypertension, and 
diabetes may also be associated with risk of PE. These chronic 
diseases can contribute to vascular damage, inflammatory 
responses, and endothelial dysfunction, thereby increasing the 
likelihood of thrombus formation (29). Notably, a family history 
of VTE also held importance in the selection results, suggesting 
the potential role of genetic factors in the pathogenesis of 
PE. Through the analysis of these features, a better understanding 
of the mechanisms and potential risk factors underlying PE can 
be achieved.

A novel approach was employed to process the clinical feature 
data of patients, making it suitable for input into the PE-Mind 
model. Typically, 1D CNN is suitable for handling sequentially 
structured data, however the initially selected clinical features in 
this study were unrelated. Consequently, it was necessary to 
sequentially process the features to adapt them to this architecture. 
In this study, the top  37 clinically important features were 
grouped, sorted, and concatenated, successfully transforming 
unstructured data into logically structured data, thereby 
enhancing the model’s performance. This method aggregated 
features with strong correlations, aiding PE-Mind in better 
capturing the relationships among these features. Additionally, 
grouping facilitates the reduction of data redundancy and noise, 
enabling more effective learning of underlying data patterns. By 
sorting the features within each group according to their 
importance, the model focused on the most influential features 
for predicting PE, thereby improving accuracy. Subsequently, by 
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sequentially concatenating the features within each group 
according to the clinical information gathering workflow, a 
structured feature sequence was formed, which enabled the model 
to better capture the correlations among the features. Normalizing 
the features before inputting them into PE-Mind helped eliminate 
data scale differences, and further improved model stability and 
performance, ensuring efficiency and accuracy in handling 
features of different scales.

The superior performance of the PE-Mind model in predicting 
PE risk can be attributed to its convolutional structure, custom-
designed residual modules, the application of batch normalization 
and adaptive average pooling layers, and the effective training and 
evaluation strategies used. Firstly, 1D CNN demonstrated strong 
feature extraction capabilities in handling sequential data, which 
enabled more effective capturing of the relationships among 
features relevant to PE. Secondly, the custom-designed residual 
modules address the issue of vanishing gradients by introducing 
shortcut connections, thereby enhancing the model’s expressive 
power. Additionally, the application of batch normalization and 
adaptive average pooling layers ensured stability and 
computational efficiency during the training process. 
Simultaneously, effective training strategies, such as cross-entropy 
loss function, Adam optimizer, early stopping, and learning rate 
decay, were employed to achieve efficient convergence of the 
model and prevent overfitting. Finally, by applying the SMOTE 
technique, the ratio of normal to PE samples in the training set 
was balanced, enhancing the model’s generalization performance. 
These innovative aspects collectively contribute to the superior 
performance of the PE-Mind model in predicting the risk of PE 
compared to other mainstream models.

PulmoRiskAI holds significant promise in clinical application. 
By leveraging deep learning on a large amount of patients’ clinical 
feature data, it can accurately identify patients at risk, thereby 
enhancing diagnostic accuracy. This will help prevent incorrect and 
missed diagnoses, providing patients with more precise treatment 
plans. From a clinical practicality perspective, PulmoRiskAI assists 
clinicians in selecting more suitable treatment methods for patients. 
For instance, for patients identified to be  at high risk of PE, 
clinicians can promptly take proactive treatment measures to 
reduce mortality. Conversely, for patients at low risk of PE, over-
examination or overtreatment can be  avoided. For example, 
low-risk patients could avoid CTPA scans, reducing unnecessary 
medical risks and resource consumption.

This study has several limitations. Firstly, the dataset used in 
this study was derived from a single center. Although prospective 
data were validated, this limits the assessment of the model’s 
generalizability across different regions and populations. Secondly, 
this study primarily focused on clinical features, Future research 
could incorporate additional factors, such as genetics and imaging 
to improve the predictive accuracy and applicability of the model. 
Furthermore, due to technical and data limitations, we  were 
unable to fully explore the complex interactions among features, 
which may affect the predictive capabilities of the model. Future 
research could utilize more advanced deep learning techniques 
and larger, more comprehensive datasets to further 
optimize PulmoRiskAI.

5 Conclusion

This study developed PE-Mind, a deep learning-based 
predictive model for accurately assessing PE risk in patients 
with acute DVT. By integrating comprehensive clinical feature 
data, we transformed unstructured data into an ordered format 
suitable for model input. A time-based validation approach was 
applied to effectively evaluate the model’s generalizability, 
ensuring its reliability in practical applications. The PE-Mind 
model incorporates convolutional architectures and residual 
modules to enhance prediction accuracy. Based on this model, 
we have developed an online real-time platform, PulmoRiskAI, 
providing clinicians with a convenient, end-to-end risk 
assessment tool. Future work could explore the integration of 
additional data types, such as genetic information, and the 
application of more advanced deep learning techniques and 
larger datasets to further optimize PE-Mind’s potential for 
clinical application.
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SUPPLEMENTARY FIGURE 1

The flowchart of the patient selection process. This figure shows the criteria 
and steps for including or excluding patients, ensuring a clear understanding 
of the study cohort’s composition.

SUPPLEMENTARY FIGURE 2

Display of the operation interface of PulmoRiskAI. This figure provides a 
snapshot of the software interface, showcasing its user-friendly design and 
core functionalities for clinical application.
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