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Objective: Lung cancer—with its global prevalence and critical need for early 
diagnosis and treatment—is the focus of our study. This study aimed to develop 
a nomogram based on acoustic–clinical features—a tool that could significantly 
enhance the clinical prediction of lung cancer.

Methods: We reviewed the voice data and clinical information of 350 individuals: 
189 pathologically confirmed lung cancer patients and 161 non-lung cancer 
patients, which included 77 patients with benign pulmonary lesions and 84 
healthy volunteers. First, acoustic features were extracted from all participants, 
and optimal features were selected by least absolute shrinkage and selection 
operator (LASSO) regression. Subsequently, by integrating acoustic features and 
clinical features, a nomogram for predicting lung cancer was developed using a 
multivariate logistic regression model. The performance of the nomogram was 
evaluated by the area under the receiver operating characteristic curve (AUC) 
and the calibration curve. The clinical utility was estimated by decision curve 
analysis (DCA) to confirm the predictive value of the nomogram. Furthermore, 
the nomogram model was compared with predictive models that were 
developed using six additional machine-learning (ML) methods.

Results: Our acoustic–clinical nomogram model demonstrated a strong 
discriminative ability, with AUCs of 0.774 (95% confidence interval [CI], 0.716–
0.832) and 0.714 (95% CI: 0.616–0.811) in the training and test sets, respectively. 
The nomogram achieved an accuracy of 0.642, a sensitivity of 0.673, and 
a specificity of 0.611  in the test set. The calibration curve showed excellent 
agreement between the predicted and actual values, and the DCA curve 
underscored the clinical usefulness of our nomogram. Notably, our nomogram 
model outperformed other models in terms of AUC, accuracy, and specificity.

Conclusion: The acoustic–clinical nomogram developed in this study 
demonstrates robust discrimination, calibration, and clinical application value. 
This nomogram, a unique contribution to the field, provides a reliable tool for 
predicting lung cancer.
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1 Background

Lung cancer has emerged as the leading cause of death among 
individuals with malignant tumors (1), exhibiting a gradual annual 
increase in both incidence and mortality rates. Numerous 
epidemiological studies have indicated that the high incidence of lung 
cancer is closely associated with smoking (2), genetic susceptibility 
(3), the aging population (4), and exposure to carcinogenic substances 
(5, 6), such as the growing environmental pollution and secondhand 
smoke. Early detection, accurate diagnosis, and timely treatment are 
crucial for improving the survival rate of lung cancer patients.

Current clinical studies have reported various methods for early 
lung cancer screening and diagnosis, including computed tomography 
(CT) imaging diagnosis, serum tumor markers detection, and sputum 
cytology examination. Low-dose computed tomography is considered 
the preferred screening method for early-stage lung cancer (7). 
However, it remains controversial (8) due to concerns such as false-
positive results, overdiagnosis and overtreatment, radiation dose, and 
the cost–benefit ratio of screening. Early-stage lung cancer typically 
manifests as a pulmonary nodule on CT imaging, and its pathological 
nature requires confirmation through pathological tissue obtained 
through invasive methods such as surgery or percutaneous lung 
biopsy. Therefore, achieving high-accuracy diagnosis and classification 
of lung cancer through non-invasive examination methods has 
emerged as a focal point of research, to reduce patient harm. In 
addition, there is a pressing need to develop convenient and effective 
screening methods for lung cancer in settings where access to 
extensive medical equipment is constrained.

Auscultation, a vital diagnostic technique in clinical practice, 
enables physicians to detect diseases by using their auditory perception 
to interpret patient’s pathological sounds and speech. However, the 
classical acoustic diagnosis still faces numerous challenges, including 
the lack of objective diagnosis results from individual auditory 
differences and the confusion caused by noise in the diagnostic 
environment. In recent years, with the development of speech 
recognition technology, more methods have been introduced to 
facilitate the objective analysis of auscultation. Modern acoustic 
diagnosis involves collecting patients’ voices through hardware 
devices such as microphones and utilizing computer technology to 
qualitatively and quantitatively analyze these voice signals, ultimately 
yielding objective and informative diagnostic outcomes.

Acoustic diagnosis—with its simplicity, speediness, and 
non-invasiveness—plays a pivotal role in the initial evaluation and 
monitoring of respiratory conditions. With the developments in 
sensor technology and computational analysis methods, it has 
become possible to measure and interpret internal lung acoustic 
signals, such as breathing or vocal sounds (9). Yan et al. (10) applied 
sample entropy for wavelet packet transform coefficients to quantify 
the signals from three patterns of traditional Chinese medicine and 
achieved higher than 90% recognition accuracy rates with a support 
vector machine. Song et al. (11) explored the phonetic characteristics 
of patients with pulmonary nodules (PNs) and found that there were 
statistically significant differences in pitch, intensity, and shimmer 
in patients with PNs compared with healthy people, and PNs with 
diameters ≥8 mm had a significantly higher third formant. Porter 
et al. (12) developed an automatic cough detector and applied a 
Time Delay Neural Network to identify asthma, pneumonia, lower 
respiratory tract disease, croup, and bronchiolitis in children. In 

recent years, the outbreaks of infectious diseases and imbalanced 
medical conditions have urgently required the development and 
application of telemedicine. The application of voice signals collected 
by microphone devices can serve as a convenient and effective tool 
for remote diagnosis and screening of disease. The research study by 
Asiaee et  al. (13) revealed significant differences in acoustic 
parameters of sustained vowel “a” in COVID-19 patients compared 
to healthy subjects. Pahar et al. (14) used audio recordings to detect 
COVID-19 through transfer learning and bottleneck feature 
extraction, and results showed that the ResNet50 classifier 
performed best on all datasets, with areas under the receiver 
operating characteristic (ROC AUCs) of 0.98, 0.94, and 0.92, 
respectively, for all three sound classes: coughs, breaths, and speech. 
However, the research on acoustic diagnosis of lung cancer remains 
to be explored.

Our previous research focused on analyzing changes in frequency 
features, energy/amplitude features, and spectral features between 
patients with PNs and healthy individuals. In this study, we followed 
up on the pathological examination results of patients with pulmonary 
lesions and developed a machine-learning (ML) prediction model 
based on acoustic–clinical features, aiming to provide auxiliary 
technology for clinical diagnosis and screening of lung cancer.

2 Materials and methods

2.1 Participants

We recruited volunteers and collected data from the Department 
of Thoracic Surgery at Huadong Hospital, affiliated with Fudan 
University, from October 2022 to November 2023. Institutional ethics 
committees approved the study.

The inclusion criteria for pulmonary lesions are as follows: (a) The 
patient must be  aged between 30 and 80. (b) patients who had 
undergone CT thorax scans and were found to have at least one 
pulmonary nodule or mass, which was highly suspicious of 
malignancy based on radiological criteria, were scheduled for further 
pathological examinations. (c) The patients should not have received 
any prior treatment for pulmonary conditions, including inhalation 
therapy, bronchoscopy, transbronchial biopsy, or thoracic surgery, 
prior to collecting their voice samples and must demonstrate good 
compliance. At the same time, healthy volunteers aged between 30 and 
80 years with no significant abnormalities found on lung CT scans 
were included. Furthermore, we excluded (a) patients who had been 
diagnosed with lung cancer, chronic obstructive pulmonary disease, 
pulmonary embolism, or tuberculosis before sampling, or those who 
had a history of acute respiratory infection within the past three 
months; (b) patients with severe cardiac, cerebral, hepatic, or renal 
dysfunction; (c) psychiatric patients; (d) patients with auditory, 
speech, or cognitive impairment; (e) patients with a history of neck 
surgery, throat surgery, tracheostomy, thyroidectomy, as well as those 
who had vocal cord paralysis due to non-lung cancer factors such as 
trauma, neck tumors, central nervous system diseases, infections, or 
drug side effects; (f) pregnant or lactating women; (g) non-native 
Chinese speakers.

According to the pathological examination results, 189 patients 
with lung cancer (LCa+) and 161 participants with non-lung cancer 
(LCa−), which included 77 patients with benign lung lesions, and 84 
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health volunteers were included in this study. The participants’ 
enrollment process is illustrated in Figure 1.

2.2 Procedure

2.2.1 Clinical data collection
Through inquiries, we  recorded the clinical data of all 

participants, including age, sex, family history of cancer, smoking 
history (with a smoking index ≥400 cigarette-years), and eight 
clinical symptoms experienced within the past month: cough, 
expectoration, chest tightness/pain, asthma, fatigue, insomnia, 
abnormal sweating, and susceptibility to colds (suffering from colds 
≥3 times per year). Prior to collection, all participants had signed 
informed consent forms.

2.2.2 Voice recording
Sony A10 linear pulse-code modulation (PCM) recording 

device was used to collect voice signals from the participants. 
Voice recordings were conducted on patients with pulmonary 
nodules or masses before surgical intervention or biopsy. The 
noise level in the sampling environment was maintained below 
45 decibels to ensure recording quality. The device was placed 
10 cm from the participant’s mouth, inclined at 45°. The sampling 
rate was set at 44.1 kHz, with a bit depth of 16 bits, to ensure 
high-fidelity audio recording. Participants were instructed to 
produce, with a comfortable and steady pitch and constant 
amplitude, the five Mandarin Chinese vowels ([a], [e], [i], [o], 
and [u]), each sustained for 2 s.

2.2.3 Voice signal preprocessing
We utilized the Cool Edit Pro 2.1 software (Syntrillium Software 

Corporation) for audio editing, manually eliminating noise and 
redundant information. Additionally, the Praat (version 6.1.51, 
developed by Paul Boersma and David Weenink, Phonetic Sciences, 
University of Amsterdam) voice analysis program was also employed 
for vowel annotation, endpoint detection, and audio segmentation. 
The middle 0.5-s stable portion of the acoustic signal from each 
vowel’s acoustic signal was extracted for analysis.

2.2.4 Acoustic features extraction
Acoustic features were extracted with OpenSMILE toolkit 

(audEERING GmbH, Gilching, Germany) (15), employing the extended 
Geneva Acoustic Minimalistic Parameter Set (eGeMAPS) (16, 17). The 
original parameter set comprises physical acoustic parameters (18) (i.e., 
low-level descriptors) and their statistical functionals. Since this study 
focused solely on voiced sounds, the voice signal of individual vowels was 
relatively stable, resulting in the exclusion of unvoiced regions from the 
analysis. The following features were selected for analysis in this study: ① 
Frequency features, including fundamental frequency (F0), jitter, formant 
1–3 frequency, and formant 1–3 bandwidth; ② energy/amplitude features, 
including shimmer, loudness, harmonics-to-noise ratio (HNR); ③ spectral 
parameters, including H1–H2 harmonic difference (H1–H2), H1–A3 
harmonic difference (H1–A3), and formant 1–3 relative energy, MFCCs 
1–4, spectral flux, alpha ratio, Hammarberg index, spectral slope 0–500 
and 500–100 Hz. Audio signals were divided into short frames during 
preprocessing, and a window function was applied. Given the relative 
stationarity of speech signals within a short time range, an arithmetic 
mean was used to calculate each acoustic feature value.

FIGURE 1

Flowchart depicts the participants’ enrollment process in the study.
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2.3 Data preprocessing

All participants were divided into the lung cancer group (LCa+) 
and the non-lung cancer group (LCa−), based on the pathological 
results of patients presenting with pulmonary nodules or masses. Age 
was considered a continuous variable, recorded with actual values. 
Sex, family history of cancer, smoking history, and the presence of 
clinical symptoms, including cough, expectoration, chest tightness/
pain, shortness of breath, fatigue, insomnia, abnormal sweating, and 
susceptibility to colds, were all marked as binary variables. To mitigate 
the influence of differing scales among the indicators, the acoustic 
feature data were normalized using the min-max normalization 
method (17), scaled to a range between −1 and 1. In contrast, clinical 
features, including sex, family history of cancer, smoking history, and 
clinical symptoms, were maintained in binary format, denoted as 
either 0 or 1.

2.4 Statistical analysis and machine 
learning

Statistical analysis was conducted using the R software package 
(version 4.2.1) and Statistical Package for the Social Sciences (SPSS 
version 26.0, IBM corp). Measurement data adhering to a normal 
distribution were summarized using mean ± standard deviation (SD), 
with independent sample t-tests conducted for comparison. 
Conversely, variables that did not follow a normal distribution were 
described by median (interquartile range), and Mann–Whitney U 
tests were used for comparison. Categorical variables were compared 
by chi-square tests. Count data were presented as cases and 
percentages, with χ2 tests employed for statistical comparison.

First, the participants were randomly allocated to a training set 
and a test set in a 7:3 ratio, ensuring that the distribution of outcome 
events was evenly spread across both sets. The training set served as 
the basis for screening variables and building the model. Next, the 
least absolute shrinkage and selection operator (LASSO) regression 

algorithm (19) was applied to screen the acoustic features. The 
optimal λ was selected using internal 10-fold cross-validation only 
on the training data, eliminating unimportant acoustic features and 
retaining those relevant to the identification of lung cancer. A 
multivariable logistic regression with backward elimination based 
on the Akaike Information Criterion (AIC) (20, 21) was applied to 
select independent predictors of lung cancer from the acoustic–
clinical features. A nomogram—a widely utilized visual prediction 
tool in the medical field (22–24)—provides clinicians with a more 
intuitive and accurate prediction approach. A nomogram for 
predicting lung cancer was developed based on the logistic 
regression analysis results. In this nomogram, a score was assigned 
to each influencing factor based on the magnitude of its regression 
coefficient, and these scores were visually represented on a graph, 
forming an intuitive linear diagram corresponding to the diagnostic 
probability of lung cancer. In addition, we compared the nomogram 
model with predictive models established using six additional 
machine learning (ML) methods, including extreme gradient 
boosting (XGBoost), Adaptive Boosting (AdaBoost), gradient 
boosting decision tree (GBDT), random forest (RF), support vector 
machine (SVM), and multilayer perceptron (MLP).

Then, we assessed the generalization of the models by evaluating 
their predictive performance using the ROC curve, accuracy, 
sensitivity, specificity, and F1 score. The nomogram’s goodness of fit 
was assessed through the Hosmer–Lemeshow test and calibration 
curves. The clinical applicability was also assessed via decision 
curve analysis (DCA), which quantified net benefits at various 
threshold probabilities. The overall flowchart of the study is shown 
in Figure 2.

In terms of the R package, the “caret” package was utilized for data 
grouping and regression training; the “glmnet” package for LASSO 
regression analysis; the “pROC” package for model development and 
plotting ROC curves; and the “rms” package for construction of 
nomogram; and the “rmda” package for DCA. For all analyses, 
p < 0.05 was considered statistically significant, and all tests were 
conducted with a two-tailed approach.

FIGURE 2

Workflow for development and validation of the proposed nomogram for prediction of lung cancer based on acoustic–clinical features. (A) Data 
collection, collecting voice signals and clinical data from the participants before pathological examination; (B) acoustic feature extraction, voice 
annotation, and segmentation, extracting 25 acoustic features for each vowel; (C) classification based on pathological examination results, using 
LASSO regression to screen lung cancer related acoustic features; (D) establishing a model in the training set and developing an acoustic–clinical 
nomogram for predicting lung cancer; (E) performing ROC analysis, calibration analysis, and decision curve analysis in the training set and the test set.
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3 Results

3.1 Baseline analysis

A total of 350 participants were enrolled in the study cohort, 
among which 244 cases were assigned to the training set and the 
remaining 106 to the test set. The clinical and demographic 
characteristics of the training set and test set are summarized in 

Table 1. No statistically significant differences were observed in the 
clinical variables between the two datasets (p > 0.05).

3.2 Acoustic feature selection

LASSO regression achieves automatic selection and 
comprehensive reduction of input features by incorporating an L1 

TABLE 1 Comparison of clinical data between training set and test set.

Variables Training set (n = 244) Test set (n = 106) p-valuea

LCa + (n = 137) LCa − (n = 107) LCa + (n = 52) LCa − (n = 54)

Sex, n (%) 0.255

Male 58 (42.3) 47 (43.9) 20 (38.5) 18 (33.3)

Female 79 (57.7) 60 (56.1) 32 (61.5) 36 (66.7)

Age (year), median (IQR) 60.0 [52.0,68.0] 54.0 [39.0,64.0] 60.0 [54.0,68.0] 51.0 [39.0,66.8] 0.639

Smoking, n (%) 0.351

Active smoker 35 (25.5) 21 (19.6) 17 (32.7) 13 (24.1)

Non-smoker 102 (74.5) 86 (80.4) 35 (67.3) 41 (75.9)

Family history of cancer, n (%) 0.740

Yes 19 (13.9) 11 (10.3) 6 (11.5) 5 (9.26)

No 118 (86.1) 96 (89.7) 46 (88.5) 49 (90.7)

Cough, n (%) 0.363

Yes 40 (29.2) 11 (10.3) 10 (19.2) 7 (13.0)

No 97 (70.8) 96 (89.7) 42 (80.8) 47 (87.0)

Expectoration, n (%) 0.050

Yes 34 (24.8) 8 (7.48) 7 (13.5) 2 (3.70)

No 103 (75.2) 99 (92.5) 45 (86.5) 52 (96.3)

Chest tightness/pain, n (%) 0.956

Yes 32 (23.4) 14 (13.1) 8 (15.4) 11 (20.4)

No 105 (76.6) 93 (86.9) 44 (84.6) 43 (79.6)

Short of breath, n (%) 0.165

Yes 18 (13.1) 3 (2.8) 3 (5.8) 1 (1.9)

No 119 (86.9) 104 (97.2) 49 (94.2) 53 (98.1)

Insomnia, n (%) 0.619

Yes 34 (24.8) 29 (27.1) 13 (25.0) 11 (20.4)

No 103 (75.2) 78 (72.9) 39 (75.0) 43 (79.6)

Abnormal sweating, n (%) 0.371

Yes 22 (16.1) 11 (10.3) 7 (13.5) 3 (5.56)

No 115 (83.9) 96 (89.7) 45 (86.5) 51 (94.4)

Fatigue, n (%) 0.341

Yes 30 (21.9) 24 (22.4) 10 (19.2) 8 (14.8)

No 107 (78.1) 83 (77.6) 42 (80.8) 46 (85.2)

Susceptible to colds (≥3times/year), n (%) 0.580

Yes 6 (4.4) 4 (3.7) 3 (5.8) 3 (5.6)

No 131 (95.6) 103 (96.3) 49 (94.2) 51 (94.4)

IQR, interquartile range.
aMann–Whitney U test for continuous variables, the chi-square test for categorical variables; p-values for comparisons between training set and test set.
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FIGURE 3

Screening of variables based on LASSO regression. (A) The variation characteristics of the coefficient of variables. Each curve in the figure represents 
the trajectory of the coefficient change for each independent variable. The y-axis represents the value of the coefficient, the lower horizontal axis 
represents the L1-norm value of the coefficient, and the upper horizontal axis represents the number of non-zero coefficients in the model at that 
time; (B) the selection process of the optimum value of the parameter λ in the LASSO regression model by 10-fold cross-validation method. In the 
LASSO model, the coefficient profiles of 125 acoustic features were drawn from the log (λ) sequence. Vertical dotted lines are drawn at the minimum 
mean square error (λ = 0.110) and the standard error of the minimum distance (λ = 0.063); (C) coefficients of six variables screened by LASSO 
regression. The text column on the left displayed the names of selected features. The bar chart on the right displayed the corresponding coefficient for 
each feature.

regularization penalty term, which limits the magnitude of the 
regression coefficients (25). Thus, LASSO regression was used to 
screen acoustic features in the training set. In the iterative analysis, the 
10-fold cross-validation method was applied, and a model with 
excellent performance and the minimum number of variables was 
obtained when λ = 0.063. Six optimal acoustic features, including e_
mfcc3, i_mfcc2, o_HNR, u_alphaRatio, u_mfcc3, and u_F2 amplitude, 
were screened from 125 acoustic features, as shown in Figure 3.

3.3 Development of the prediction model 
based on acoustic–clinical features

According to the results of multivariate logistic regression with 
backward elimination, the model containing e_mfcc3, i_mfcc2, u_
alphaRatio, age, cough, expectoration, and abnormal sweating 
achieved minimal AIC value in the training cohort (Table 2; Figure 4). 

In addition, we  assessed multicollinearity using variable inflation 
factors (VIF) and found that the VIF values for the selected variables 
were below 3. This model was presented as a nomogram for predicting 
lung cancer (Figure 5).

Interpretation method: Draw a vertical line for each variable of a 
subject, with the corresponding “points” representing the scores for 
that specific variable. The total score of the patient’s variables (total 
points) corresponds to the diagnostic possibility, which is the 
probability of lung cancer. For example, a 70-year-old subject with 
normalized voice features, specifically e_mfcc3, i_mfcc2, and u_
alphaRatio values of −0.2, −0.1, and − 0.1 respectively, and who 
exhibits no symptoms of cough, phlegm, or abnormal sweating, would 
receive 70 points for age, 60 points for e_mfcc3, 40 points for i_mfcc2, 
30 points for u_alphaRatio, and 0 points for the absence of cough, 
phlegm, and abnormal sweating symptoms. The total score would 
be 200 points, indicating a 75% predicted probability of lung cancer 
for this patient.
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TABLE 2 Multivariate logistic regression analysis of acoustic–clinical features.

Variables β-coefficient SE Adjusted OR (95% CI) Z p-value

(Intercept) −2.349 0.711 0.095 (0.022–0.373) −3.306 0.001

e_mfcc3_sma3_amean.numeric −1.302 0.495 0.271 (0.100–0.704) −2.629 0.009

i_mfcc2_sma3_amean.numeric −0.951 0.426 0.386 (0.164–0.879) −2.235 0.025

u_alphaRatioV_sma3nz_amean.numeric 0.910 0.520 2.484 (0.912–7.063) 1.750 0.080

Age 0.047 0.012 1.047 (1.023–1.073) 3.870 <0.001

Cough 1.019 0.474 2.770 (1.112–7.241) 2.149 0.032

Expectoration 0.846 0.514 2.331 (0.871–6.682) 1.647 0.100

Abnormal sweating 0.738 0.455 2.091 (0.874–5.281) 1.620 0.105

SE, standard error; OR, odds ratio; CI, confidence interval. The significant variables in the best-fit model were identified based on a multivariate logistic regression algorithm with a backward 
elimination method.

FIGURE 4

Forest plot for variable selection in multivariate logistic regression.

FIGURE 5

Nomogram for predicting lung cancer based on acoustic–clinical features. Incorporating acoustic features: e_mfcc3, i_mfcc2, u_alphaRatio, and 
clinical characteristics, including age, cough, expectoration, and abnormal sweating.
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3.4 Evaluation and validation of the 
nomogram

The acoustic–clinical nomogram model had a good discriminative 
ability with an AUC of 0.774 (95% CI: 0.716–0.832) in the training set. 
To validate the acoustic–clinical model, we conducted a comparative 
analysis of the ROC curves derived from multivariable regression 
models using the backward elimination method across three distinct 
feature sets: the first one was solely based on clinical characteristics 
(Model 1), the second one was solely based on acoustic features 
(Model 2), and the third one was a combined acoustic–clinical model 
(Model 3). As illustrated in Figure 6, in the test set, Model 3 exhibited 
a superior AUC of 0.714 (95% CI: 0.616–0.811) compared to Model 1 
AUC (0.654, 95% CI: 0.549–0.759) and Model 2 (AUC: 0.650, 95% CI: 
0.545–0.754). The performance evaluation of Model 3 in the test set 
revealed an overall accuracy of 0.642, a sensitivity of 0.673, and a 
specificity of 0.611.

The Hosmer–Lemeshow test revealed that the nomogram was 
well-fitting (training set: χ2 = 14.623, p = 0.067; test set: χ2 = 9.361, 
p = 0.313). The calibration curves obtained through the 1,000 
bootstrap resamples method demonstrated good concordance with 
the ideal straight line, indicating the robust predictive performance of 
the nomogram model in relation to pathological outcomes (Figure 7).

In the training set, the DCA indicated that net benefits could 
be achieved with a threshold probability ranging from 15 to 87% 
(Figure 8A). Similarly, in the test set, the DCA demonstrated that net 
benefits were attainable within a threshold probability range of 
10–65% (Figure 8B).

3.5 Comparison of predictive models using 
ML

The AUC values for the models in the test set, obtained using 
various ML methods, are presented in Figure 9 as follows: XGBoost 

0.642 (95% CI: 0.537–0.746), AdaBoost 0.609 (95% CI: 0.497–0.719), 
GBDT 0.652 (95% CI: 0.542–0.753), RF 0.662 (95% CI: 0.553–0.761), 
SVM 0.682 (95% CI: 0.570–0.792), and MLP 0.658 (95% CI: 0.551–
0.760). Compared to six other ML models, the nomogram model 
exhibited the highest AUC.

The accuracy, sensitivity, specificity, and F1 score of various 
models were calculated, as reported in Table 3. The results indicated 
that the nomogram model excelled in accuracy and specificity, 
achieving 0.642 and 0.611, respectively, surpassing those of other 
models. AdaBoost and RF demonstrated the lowest accuracy at 0.581, 
and SVM showed the lowest specificity at 0.419. Regarding sensitivity, 
the SVM model exhibited superior performance, achieving a score of 
0.774, while the nomogram model demonstrated the lowest sensitivity, 
scoring 0.673. For the F1 score, all models performed similarly, with 
the SVM model achieving the highest score of 0.663 and the AdaBoost 
model scoring the lowest at 0.623.

4 Discussion

Lung cancer is one of the most common malignant tumors (26). 
Due to individual differences among patients, lung cancer—which is 
prone to developing symptoms such as coughing, chest pain, and 
hemoptysis as the disease progresses (27)—is the most common 
neoplastic etiology underlying unilateral vocal fold paralysis (28). 
We  developed a lung cancer voice database and developed and 
validated an accurate acoustic–clinical nomogram for predicting lung 
cancer. During the process of voice acquisition and speech recognition, 
it is susceptible to various factors (29, 30) such as device settings, the 
speaker’s accent, the distance of the mouth from the microphone, and 
background noise. To avoid the aforementioned interference, 
we implemented a standardized protocol for voice signal acquisition. 
Since vowels are produced without any physical obstruction in the 
vocal tract, allowing airflow from the lungs to pass through the glottis 
and strike the vocal chords, causing them to vibrate, we  selected 
vowels as the pronunciation content and set fixed sampling rates, 
distances, and environmental scenarios.

The results of logistic regression analysis demonstrated that aging, 
cough, and acoustic features are independent risk factors for lung 
cancer. The acoustic–clinical nomogram model outperforms both the 
clinical characteristics model and the acoustic feature model in terms 
of discrimination performance. It also exhibited good calibration, 
indicating that the proposed nomogram may serve as an effective, 
non-invasive, and safe approach for lung cancer identification. During 
the diagnostic process for clinical lung cancer patients, heightened 
vigilance should be exercised for those who are elderly and exhibit 
symptoms such as cough, expectoration, abnormal sweating, and 
changes in voice quality, as these could indicate the presence of 
lung cancer.

MFCCs are coefficients formed through a linear transformation 
of logarithmic energy spectra based on the non-linear Mel scale of 
sound frequency, reflecting the auditory characteristics of the human 
ear, and are widely used in speech recognition (31). Alpha ratio 
refers to the ratio of the sum of energy between 50–1000 Hz and the 
sum of energy between 1–5 kHz, providing information on the 
relative intensity of low-frequency and high-frequency components 
in the voice signal. LASSO regression identified important features, 
specifically MFCC3, MFCC2, and alpha ratio, which were 

FIGURE 6

ROC curves for clinical characteristics (Model 1), acoustic features 
(Model 2), and acoustic–clinical model (Model 3) in the test set.
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instrumental in the differential diagnosis of lung cancer. This finding 
suggested that patients with lung cancer may exhibit abnormalities 
in their voice timbre which these spectral features can capture. 
Modern medical researchers indicate that the main cause of voice 
alterations in lung cancer patients is the compression of the recurrent 
laryngeal nerve by advanced tumors (32). The main characteristics 
of this condition include changes in voice tone, hoarseness, or 
aphonia. Acoustically, when sound waves propagate through a 
medium and encounter obstacles while traveling, reflection can alter 
their energy, frequency, and wavelength. Consequently, when sound 
waves resonate in the lungs and encounter malignant tumors, 
differences in timbre may occur. Whether these alterations in timbre 
correlate with the size, number, and texture of the tumors remains 

to be further studied. The application of modern sensor technology 
for voice signal collection and conducting objective analysis may 
be more sensitive than the human ear at detecting voice changes in 
patients with lung cancer. Auscultation of voice using computer 
technology is not only cost-effective and easy to operate but also 
eliminates the need for other medical equipment that requires 
invasive procedures, thereby minimizing the risk of injury 
to patients.

This study used pathological findings as the gold standard and 
included individuals without pulmonary lesions to simulate real-
world clinical scenarios. Our results suggested that the nomogram 
model demonstrated high predictive accuracy, calibration, and clinical 
applicability. Comparative analyses among various ML models 

FIGURE 7

Calibration curve of acoustic–clinical nomogram. The dashed line represents the ideal model, where the predicted probability is the same as the actual 
probability. The blue line represents the actual performance of apparent accuracy, while the red line indicates the calibration curve of the corrected 
resampled estimation. (A) Training set and (B) test set.

FIGURE 8

Decision curve analysis of the nomogram. X-axis line: threshold probability; Y-axis line: net benefit; gray line: hypothesis that all participants suffered 
from lung cancers; Black line: hypothesis that all participants did not apply the nomogram and the net benefit is zero; Red line: acoustic–clinical 
nomogram. (A) Training set and (B) test set.
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revealed that the nomogram model surpassed others in AUC, 
accuracy, and specificity, thereby confirming its enhanced capability 
to identify individuals without lung cancer. While the SVM model 
achieved the highest sensitivity and F1 score of 0.774 and 0.663, 
respectively, indicating its proficiency in identifying lung cancer 
patients, its specificity was notably the lowest at 0.419. In contrast to 
complex ML models, the nomogram model exhibits simplicity, 
interpretability, and stability, which makes it more practically useful 
in clinical decision-making and a valuable screening tool for 
lung cancer.

Artificial intelligence technology has shown great potential and 
promising prospects, especially in the lung cancer screening, imaging 
examination, pathological testing, and biomarker detection (33). 
However, the potential of acoustic diagnosis for lung cancer remains 
largely unexplored. This study pioneered the innovative integration of 
voice acoustic features with clinical data, utilizing machine learning 
methods to construct model, laying the groundwork for an intelligent 
lung cancer diagnosis. Subsequently, we will explore the differences in 
acoustic features among lung cancer patients, individuals with benign 
lung nodules, and healthy controls and establish a multiclassification 
model to identify unique acoustic features that may differentiate these 

groups and potentially aid in early detection and diagnosis of lung 
cancer. In the future, applying acoustic diagnosis techniques will 
enhance lung cancer screening and diagnostic processes in regions 
where large-scale examinations are not feasible, offering high clinical 
application value and promising prospects for “internet plus healthcare”.

5 Limitations

Our study has some limitations. First, the voice is influenced by 
various factors such as physiological state, sex, age, mental status, and 
pathological conditions of speakers during sampling. Additionally, 
distinct speech representations exist among populations from different 
geographic regions, and this model is trained on Chinese language 
and may not be applicable to other languages. Secondly, the sample 
size of this study is relatively small, which may prevent the thorough 
exploration and evaluation of important subgroups, including sex, 
ethnicity, and others, and due to the absence of an external validation 
cohort in the study, the accuracy, generalizability, and transferability 
of the model need further verification. The sensitivity and specificity 
results of the proposed model are not yet satisfactory. In future 
research, we plan to increase the sample size and adopt resampling 
techniques to address the issue of data imbalance, enabling the model 
to better capture the characteristics of minority classes. In recent years, 
deep learning has demonstrated exceptional feature learning 
capabilities, high accuracy, and strong robustness in speech 
recognition. Given this, we will also attempt to apply deep learning 
algorithms, such as CNN, RNN, LSTM, and Transformer, to further 
optimize the model’s hyperparameters and enhance its generalization 
ability, aiming to improve its performance. Furthermore, current 
sample collection requires a quiet environment, yet noise is ubiquitous 
in daily life, which inevitably affects the conduct of large-scale 
sampling. As for remote healthcare, different recording devices 
introduce variations. Eliminating these discrepancies in natural 
settings poses a challenge for our research.

6 Conclusion

This study introduces a machine-learning approach for the 
disease prediction and screening of clinical lung cancer through voice 
signal feature analysis, which is non-contact, does not require 
specialist medical expertise or laboratory facilities, and can 
be  deployed on inexpensive consumer hardware, such as a 

TABLE 3 Comparison of predictive performance among various ML models.

Model AUC (95% CI) Accuracy Sensitivity Specificity F1 score

XGBoost 0.642 (0.537–0.746) 0.591 0.740 0.442 0.642

AdaBoost 0.609 (0.497–0.719) 0.581 0.679 0.477 0.623

GBDT 0.652 (0.542–0.753) 0.616 0.736 0.502 0.657

RF 0.662 (0.553–0.761) 0.581 0.699 0.461 0.625

SVM 0.682 (0.570–0.792) 0.601 0.774 0.419 0.663

MLP 0.658 (0.551–0.760) 0.630 0.696 0.559 0.652

Nomogram 0.714 (0.616–0.811) 0.642 0.673 0.611 0.648

AUC, area under the curve of ROC; XGBoost, extreme gradient boosting; AdaBoost, adaptive boosting; GBDT, gradient boosting decision tree; RF, random forest; SVM support vector 
machine; MLP, multilayer perceptron.

FIGURE 9

ROC curves for various ML models in the test set.
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smartphone. Subsequent research studies are needed to collect voice 
information from various types and stages of lung cancer. By 
integrating acoustic diagnostic features with clinical information 
such as CT images, biochemical indicators, and lung function, deep 
learning algorithms will be  applied to establish an intelligent 
diagnostic system and risk prediction model for lung cancer.

The nomogram model that we  developed based on acoustic–
clinical data shows good predictive performance—which is capable of 
predicting the clinical risks of lung cancer—and offers guidance for 
the screening of high-risk patients with lung cancer.
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Glossary

LASSO - least absolute shrinkage and selection operator

ROC - receiver operating characteristic

AUC - area under the curve

DCA - decision curve analysis

CT - computed tomography

PNs - pulmonary nodules

MFCCs - Mel frequency cepstral coefficients

COVID-19 - coronavirus disease 2019

LCa+ - lung cancer group

LCa− - non-lung cancer group

PCM - pulse-code modulation

HNR - harmonics-to-noise ratio

IQR - interquartile range

SD - standard deviation

SE - standard error

OR - odds ratio

CI - confidence interval

ML - machine learning

XGBoost - extreme gradient boosting

AdaBoost - adaptive boosting

GBDT - gradient boosting decision tree

RF - random forest

SVM - support vector machine

MLP - multilayer perceptron

VIF - variable inflation factors
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