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Background: Drug-resistant tuberculosis (DR-TB) is a severe public health 
threat and burden worldwide. This study seeks to develop and validate both 
independent and combined radiomic models using pulmonary cavity (PC), tree-
in-bud sign (TIB), total lung lesions (TLL), and residual pulmonary parenchyma 
(RPP) to evaluate their effectiveness in predicting DR-TB.

Methods: We recruited 306 confirmed active pulmonary tuberculosis cases 
from two hospitals, comprising 142 drug-resistant and 164 drug-sensitive cases. 
Patients were assigned to five training and testing cohorts: PC (n = 109, 47), TIB 
(n = 214, 92), TLL (n = 214, 92), RPP (n = 214, 92), and their combination (n = 109, 
47). Radiomic features were extracted using variance thresholding, K-best, and 
LASSO techniques. We developed four separate radiomic models with random 
forest (RF) for DR-TB prediction and created a combined model integrating all 
features from the four indicators. Model performance was validated using ROC 
curves.

Results: We extracted 10, 2, 10, 3, and 9 radiomic features from PC, TIB, TLL, 
RPP, and the combined model, respectively. The combined model achieved 
AUC values of 0.886 (95% CI: 0.827–0.945) in the training set and 0.865 (95% CI: 
0.764–0.966) in the testing set. It slightly surpassed the PC model in the training 
set (0.886 vs. 0.850, p < 0.05) and was comparable in the testing set (0.865 vs. 
0.850, p > 0.05). The combined model showed similar performance to the TIB, 
TLL, and RPP models in both sets (p > 0.05).

Conclusion: The newly defined and developed RPP model and the combined 
model demonstrated robust performance in identifying DR-TB, highlighting the 
potential of CT-based radiomic models as effective non-invasive tools for DR-
TB prediction.
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1 Introduction

Tuberculosis (TB), caused by Mycobacterium tuberculosis (MTB), 
is one of the infectious diseases that poses a significant threat to 
human health, contributing to a substantial global disease burden and 
mortality rate (1). The issue of drug-resistant tuberculosis (DR-TB) 
has become increasingly severe, presenting ongoing challenges to 
public health systems and necessitating more effective prevention and 
control strategies from global health organizations (1). DR-TB 
specifically refers to strains confirmed by laboratory drug susceptibility 
testing to be resistant to at least one first-line anti-tuberculosis drug, 
such as rifampicin or isoniazid (2). Its treatment is lengthy, complex, 
and costly, far exceeding that of drug-sensitive tuberculosis (DS-TB) 
(3). Timely diagnosis and early treatment of DR-TB are crucial for 
controlling its transmission and progression (4, 5), making it one of 
the core challenges in current prevention and control efforts (6).

Although traditional methods such as microbial culture and 
sputum smear microscopy are commonly used for TB diagnosis (2), 
these approaches are limited by the low sensitivity of sputum tests and 
lengthy culture periods—MTB results typically take 4–8 weeks to 
obtain (1, 7). Moreover, these methods cannot adequately cover cases 
with negative sputum cultures, leading to a risk of diagnostic omissions 
(3). Some tuberculosis patients without sputum or with insufficient 
sputum cannot be diagnosed through microbiological culture and 
sputum smear microscopy methods. In recent years, gene detection 
technologies like linear probe assays and whole-genome sequencing 
have emerged to shorten diagnosis time; however, they are constrained 
by the bacterial load in the sample and laboratory conditions (7). 
Therefore, there is an urgent need to explore a non-invasive and easily 
implementable method for accurately identifying and predicting the 
drug resistance status of pulmonary tuberculosis patients.

Currently, the application of artificial intelligence technology in 
the field of tuberculosis imaging is gradually emerging (8–10). Notably, 
radiomics—an innovative, non-invasive approach—can automatically 
and efficiently extract a substantial amount of quantitative information 
from specific regions of medical images (11). This provides robust data 
support for clinical decision-making, aiming to enhance diagnostic 
accuracy, prognostic assessment, and predictive capabilities. This 
technology has been widely utilized in differentiating between benign 
and malignant lesions, as well as in disease diagnosis and prognosis 
analysis (12–15). However, research on utilizing radiomics to predict 
drug resistance in active tuberculosis remains relatively limited (16).

In this study, we have innovatively introduced the concepts of 
“TLL” and “RPP” Given the diverse manifestations and widespread 
distribution of drug-resistant pulmonary tuberculosis in CT imaging, 
the development of the “TLL” model is particularly significant, offering 

a new perspective for deeper insights into the disease. Notably, the 
term “RPP” is proposed for the first time in this research, marking a 
substantial advancement in our exploration of radiomics in pulmonary 
tuberculosis. Historically, previous studies have concentrated on the 
typical CT presentations of DR-TB, with minimal focus on the imaging 
characteristics of normal or nearly normal lung tissue surrounding the 
tuberculosis lesions, referred to as “RPP.” This study addresses that gap.

Radiomics generally focuses on single lesions as the subject of 
study. However, tuberculosis lesions are diverse and widely distributed, 
with the main types including TIB, PC, consolidation, and fibrous 
strands, among which TIB and PC are the most common (17, 18). 
Studying these common different types of lesions can provide multiple 
perspectives for exploring the characteristics of DR-TB. Given this 
context, the current study seeks to develop a predictive model using 
CT imaging features such as pulmonary cavity (PC), tree-in-bud sign 
(TIB), total lung lesions (TLL), and residual pulmonary parenchyma 
(RPP). The goal is to validate the model’s ability to distinguish drug-
sensitive tuberculosis (DS-TB) from DR-TB, thereby providing 
imaging evidence for the early identification and intervention of drug-
resistant pulmonary tuberculosis in clinical practice.

2 Materials and methods

2.1 Patients

We collected clinical and imaging data from 306 confirmed cases 
of active pulmonary tuberculosis treated at two institutions between 
January 2016 and August 2023. The clinical data we collected for the 
patients included gender, age, and treatment history, and there was no 
statistically significant difference in clinical data between the two 
institutions. All data review and analysis phases of this study received 
formal approval from the Institutional Review Board, which waived 
the requirement for post-consent from participants in accordance 
with their guidelines.

Inclusion criteria: (a) Patients met the diagnostic criteria outlined 
in the World Health Organization’s Comprehensive Tuberculosis 
Guidelines (2); (b) Results of drug susceptibility testing (DST) for 
Mycobacterium tuberculosis were used to differentiate between DS-TB 
and DR-TB; and (c) Complete clinical and imaging examination 
records were available.

Exclusion criteria: (a) Poor image quality or incomplete clinical 
information; (b) History of other pulmonary diseases, such as lung 
cancer; and (c) Diabetes or HIV seropositivity.

Ultimately, we enrolled 306 confirmed cases of active pulmonary 
tuberculosis from two hospitals between January 2016 and August 
2023, encompassing 142 cases of DR-TB and 164 cases of drug-
sensitive tuberculosis. Hospital 1 contributed 214 patients (115 DS-TB 
and 99 DR-TB), which comprised the training cohort, whereas 
Hospital 2 provided 92 patients (49 DS-TB and 43 DR-TB), forming 
the testing cohort, with a ratio of 7:3 between the training and testing 
cohorts. The patients were further categorized into five distinct 
training and testing cohorts based on their different imaging features: 

Abbreviations: PC, pulmonary cavity; TIB, tree-in-bud sign; TLL, total lung lesions; 

RPP, residual pulmonary parenchyma; DS-TB, Drug-sensitive tuberculosis; DR-TB, 

drug-resistant tuberculosis; CT, Computed tomography; AUC, Area under the 

ROC curve; DCA, Decision curve analysis; ROC, Receiver operator characteristic; 

ROI, Regions of interest; TB, Tuberculosis; MDR-TB, Multidrug-resistant TB.
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PC training cohort: 109 patients (42 DS-TB, 67 DR-TB); testing 
cohort: 47 patients (18 DS-TB, 29 DR-TB). TIB, TLL, and RPP 
training cohort: 214 patients each (115 DS-TB, 99 DR-TB); testing 
cohort: 92 patients each (49 DS-TB, 43 DR-TB). The combined model 
training cohort: 109 patients (42 DS-TB, 67 DR-TB); testing cohort: 
47 patients (18 DS-TB, 29 DR-TB). Detailed information on the 
patient recruitment flowchart is presented in Figure 1.

2.2 Methods

All pulmonary CT scans were performed using the Philips 
Brilliance 256-slice iCT, SOMATOM go. Top CT systems, and 
SOMATOM Definition AS 128 CT. Patients were positioned supine 
and instructed to inhale and hold their breath, with the scanning 
range extending from the lung apices to the diaphragm. High-
resolution computed tomography (HRCT) techniques were utilized, 
with the following parameters: tube voltage set to 120 kV, intelligent 
mAs, a rotation speed of 0.5 s per revolution, a pitch of 0.758, 
collimation of 128 × 0.625, slice thickness of 5 mm, and slice spacing 
of 5 mm. Thin-slice reconstructions were performed with a thickness 
of 1 mm and a spacing of 0.5 mm. Subsequently, the processed 
imaging data were imported into the “United Imaging uAI research 
portal 211230” platform for in-depth analysis of radiomic features.

2.3 Radiomics analysis

2.3.1 Lesion segmentation
CT images were analyzed blindly by an attending physician 

(Physician 1) and an associate chief physician (Physician 2), each with 
over 10 years of experience in radiology. The primary imaging features 
evaluated on the CT scans included: (A) TIB; (B) PC; (C) 
consolidation; (D) fibrous strands; (E) calcified nodules; (F) solitary 
large nodules with surrounding satellite lesions; and (H) caseous 
pneumonia. TLL related to tuberculosis were defined as all imaging 
manifestations confirmed to be  associated with pulmonary 
tuberculosis, whereas RPP referred to the normal lung tissue in both 

lungs, excluding the TLL. Physician 1 obtained regions of interest 
(ROI) layer by layer along the edge of the largest lesion to segment PC, 
TIB, TLL, RPP (as shown in Figure  2). A combined approach of 
manual delineation and automatic segmentation was employed to 
delineate contours. After a 2-week interval, 50 cases were randomly 
selected for re-delineation of ROIs by both Physician 1 and Physician 
2 using the same method. Both physicians remained blinded to the 
drug sensitivity test (DST) results to ensure objective evaluation.

2.3.2 Extraction and selection of radiomic 
features

During the image preprocessing stage, the bin width was set to 25, 
and the image was resampled using BSpline interpolation to a voxel 
size of 1 × 1 × 1 mm. Subsequently, the original image underwent 
transformations through various filters, including Laplacian of 
Gaussian, Recursive Gaussian, Discrete Gaussian, and wavelet 
transform filtering. Radiomic features were extracted from PC, TIB 
signs, TLL, RPP, and combined lesion groups. A total of 2,264 radiomic 
features were derived from the lesion ROIs, which included 104 
original image features and 2,160 filtered features, encompassing first-
order features, shape features, and texture features. The combined 
lesion group includes features extracted from individual lesion models 
(PC, TIB, TLL, and RPP), rather than being based on a single combined 
ROI. Patients were allocated into training and Testing sets in a 7:3 ratio, 
with the PC model and combined model comprising training set 
(n = 109) and Testing set (n = 47). The TIB model, TLL model, and 
RPP model had patient groups of training set (n = 214) and Testing set 
(n = 92), using a random seed of 80. Z-score normalization was applied 
to mitigate dimensional discrepancies among the various radiomic 
features. The intra-class correlation coefficient (ICC) was utilized to 
select radiomic features demonstrating high consistency (ICC > 0.75) 
among observers. Optimal radiomic features were identified using the 
variance threshold method, Select K Best (with K set to 20), and the 
Least Absolute Shrinkage and Selection Operator (LASSO) algorithm.

2.3.3 Model construction
The Random Forest Classifier (RFC) is a method known for its high 

variance-bias trade-off, making it an effective choice for constructing 

FIGURE 1

Flowchart of patient selection. PC, TIB, TLL, and RPP stand for pulmonary cavity, tree-in-bud sign, total lung lesions, and residual pulmonary 
parenchyma, respectively.
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predictive models (19). To assess the performance of various models in 
predicting drug resistance in tuberculosis patients, the RFC method 
was utilized to train the selected radiomic features from PC, TIB, TLL, 
RPP, thus establishing individual models for each feature set. Ultimately, 
a combined model was developed, incorporating all radiomic feature 
combinations derived from the four previous models.

2.4 Statistical analysis

Statistical analyses were conducted using SPSS version 26.0 and R 
software version 3.5.0. Categorical data were expressed as “counts” and 
“proportions (%),” with the χ2 test for R × C contingency tables employed 
to evaluate differences between groups. For normally distributed 
continuous variables, results were presented as “x±s,” and independent 
samples t-tests were conducted to assess group differences. In contrast, 
skewed continuous data were reported as median (IQR) [M(Q1-Q3)] 
and compared using the Mann–Whitney U test. Furthermore, the 
receiver operating characteristic (ROC) curve was utilized to assess the 
performance of the five models across the two independent cohorts. The 

DeLong test was employed to analyze the area under the curve (AUC) 
for the PC model, TIB model, TLL model, RPP model, and combined 
model. For each model, sensitivity, specificity, accuracy, and balanced 
F-score were calculated, with statistical significance set at p < 0.05.

3 Results

3.1 Clinical characteristics of patients

The clinical characteristics of the 306 patients are summarized in 
Table 1. Statistically significant differences were identified between 
DR-TB and DS-TB patients concerning gender (p < 0.001), age 
(p < 0.001), and treatment history (p < 0.001).

3.2 Radiomic feature selection

Following the screening of the extracted 2,264 radiomic features, 
the optimal features were selected for the following groups: PC 

FIGURE 2

ROI Delineation. (A,B) The delineation of regions of interest (ROI) for PC. (C,D) The delineation for TIB. (E,F) The delineation for TLL. (G,H) The 
delineation for RPP. PC, TIB, TLL, and RPP stand for pulmonary cavity, tree-in-bud sign, total lung lesions, and residual pulmonary parenchyma, 
respectively.

TABLE 1 Comparison of general data between two groups of patients with drug-resistant tuberculosis (DR-TB) and drug-sensitive tuberculosis (DS-TB).

DR-TB
(n = 142)

DS-TB
(n = 164)

Statistical test 
value Z/χ2

p-value

Gender [cases, composition ratio (%)] 19.535 <0.001

  Male 123 (86.6) 106 (64.6)

  Female 19 (13.4) 58 (35.4)

Age [years, M (Q1, Q3)] 52.0 (43.8, 64.0) 36.5 (23.0, 57.0) −5.347 <0.001

Treatment History [cases, composition ratio (%)] 51.576 <0.001

New treatment 85 (59.9) 154 (93.9)

Re-treatment 57 (40.1) 10 (6.1)

Gender: Composition ratios represent the percentages of male and female patients within each group.
Age: Data presented as median (interquartile range, IQR). Mann–Whitney U test was used for comparison.
Treatment History: Composition ratios represent the percentages of new treatment and re-treatment patients within each group. Chi-square test was used for comparison.
Statistical Test Value (Z/χ2): For gender and treatment history, χ2 (chi-square) statistic is reported. For age, Z-statistic from Mann–Whitney U test is reported.
p-value: Indicates the statistical significance of the comparison between the two groups. p-values less than 0.05 indicate statistically significant differences.
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group, TIB group, TLL group, RPP group, and combined sign group. 
The retained features were as follows: the PC group retained 10 
features (2 shape features and 8 texture features); the TIB group 
retained 2 features (both texture features); the TLL group retained 
10 features (4 first-order features and 6 texture features); the RPP 
group retained 3 features (2 first-order features and 1 texture feature); 
and the combined sign group retained 9 features (2 shape features, 2 
first-order features, and 5 texture features). The radiomics features of 
the combined sign group selected by LASSO are illustrated in 
Figure 3.

3.3 Model performance and validation

The radiomic models based on PC, TIB, TLL, RPP, and combined 
signs exhibited strong performance in both the training and testing 
sets. The ROC curves for these five models are illustrated in Figure 4. 
The AUC (95% CI), sensitivity, specificity, accuracy, and balanced 
F-scores for each model in the training and Testing groups are 
presented in Table 2.

In the training set, the AUC values for the PC, TIB, TLL, RPP, and 
combined model were 0.850 (95% CI: 0.781–0.920), 0.808 (95% CI: 
0.750–0.865), 0.845 (95% CI: 0.793–0.896), 0.855 (95% CI: 0.805–
0.905), and 0.886 (95% CI: 0.827–0.945), respectively. In the testing 
set, the AUC values for these models were 0.850 (95% CI: 0.742–
0.957), 0.772 (95% CI: 0.675–0.869), 0.801 (95% CI: 0.711–0.891), 
0.817 (95% CI: 0.729–0.905), and 0.865 (95% CI: 0.764–0.966), 
respectively. The combined model demonstrated the best performance 
in both the training and testing sets.

3.4 Model AUC performance

Regarding AUC values, the combined model achieved the highest 
AUC of 0.886, indicating optimal classification performance on the 
training data. In the testing set, the combined model again maintained 
the highest AUC of 0.865, highlighting its superior generalization 
capability on new, unseen data. Although the PC model displayed a 
stable AUC of 0.850 in both the training and testing sets, the combined 
model’s AUC was slightly higher in the testing set, achieving statistical 

FIGURE 3

Dimensionality reduction of radiomics features for the combined sign group using the LASSO algorithm (A) and retained features after screening (B). 
PC, TIB, TLL, and RPP stand for pulmonary cavity, tree-in-bud sign, total lung lesions, and residual pulmonary parenchyma, respectively.

FIGURE 4

ROC curves of the PC, TIB, TLL, RPP, and combined model. (A) Training Set. (B) Testing Set. PC, TIB, TLL, and RPP stand for pulmonary cavity, tree-in-
bud sign, total lung lesions, and residual pulmonary parenchyma, respectively.
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significance (p <  0.05). Delong test results revealed significant 
differences between the combined model and the PC model in the 
training set (p < 0.05), while the testing set difference was not 
statistically significant (p > 0.05); however, the AUC value remained 
slightly elevated. In comparison to the TIB model, TLL model, and 
RPP model, the combined model exhibited no significant differences 
in performance in either the training or testing sets (p > 0.05).

3.5 Model calibration and decision curve 
analysis

Figure 5 display the calibration plots for the training and testing 
sets, demonstrating that the model prediction curves closely align 
with the ideal calibration line. This suggests that our combined model 
achieves a high degree of concordance in estimating the probabilities 
of DS-TB and DR-TB cases, reflecting strong consistency with 
actual outcomes.

Moreover, decision curve analysis (Figure 6) indicates that, across 
a broad range of probability thresholds, the combined model delivers 
optimal clinical net benefits in guiding resistance predictions and 
optimizing treatment strategies. This emphasizes its significant 
advantage in medical decision support. Table 2 summarizes the AUC 
(95% CI), sensitivity, specificity, accuracy, and balanced F-scores for 
the five models in both the training and testing sets.

4 Discussion

In this study, we  defined all imaging lesions associated with 
pulmonary tuberculosis in both lungs as TLL, while normal lung 
tissue excluding tuberculosis lesions was termed RPP. This represents 
the first explicit proposal of these concepts and research focus. 
Previous research in this domain has shown heterogeneity and 
limitations in quantification, particularly regarding the quantitative 
analysis of PC, TIB, TLL, and RPP. Against this backdrop, 
we developed and validated a CT radiomic model incorporating PC, 
TIB, TLL, RPP, and their combinations to differentiate between DS-TB 
and DR-TB.

This study collected essential clinical information for all subjects. 
Statistical analysis revealed significant differences in gender, age, and 
prior treatment history between the DR-TB and DS-TB groups. The 
findings indicated a significantly higher proportion of males among 
DR-TB cases compared to females, and prior treatment history was 
strongly associated with the development of drug resistance, 
particularly in adults with a history of retreatment. This is consistent 
with previous research by Lu et al. (20) on the drug resistance and 
epidemiological characteristics of multidrug-resistant tuberculosis 
patients across 17 provinces in China. In this study, the average age of 
the DR-TB group was older, contrasting with the findings of Khasan 
et al. (21) on DR-TB patients in Uzbekistan from 2013 to 2018. This 
discrepancy may be  due to differences in sample selection, 
geographical specificity, and study duration.

The investigation of the association between pulmonary 
tuberculosis drug resistance and imaging features using radiomics is 
still in its infancy, limited by the complex and variable appearance of 
pulmonary tuberculosis on CT images. Multidrug-resistant 
tuberculosis (MDR-TB) is a special type of DR-TB. Previously, Li et al. T
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(22, 23) reported on the radiomics of MDR-TB patients. In this study, 
we expanded the study population from special multi-drug resistant 
patients to general drug-resistant patients, and compared our results 
with theirs, making our findings more generally applicable.

Cavitary features in tuberculosis lesions are particularly 
significant, as the bacterial load of Mycobacterium tuberculosis 
(MTB) markedly increases within these PC, while the cavity walls 
serve as a biological barrier. Together, these elements establish the 
biological foundation for the emergence of drug resistance in 
pulmonary tuberculosis (24, 25). Previously, Li et al. (22) developed 
a radiomics-based predictive model that achieved area under the 

curve (AUC) values of 0.844 and 0.829 in training and testing sets, 
respectively, when assessing drug resistance in cavitary pulmonary 
tuberculosis. In contrast, the model specifically designed in this 
study for cavitary features achieved AUC values of 0.850 in both the 
training and testing sets. This finding indicates that the AUC values 
for the PC model in this study are slightly superior to those reported 
by Li et  al. (22), and the consistency of AUC values across the 
training and testing sets highlights the model’s robustness and 
enhanced generalization performance.

In patients with active pulmonary tuberculosis, the TIB sign is a 
prevalent imaging feature, and the high activity of the disease is often 

FIGURE 5

Calibration curves of the PC, TIB, TLL, RPP, and combined model. (A) Training Set. (B) Testing Set. PC, TIB, TLL, and RPP stand for pulmonary cavity, 
tree-in-bud sign, total lung lesions, and residual pulmonary parenchyma, respectively.

FIGURE 6

Decision curves of the PC, TIB, TLL, RPP, and combined model. (A) Training Set. (B) Testing Set. PC, TIB, TLL, and RPP stand for pulmonary cavity, tree-
in-bud sign, total lung lesions, and residual pulmonary parenchyma, respectively.

https://doi.org/10.3389/fmed.2025.1508736
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Liu et al. 10.3389/fmed.2025.1508736

Frontiers in Medicine 08 frontiersin.org

correlated with the high drug resistance characteristics of 
Mycobacterium tuberculosis (MTB) (26). Previously, Li et  al. (23) 
developed a radiomics model for predicting drug resistance in active 
pulmonary tuberculosis based on the TIB sign, achieving area under 
the curve (AUC) values of 0.877 and 0.786 in the training and Testing 
sets, respectively. In contrast, the radiomics model for the TIB sign 
developed in this study achieved AUC values of 0.808 in the training 
set and 0.772  in the testing set. While Li et  al.’s model exhibited 
superior performance in the training set, the relatively small decrease 
in AUC values for this study’s model (from 0.808 to 0.772) suggests a 
significant advantage regarding generalization and stability. The 
minimal performance difference observed in the testing set indicates 
that, in practical applications, this study’s model may offer a more 
reliable option due to its robustness.

We conducted a detailed comparison of the newly constructed 
models—namely, the “TLL model” and the “RPP model”—and 
thoroughly analyzed their key performance metrics against previously 
reported “PC model” and “TIB model” (22, 23). These metrics 
included, but were not limited to, AUC values, sensitivity, specificity, 
accuracy, and balanced F-scores. The findings revealed that both the 
TLL model and the RPP model demonstrated specific advantages. 
The TLL model displayed a commendable level of stability and 
practicality in its overall performance. Despite some decline in 
various metrics within the testing set, it sustained a strong 
performance, highlighting its adaptability to new data. In contrast, 
the RPP model exhibited outstanding AUC values in both training 
and testing sets, showcasing remarkable classification power, 
especially with its high specificity and balanced F-scores, indicating 
its potential in reducing false-positive predictions. In summary, both 
the TLL model and the RPP model, through optimized feature 
combinations, not only offer theoretical innovations but also 
demonstrate enhancements in key performance indicators compared 
to earlier models in practical applications. This underscores their 
potential to improve diagnostic efficiency and accuracy.

In conclusion, this study has innovatively integrated four key 
regions of interest (ROIs): “PC,” “TIB,” “TLL,” and “RPP,” resulting 
in the construction of a comprehensive combined model. This 
marks the first proposed model integration strategy in this field. 
Encouragingly, this combined model demonstrated excellent 
predictive performance. Analysis of the parameters reveals that the 
combined model outperformed the other four independent models 
in overall performance. The strength of the combined model lies in 
its ability to incorporate multiple features, effectively enhancing 
diagnostic efficacy. It achieved a high AUC value not only in the 
training set but also maintained the highest predictive performance 
in the testing set, demonstrating superior generalizability to new 
data. The Delong test further confirmed a significant difference 
between the combined model and the PC model in the training set 
(p < 0.05). Although the difference in the testing set did not reach 
statistical significance (p > 0.05), the numerical advantage was still 
evident. Calibration and decision curve analyses indicate that the 
combined model exhibits strong reliability and stability. Based on 
these findings, the combined model is recognized as the best model 
due to its exceptional generalization capability and overall 
diagnostic performance.

To deepen and expand the radiomic analysis of CT imaging 
features in patients with DR-TB, this study thoroughly investigates 

both local and overall CT manifestations. In terms of model 
construction, we initially focused on local imaging markers by 
developing the “TIB model” and the “PC model.” Following this, 
we designed the “TLL model” and the “RPP model,” emphasizing 
global imaging characteristics. Building upon this foundation, 
we innovatively integrated local and global perspectives to create 
a comprehensive combined model. This model enhances 
robustness and accuracy by incorporating diverse imaging 
features, which is crucial for practical applications. Such a 
multidimensional feature fusion model can reveal disease 
characteristics in a more holistic manner, providing precise 
auxiliary information for clinical decision-making.

Notably, this study has several limitations. First, in applying 
the model to DR-TB clinical interventions, we  have not yet 
integrated other clinical factors (such as medical history and 
laboratory test results) to determine a reasonable decision 
threshold. Maximizing net benefit while considering the feasibility 
and safety of clinical interventions is our goal, and this is a key 
issue that needs to be addressed in future research. Second, this 
study employed a retrospective analysis with a limited sample size, 
which may have introduced selection bias. These limitations 
highlight the need for further improvements and validations of 
the model’s clinical utility in future studies.

5 Conclusion

We successfully constructed five radiomic models based on 
CT imaging data, aimed at effectively identifying patients with 
drug-resistant tuberculosis. These models underwent rigorous 
training and validation across five independent cohorts, 
demonstrating exceptional performance. Importantly, the newly 
defined and developed RPP model and the combined model 
showed particularly outstanding performance. This research 
holds significant value for achieving early non-invasive diagnosis 
and differentiation of drug-resistant pulmonary tuberculosis, 
and  it has the potential to become a practical, non-invasive 
diagnostic tool.
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