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Vascular endothelium is integral to the regulation of vascular homeostasis 
and maintenance of normal arterial function in healthy individuals. Endothelial 
dysfunction is a significant contributor to the advancement of atherosclerosis, 
which can precipitate cardiovascular complications. A notable correlation exists 
between diabetes and endothelial dysfunction, wherein chronic hyperglycemia 
and acute fluctuations in glucose levels exacerbate oxidative stress. This results 
in diminished nitric oxide synthesis and heightened production of endothelin-1, 
ultimately leading to endothelial impairment. In clinical settings, it is imperative 
to implement appropriate therapeutic strategies aimed at enhancing endothelial 
function to prevent and manage diabetes-associated vascular complications. 
Various antidiabetic agents, including insulin, GLP-1 receptor agonists, sulfonylureas, 
DPP-4 inhibitors, SGLT2 inhibitors, α-glucosidase inhibitors, thiazolidinediones 
(TZDs), and metformin, are effective in mitigating blood glucose variability and 
improving insulin sensitivity by lowering postprandial glucose levels. Additionally, 
traditional Chinese medicinal compounds, such as turmeric extract, resveratrol, 
matrine alkaloids, tanshinone, puerarin, tanshinol, paeonol, astragaloside, berberine, 
and quercetin, exhibit hypoglycemic properties and enhance vascular function 
through diverse mechanisms. Consequently, larger randomized controlled trials 
involving both pharmacological and herbal interventions are essential to elucidate 
their impact on endothelial dysfunction in patients with diabetes. This article aims 
to explore a comprehensive approach to the treatment of diabetic endothelial 
dysfunction based on an understanding of its pathophysiology.
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Introduction

Diabetes mellitus (DM) is a prevalent endocrine disorder characterized by a complex 
syndrome of metabolic dysregulation, primarily manifested as hyperglycemia owing to 
inadequate insulin secretion or impaired insulin action (1). The global burden of diabetes is 
significant, with a pooled analysis indicating an increasing prevalence among adults worldwide. 
According to the Diabetes Federation, the number of adults diagnosed with diabetes increased 
from 108 million in 1980 to 463 million in 2019 (2). Individuals with diabetes are at elevated 
risk of both microvascular and macrovascular complications. Cardiovascular diseases (CVDs) 
are the predominant contributors to morbidity and mortality in this population (3). 
Microvascular complications including neuropathy, nephropathy, and retinopathy significantly 
impair the quality of life of patients with DM. Conversely, macrovascular complications such 
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as coronary heart disease, cerebrovascular disease, and peripheral 
arterial disease are the leading causes of mortality among diabetic 
individuals. A systematic review indicated that CVDs affect 
approximately 32.2% of patients with type 2 diabetes mellitus (T2DM) 
are affected by CVDs. Among T2DM patients with a mean age of 
63.6 ± 6.9 years, 9.9% succumbed to CVDs, which accounted for 50.3% 
of all diabetes-related deaths (4). Endothelial dysfunction has been 
implicated in the pathophysiological mechanisms underlying diabetes 
and CVDs (5). It is essential to elucidate the pathogenic mechanisms 
linking these factors in order to inform therapeutic strategies. 
Consequently, this review aimed to investigate the comprehensive 
management of diabetic endothelial dysfunction, grounded in the 
pathophysiological interplay between DM and endothelial function.

Retrieval strategy and method

PubMed, Cochrane Library, MEDLINE, CNKI, Wanfang, and 
VIP databases were searched for studies related to endothelial 
dysfunction in DM. The search terms included diabetes mellitus, DM, 
endothelial dysfunction, hypoglycemic agents, antidiabetic agents, 
and traditional Chinese medicine. The first 172 articles were retrieved 
and included, of which 42 were randomized controlled trials (RCTs) 
and 8 were systematic reviews. Other studies include literature 
reviews, guidelines, and other non-RCT types of experimental and 
clinical studies.

What is vascular endothelial function?

To understand endothelial dysfunction, it is essential to first 
delineate the concept of endothelial function. Human blood vessels 
are structured in three distinct layers: the vascular endothelium 
(intima), smooth muscle cells (media), and surrounding elastic and 
connective tissue (adventitia). The vascular endothelium, which 
constitutes the innermost layer of the blood vessels, functions as an 
endocrine organ that secretes a diverse array of vasoactive substances. 
Upon stimulation with acetylcholine (ACH), endothelial cells release 
endothelium-derived contracting factors (EDRF) (6), which are 
ultimately identified as nitric oxide (NO) (7). Subsequent research has 
demonstrated that NO plays a critical role in regulating various 
physiological and pathophysiological processes, including 
neurotransmitter transmission, male erectile function, oxidative 
stress, and inflammatory responses (8). In addition to NO, endothelial 
cells are capable of synthesizing and releasing prostacyclin (PGI2) and 
endothelium-derived hyperpolarizing factors (EDHFs), both of which 
are significant EDRFs that modulate vascular tension (9). 
Endothelium-derived contractile factors encompass superoxide anion, 
endothelin-1 (ET-1), prostaglandin F2α (PGF2α), and thromboxane 
A2 (TXA2) (9). Furthermore, the renin-angiotensin system (RAS) 
serves as a crucial mechanism for regulating vascular tension owing 
to the high expression of angiotensin receptors in both endothelial and 
smooth muscle cells (10). Under normal physiological conditions, 
vascular tension is maintained by a balance between vasodilatory and 
vasoconstrictive factors. Endothelial dysfunction is characterized by 
the inability of endothelial cells to sustain vascular homeostasis, 
resulting from an imbalance between proatherogenic and 
antiatherogenic factors derived from the endothelium. This imbalance 

favors atherogenic factors, thereby contributing to the onset and 
progression of atherosclerosis. NO released from the endothelium 
exerts numerous anti-atherosclerotic effects, including vasodilation, 
inhibition of vascular smooth muscle cell proliferation, and 
suppression of leukocyte and platelet adhesion and aggregation. 
Consequently, endothelial dysfunction is typically associated with an 
increase in NO inactivation or a decrease in NO production by the 
endothelium, leading to the diminished bioavailability of NO.

Morbidity mechanism of endothelial 
dysfunction in diabetes mellitus

DM is associated with endothelial dysfunction, as evidenced by 
various studies (11–13). Clinical investigations have revealed a 
reduction in endothelial function, evaluated through endothelium-
dependent vasodilation, in individuals diagnosed with DM (14, 15). 
Prior research indicates that the primary contributors to endothelial 
dysfunction in DM are oxidative stress and inflammation, with 
significant disruptions occurring in the NO production and activation 
pathways (16). Although the precise mechanisms underlying the 
development of endothelial dysfunction in DM remain incompletely 
understood, existing studies have identified several potential 
mechanisms that elucidate the relationship between DM and 
endothelial dysfunction, as summarized in Table 1 and illustrated in 
Figure 1.

Oxidative stress

The vascular endothelium exhibits heightened sensitivity to 
fluctuations in systemic glucose levels, which distinguishes it from 
other tissues and cells that remain unaffected by such abnormalities. 
Consequently, the vascular endothelium may serve as a primary target 
for the detrimental effects of hyperglycemia (17). Reactive oxygen 
species (ROS) generated from molecular oxygen play a significant role 
in this context. Oxidative stress arises when there is an imbalance 
between the antioxidant defence system and ROS, favoring the latter. 
When the capacity of antioxidant systems to counteract ROS is 
inadequate, the harmful consequences of ROS become evident, 
including the disruption of signaling pathways and normal cellular 
functions through damage to cellular lipids, proteins, or DNA (18). 
Oxidative stress has emerged as a critical factor that contributes to 
vascular endothelial dysfunction, particularly in the context of chronic 
diseases and aging. There exists a reciprocal relationship between 
endothelial function and oxidative stress (19, 20).

ROS encompasses both radical species, such as the superoxide 
anion radical (O2•−), peroxy radicals, alkoxy radicals, and hydroxyl 
radicals, as well as non-radical species, including singlet molecular 
oxygen, hydrogen peroxide, organic hydroperoxides, hypochlorous 
acid, and ozone (20). The superoxide anion radical (O2•−) is generated 
by the removal of an electron from molecular oxygen and has a high 
affinity for NO, thereby diminishing its bioavailability. Furthermore, 
the direct interaction between NO and O2•− (21) results in the 
formation of pernitrite, a potent oxidant that can induce lipid 
peroxidation, multi-step tyrosine nitration, DNA damage, and 
ultimately, cell death (21). Tetrahydrobiopterin (BH4), a crucial cofactor 
for endothelial NO synthase (eNOS), can be oxidized to its inactive 
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form by peroxynitrite, leading to a reduction in BH4 availability. In 
instances of insufficient BH4, uncoupled eNOS generates O2•− instead 
of NO (22), thereby establishing a close association between O2•− and 
the progression of endothelial dysfunction. Once oxidative stress is 
established, endothelial function is perpetually compromised via a self-
reinforcing cycle of increased O2•− production.

Research indicates that elevated levels of free radicals can adversely 
affect the morphology and functionality of tissue membranes, 
contributing to the development of complications associated with DM 
(16). The primary mechanism underlying endothelial dysfunction 
(23–25) involves the uncoupling of ROS generated by xanthine oxidase 
(XO), cyclooxygenase (COX), and eNOS, which elevates ROS levels 
and leads to the inactivation of NO. Insulin plays a regulatory role in 
endothelial function by modulating protein kinase activity, NO 
production, and vasodilation through the Ras-MAPK and PI3K-Akt-
eNOS signaling pathways. However, the onset of insulin resistance 
disrupts these pathways, resulting in vascular endothelial dysfunction 
and the manifestation of DM-related lesions.

Selective insulin resistance

Beyond its function in glucose regulation, insulin resistance 
triggers intracellular signaling pathways that are essential for preserving 
endothelial health, with the phosphatidylinositol-3 kinase (PI-3 K)/Akt 
pathway being the most protective against vascular damage (26, 27). 
Conversely, activation of the mitogen-activated protein kinase 
(MAPK)/extracellular signal-regulated kinase (ERK) pathway enhances 
the expression of ET-1, resulting in detrimental effects on cellular 
proliferation (28). Under normal physiological conditions, the PI-3 K 
pathway is predominant in the regulation of vasomotor control (29). 
However, it is widely recognized that in the context of insulin resistance 
associated with T2DM, there exists selective impairment of the PI-3 K 
pathway, which remains unaffected by signaling through the MAPK 

pathway (30, 31). Furthermore, this selective resistance contributes to 
hyperinsulinemia, which in turn activates MAPK signaling (32).

Inflammation

T2DM is characterized by a persistent systemic inflammatory state, 
with elevated levels of circulating inflammatory markers frequently 
observed in individuals with diabetes and obesity (33, 34). Vascular 
inflammation encompasses various cellular components, including 
inflammatory cells (neutrophils, lymphocytes, monocytes, and 
macrophages), endothelial cells, vascular smooth muscle cells 
(VSMCs), and extracellular matrix (ECM). In blood vessels, acute 
inflammation is marked by vasodilation, increased vascular 
permeability, and blood stasis. Alterations in the cytoskeleton of 
endothelial cells (ECs) lead to disruption of intercellular junctions, 
thereby enhancing vascular permeability. When ECs are subjected to a 
chronic inflammatory response induced by pro-inflammatory 
cytokines, including tumor necrosis factor (TNF), interleukin-1β 
(IL-1β), IL-6, and interferon-γ (IFN-γ), they can activate inflammatory 
cells, such as monocytes and T lymphocytes, prompting their 
chemotaxis, adhesion, and infiltration into the arterial intima, where 
they differentiate into macrophages. These macrophages subsequently 
engulf lipoproteins, resulting in the formation of foam cells that 
contribute to plaque development. The upregulation of adhesion 
molecules, including selectin, vascular cell adhesion molecule-1 
(VCAM-1), and intercellular adhesion molecule-1 (ICAM-1), 
facilitates the adhesion of inflammatory cells to monocytes and 
promotes the recruitment of neutrophils, lymphocytes, and 
macrophages along with the release of additional cytokines. This 
cascade of events leads to ECM deposition, granulation tissue 
formation, connective tissue proliferation, increased cell adhesion, 
heightened permeability, and apoptosis, ultimately resulting in 
vasculopathy (35).

TABLE 1 Morbidity mechanisms of endothelial dysfunction in DM.

Morbidity mechanism Specific description References

Oxidative stress The relationship between endothelial function and oxidative stress is significant, with insulin exerting its effects on 

the endothelium via the Ras-MAPK and PI3K-Akt-eNOS signaling pathways. In instances of insulin resistance, these 

pathways become impaired, leading to vascular endothelial dysfunction and the development of diabetic 

complications.

(16–25)

Selective insulin resistance In the context of T2DM-associated insulin resistance, there exists a specific impairment in the PI-3 K signaling 

pathway. This defect contributes to the development of hyperinsulinemia, which in turn enhances the activation of 

MAPK signaling.

(26–32)

Inflammation The correlation between insulin resistance and inflammation suggests that inflammation negatively impacts the 

PI-3 K/Akt signaling pathway responsible for NO production, leading to a decrease in NO bioavailability. This 

diminished availability of NO may undermine its substantial anti-inflammatory properties, consequently intensifying 

the development of inflammatory atherosclerotic lesions.

(33–43)

Chronic hyperglycemia Chronic hyperglycemia, a defining characteristic of DM, is believed to play a significant role in the development of 

endothelial dysfunction through four primary mechanisms: the activation of PKC, the stimulation of the hexosamine 

and polyol pathways, and the formation of AGEs.

(44–47)

Acute glucose Cellular metabolic adaptation to the toxic effects induced by elevated glucose levels may be enhanced by sustained 

high glucose concentrations, which create a continuous feedback mechanism. Conversely, intermittent exposure to 

high glucose may hinder the ability of cells to adapt to these toxic effects. In the absence of this continuous feedback, 

hyperglycemia can result in toxic consequences, characterized by increased oxidative stress and subsequent 

endothelial dysfunction.

(48–55)
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The levels of Advanced Glycation End Products (AGEs) are 
elevated in individuals with T2DM, contributing to the development 
of insulin resistance. The presence of AGEs, along with insulin 
resistance, can activate the nuclear factor kappa-light-chain-enhancer 
of activated B cells (NF-κB), a nuclear transcription factor. NF-κB, 
along with phosphoinositide 3-kinase (PI-3 K), p38 MAPK, and other 
signaling molecules, mediates intracellular signaling pathways that 
promote the release of various inflammatory cytokines, leading to 
endothelial cell dysfunction (36, 37).

Research utilizing obese animal models has demonstrated that 
adipose tissue serves as a source of inflammatory cytokines, which 
correlates with elevated plasma levels of TNF-α (38, 39). TNF-α is 
known to activate NF-κB (40). Additionally, NF-κB can be activated 
by free fatty acids and the receptor for advanced glycation end 
products (RAGE), both of which are prevalent in the diabetic milieu. 
Notably, obese mice with mutations that render the TNF-α gene 
inactive exhibit a marked increase in insulin sensitivity (41). This 
suggests that prolonged activation of NF-κB within cells positions it 
as a primary responder to various inflammatory stimuli.

The relationship between insulin resistance and inflammation 
indicates that inflammation negatively impacts the PI-3 K/Akt 
signaling pathway, which is responsible for the production of NO, 
ultimately leading to a decrease in NO bioavailability (42). 
Furthermore, the exposure of cultured ECs to TNF-α has been shown 
to impair the expression of endothelial nitric oxide synthase (eNOS) 
(43). Consequently, the diminished availability of NO may undermine 
its anti-inflammatory properties, thereby exacerbating the 
development of inflammatory atherosclerotic lesions.

Chronic hyperglycemia

Chronic hyperglycemia, a defining characteristic of DM, is 
believed to play a significant role in the development of endothelial 
dysfunction through four primary mechanisms: activation of protein 

kinase C (PKC), stimulation of the hexosamine and polyol pathways, 
and formation of AGEs (44, 45).

Intracellular oxygen is predominantly generated by 
mitochondria (46). Pyruvate, which is synthesized in the cytoplasm 
through glycolysis, is subsequently utilized in mitochondria to 
produce adenosine triphosphate (ATP) via oxidative 
phosphorylation. Following its synthesis, pyruvate is transported 
into the mitochondria where it undergoes oxidation to yield water 
(H2O), carbon dioxide (CO2), nicotinamide adenine dinucleotide 
(NADH), and flavin adenine dinucleotide (FADH2) through the 
tricarboxylic acid (TCA) cycle (44). The electrons derived from 
mitochondrial NADH and FADH2 are utilized by the electron 
transport chain  located on the inner mitochondrial membrane, 
which serves as the energy source for ATP synthesis. During this 
process, electrons are transferred through the mitochondrial 
electron transport chain, which concurrently facilitates proton 
pumping from the mitochondrial matrix into the intermembrane 
space. This proton pumping generates a proton gradient across the 
inner mitochondrial membrane, thereby promoting enhanced 
transport of NADH and FADH2 into the electron transport chain. 
Given that NADH and FADH2 function as electron donors, electron 
transfer and proton pumping through the electron transport chain 
are augmented, resulting in an increased proton gradient across the 
mitochondrial inner membrane. Consequently, the electron gradient 
and proton pumping mechanisms may be inhibited, leading to an 
increase in electron leakage from the electron transport chain, and 
subsequently, an increase in oxygen production within the 
mitochondria (44).

Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is a 
critical enzyme involved in the glycolytic pathway and plays a vital 
role in the regulation of glycolysis. Research indicates that GAPDH 
activity is partially suppressed due to the excessive generation of 
mitochondrial superoxide (O2•−) resulting from hyperglycemia. 
Consequently, the inhibition of GAPDH activity by mitochondrial 
superoxide contributes to the accumulation of glycolytic intermediates 

FIGURE 1

Morbidity mechanisms of endothelial dysfunction in DM.
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that precede GAPDH, thereby enhancing the flow of these upstream 
metabolites into the glucose overutilization pathway (44).

Elevated glucose flux through the polyol pathway leads to an 
increased consumption of NADPH, which is essential for the 
regeneration of reduced glutathione. Consequently, intracellular levels 
of reduced glutathione diminish as a result of increased glucose flux, 
further exacerbating NADPH consumption. Given that reduced 
glutathione serves as the primary intracellular antioxidant, this 
reduction contributes to an increase in oxidative stress within the cell, 
ultimately resulting in endothelial dysfunction.

Elevated glucose flux in the hexosamine biosynthetic pathway 
may contribute to endothelial dysfunction. In this pathway, fructose-
6-phosphate is enzymatically converted to glucosamine-6-phosphate, 
which subsequently leads to an increase in UDP-N-acetylglucosamine. 
This metabolite is essential for various biochemical processes, 
including proteoglycan synthesis and O-linked glycoprotein 
formation. Increased levels of UDP-N-acetylglucosamine facilitate the 
modification of transcription factors, nuclear proteins, and 
cytoplasmic proteins through O-linked N-acetylglucosamine, 
resulting in significant changes in gene expression and protein 
functionality. An example is the O-acetylglucosaminylation of eNOS 
at the Akt phosphorylation site, which inhibits eNOS activity (47), 
thereby leading to a decrease in NO production and subsequent 
endothelial dysfunction.

Hyperglycemia triggers PKC activation through the elevation of 
diacylglycerol levels, which subsequently initiates a cascade of 
pathogenic effects, including a reduction in eNOS expression. This 
condition is associated with the increased expression of ET-1, 
increased levels of plasminogen activator inhibitor, augmented 
expression of transforming growth factor-beta, and activation of 
NF-κB and NADPH oxidase. Collectively, these alterations contribute 
to the development of endothelial dysfunction.

The elevated intracellular synthesis of precursors to AGEs leads to 
alterations in plasma and ECM proteins, in addition to functional 
modifications of intracellular proteins. The engagement of AGE 
receptors on ECs triggers the production of ROS and activation of 
nuclear factor kappa B (NF-κB), which contributes to endothelial 
dysfunction. Consequently, endothelial dysfunction is attributed to 
hyperglycemia-induced mitochondrial superoxide (O2•−) production 
as well as the inhibition of GAPDH activity by mitochondrial O2, 
resulting in a diversion of glycolytic flux from the conventional 
glycolytic pathway to an alternative metabolic route.

Acute glucose

Plasma glucose levels in individuals without diabetes are typically 
regulated within a narrow range, whereas patients with DM 
experience significant and rapid increases in blood glucose levels 
during the postprandial period. Both experimental and clinical 
investigations have demonstrated that acute postprandial 
hyperglycemia in patients with DM can adversely affect endothelial 
function by elevating oxidative stress levels (48). Notably, intermittent 
hyperglycemia may pose a greater risk to ECs than sustained 
hyperglycemia does. In vitro research indicates that intermittent 
hyperglycemia leads to a higher rate of endothelial cell apoptosis 
through the activation of PKC and NADPH oxidase, in contrast to 
persistent hyperglycemia (49, 50). Furthermore, clinical studies have 

established a link between glucose fluctuations and impaired 
endothelial function through oxidative stress mechanisms. Monnier 
et  al. reported a strong correlation between markers of glucose 
fluctuation and oxidative stress, whereas no significant relationship 
was found between oxidative stress markers and other glycemic 
indicators such as fasting plasma glucose and hemoglobin A1c 
(HbA1c) (51). Additionally, Torimoto et al. (52) found an inverse 
correlation between glucose fluctuations and endothelial function 
assessments. These results implied that fluctuations in glucose levels 
may detrimentally affect endothelial function by increasing oxidative 
stress. However, the precise molecular mechanisms underlying the 
relationship between glucose variability and increased oxidative stress 
remain poorly understood. It has been hypothesized that the 
metabolic adaptation of cells to the toxic effects of elevated glucose 
may be enhanced by sustained high glucose concentrations owing to 
persistent feedback mechanisms. Conversely, intermittent high 
glucose levels may not promote cellular adaptation to toxic effects 
associated with elevated glucose levels. In the absence of continuous 
feedback, hyperglycemia can induce toxic effects resulting in 
increased oxidative stress and subsequent endothelial dysfunction. 
While HbA1c is commonly utilized as a therapeutic marker for 
glycemic control, it primarily reflects average glucose exposure over 
time rather than fluctuations in glucose levels. Large randomized 
controlled trials employing HbA1c as a measure of glycemic control 
have not demonstrated the efficacy of intensive glycemic management 
in reducing cardiovascular events (53–55). Consequently, it is 
imperative to consider not only HbA1c and fasting plasma glucose 
levels but also postprandial glucose levels in efforts to safeguard the 
endothelium from oxidative damage associated with 
postprandial hyperglycemia.

The role of epigenetics in endothelial 
dysfunction in diabetic patients

The mechanisms under discussion indicate that environmental 
factors, such as hyperglycemia induced by dietary choices, may lead 
to endothelial dysfunction. It is a common assumption that rectifying 
these imbalances would result in swift restoration of endothelial 
function; however, this assumption is misleading. Subsequent research 
conducted following the Diabetes Control and Complications Trial 
(DCCT) and the United  Kingdom Prospective Diabetes Study 
(UKPDS) has introduced the concept of “metabolic memory.” This 
phenomenon suggests that the effects of prolonged or temporary 
fluctuations in blood glucose levels can persist long after normalization 
efforts have been implemented (56). Such findings not only illustrate 
that intensive glycemic control does not completely reverse the 
vascular complications associated with preexisting hyperglycemia, but 
also highlight that the advantages of rigorous therapeutic interventions 
can persist for many years, even when glycemic control deteriorates 
to typical suboptimal levels (57, 58). Collectively, these findings imply 
that DM, particularly hyperglycemia, may induce genetic 
modifications in the cellular phenotypes. Epigenetic research has 
elucidated the mechanisms by which gene expression can 
be  influenced, thereby contributing to increased susceptibility to 
T2DM and CVDs (59). The epigenetic theory is underpinned by three 
interrelated pathways: histone modification, DNA methylation, and 
non-coding RNA mechanisms.
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Post-translational modifications of histones within chromatin 
can influence the conformation of DNA, thereby facilitating or 
obstructing access to particular sites, which, in turn, can enhance or 
inhibit gene transcription. The regulation of histone modifications is 
mediated by various enzymes responsible for the addition or removal 
of these modifications (59). Numerous studies have focused on ECs, 
revealing that alterations in the expression and activity of these 
enzymes are linked to complications arising from DM. For instance, 
specific patterns of histone methylation have been correlated with a 
chronic inflammatory phenotype in ECs subjected to elevated glucose 
levels (60).

Altered patterns of DNA methylation have been associated with 
atherosclerosis (61) and ECs; however, there is a paucity of research 
on the role of DNA methylation in DM and its vascular complications 
(62). Covalent methylation of cytosine residues represents a stable 
modification of DNA that remains intact throughout the 
experimental procedures, thereby offering a robust foundation for 
future investigations (63). Similar to histone modifications, DNA 
methylation can result in persistent alterations in gene expression, 
which makes it imperative to elucidate the intricate mechanisms 
involved. Studies have indicated that high-fat diets in obese rats can 
lead to the hypermethylation of specific genes (64). Consequently, it 
is plausible to hypothesize that a similar phenomenon may occur in 
patients with DM, particularly with respect to endothelial function.

MicroRNAs (miRNAs) are short RNA molecules that regulate the 
expression of various target proteins by promoting mRNA 
degradation or inhibiting translation. In the context of ECs, in vitro 
investigations have identified a complex network of miRNAs that 
significantly influence processes such as proliferation and migration 
(notably miR-320 (65), miR-503 (66), and miR-221/222 (67, 68)), 
inflammation (including miR-10a (169) and miR-126 (170)), and 
angiogenesis (with a specific emphasis on miR-221/222 (69), miR-126 
(70), miR-210 (71), and miR-21 (72)).

The miR-200 family, comprising five members, miR-200a, 
miR-200b, miR-200c, miR-141, and miR-429 (73), plays a significant 
role in oxidative stress-induced endothelial dysfunction and 
cardiovascular complications associated with DM and obesity (74–
76). The miRNA family has garnered considerable interest in the 
fields of biology and medicine because of its involvement in various 
critical biological processes. Research indicates that the miR-200 
family primarily regulates cellular behavior by inhibiting the 
translation of target genes or facilitating mRNA degradation. 
Specifically, the miR-200 family is implicated in the regulation of 
several fundamental cellular processes, including (1) cell proliferation, 
which governs the cell cycle and influences cellular growth (77); (2) 
cell differentiation, which directs the maturation of progenitor cells 
into specialized cell types (78); (3) apoptosis, which is essential for 
maintaining normal cellular turnover and for the removal of damaged 
or superfluous cells (79); and (4) epithelial-mesenchymal transition 
(EMT), a process that involves alterations in cell morphology and 
function that are critical for both embryonic development and cancer 
metastasis (79). The multifunctional characteristics of the miR-200 
family make them a promising therapeutic target, particularly in the 
context of cancer and other diseases characterized by aberrant cell 
proliferation or transformation.

The miR-200 family, particularly miR-200c, has been implicated 
in oxidative stress associated with endothelial dysfunction in 
DM. MiR-200c exerts its effects by directly targeting SIRT1, eNOS, 

and FOXO1, leading to a reduction in NO levels and an increase in 
the acetylation of SIRT1 substrates, including FOXO1 and p53. 
Acetylation of FOXO1 subsequently inhibits its transcriptional 
activity on genes that are critical for cellular defense against 
oxidative stress, such as SIRT1 and ROS scavengers, including 
catalase and manganese superoxide dismutase. This inhibition 
results in elevated ROS production and promotes phosphorylation 
of the p66Shc protein at Ser-36, which further enhances ROS levels 
and suppresses FOXO1 transcription (80). This feedback loop 
contributes to the exacerbation of oxidative stress and is particularly 
pronounced under conditions of heightened oxidative stress, such 
as aging and ischemia, ultimately leading to endothelial 
dysfunction (81).

Endothelium-dependent NO-mediated vasodilation in 
individuals with diabetes is influenced by a reduction in both NO 
synthesis and stability. The presence of excessive ROS diminishes the 
half-life of NO by converting it to peroxynitrite, thereby resulting in 
decreased NO levels. Hyperglycemia has been shown to enhances 
ROS production via NADPH oxidase. Additionally, microRNA-200c 
(miR-200c) has been implicated in the increased generation of ROS 
(80), which indirectly compromises vasodilatory function in patients 
with diabetes, ultimately leading to endothelial dysfunction. Diabetes 
adversely affects both the quantity and quality of endothelial 
progenitor cells (EPCs), resulting in a delayed response of these cells 
to vascular injury. Furthermore, hyperglycemia can induce 
dysfunction in circulating angioblasts (CAC) and endothelial colony-
forming cells (ECFC), thereby diminishing their migratory, secretory, 
and angiogenic capabilities. The accumulation of advanced glycation 
end products (AGEs) may also promote apoptosis and impair the 
migratory, adhesive, and secretory functions of CAC and ECFC cells. 
miR-200c may exacerbate damage to and repair of the vascular 
endothelium in diabetic patients by influencing the functionality of 
these related cell types (80). In summary, miR-200c plays a critical 
role in the onset and progression of endothelial dysfunction in DM 
by disrupting regulatory pathways, affecting vasodilation, and 
impairing cellular repair.

Research has indicated that the effects of miRs can vary 
significantly under different physiological conditions. For instance, 
certain miRs are known to have protective and angiogenic effects (70, 
71), whereas others exhibit detrimental anti-angiogenic properties 
(69, 72). Furthermore, it has been suggested that there is a distinct 
pattern of miRNA dysregulation in DM (82). Specifically, 
hyperglycemic environments may lead to excessive or insufficient 
expression of harmful or beneficial miRs, respectively, thereby 
contributing to vascular complications. An example is the observed 
upregulation of miR-320  in cardiomyocytes subjected to 
hyperglycemia, which correlates with diminished cell proliferation 
and migration (83). In healthy individuals, the levels of miRs in the 
plasma remain stable and consistent, positioning them as potential 
biomarkers for diseases such as T2DM (84). miRs may serve not only 
in monitoring disease progression but also in assessing the risk of 
future disease onset. Consequently, analyses of plasma from T2DM 
patients indicate that altered miR levels may play a role in the 
pathophysiological state of the disease (85). Despite recent progress 
in the understanding of epigenetic mechanisms related to DM and its 
complications, numerous questions remain. Additionally, the 
intricate nature of these interactions presents significant challenges 
for fully elucidating these mechanisms. (See Figure 2).
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Treatment of DM from the perspective of 
endothelial dysfunction

The selection of appropriate interventions to effectively enhance 
endothelial function is of considerable clinical importance in the 
management of cardiovascular events in patients with DM. However, 
the efficacy of commonly prescribed antidiabetic medications in 
improving endothelial function remains unclear. Flow-mediated 
dilation (FMD) is a non-invasive, endothelium-dependent method for 
evaluating endothelial function, typically employing ultrasound to 
measure alterations in the diameter of the brachial artery during 
ischemic conditions. An elevated FMD value is indicative of superior 
vascular elasticity (86). The expert consensus statement from the 
European Society of Cardiology advocates the utilization of FMD in 
the investigation of the pathophysiology of CVDs and, when feasible, 
in the identification of individuals at heightened risk for subsequent 
cardiovascular events (87). Numerous systematic reviews and meta-
analyses have examined the impact of specific classes of antidiabetic 
medication on vascular function (88–90) (See Table 2).

Intensive glycemic control using insulin has been shown to 
mitigate both microvascular and macrovascular complications in 
individuals diagnosed with type 1 diabetes mellitus (T1DM) (91). In 
T1DM patients who maintain a healthy energy balance and exhibit no 
insulin resistance, insulin therapy may enhance vascular endothelial 
function, as selective insulin resistance is not a relevant factor. 
Conversely, the impact of insulin therapy on endothelial function in 
patients with T2DM appears to be  contingent on the degree of 
metabolic control attained (92). Specifically, for obese or overweight 
T2DM patients experiencing insulin resistance due to overnutrition, 
the efficacy of insulin therapy on endothelial function is likely 
influenced by the level of metabolic control achieved by these 
individuals (92).

The Liraglutide Effect and Action in Diabetes: Evaluation of 
Cardiovascular Outcome Results (LEADER) (93) and the Trial to 
Evaluate Cardiovascular and Other Long-term Outcomes with 
Semaglutide in Subjects with Type 2 Diabetes (SUSTAIN-6) (94) 
have demonstrated a reduction in the risk of MACE, thereby 
supporting the cardiovascular benefits associated with glucagon-like 

peptide 1 receptor (GLP-1R) agonist therapy. Notably, GLP-1R 
agonists have been shown to significantly decrease arterial stiffness, 
as measured by pulse wave velocity (89). In a study conducted by 
Frías et  al. (95), tirzepatide, which functions as a dual glucose-
dependent insulinotropic polypeptide and GLP-1R agonist, exhibited 
a favorable impact on glucose homeostasis and was associated with 
a relatively rapid and pronounced antihypertensive effect. A 
subgroup analysis focusing on patients with hypertension in the trial 
may yield valuable insights. It is posited that the hypotensive effect 
of tizepatide is not contingent upon insulin regulation, and given 
that insulin has been shown to stimulate NO production and ET-1 
secretion (96), its overall hemodynamic influence on blood pressure 
is minimal (97). Furthermore, insulin therapy has the potential to 
induce microcirculatory disturbances (98). A Bayesian network 
meta-analysis (99) identified GLP-1R agonists as the most effective 
antidiabetic agents to enhance FMD. Specifically, liraglutide 
significantly improved FMD in a subgroup of patients without CVDs 
compared with metformin and sulfonylureas. In vitro and animal 
studies have suggested that the effects of GLP-1R agonists on 
vascular endothelium can be categorized into direct and indirect 
mechanisms. Directly, GLP-1R agonists activate the AMPK-eNOS 
pathway in ECs, promoting NO production and facilitating 
endothelial vasodilation (100, 101). Indirectly, these agonists may 
decelerate atherosclerosis progression by providing endothelial 
protection through anti-inflammatory actions and enhancement of 
lipid metabolism (102–104). Additionally, GLP-1R agonists have 
been implicated in the inhibition of platelet aggregation and 
thrombosis, although it remains uncertain whether this mechanism 
is mediated by ECs (105). Notably, the impact of GLP-1R agonists on 
FMD appears to be more pronounced in a subgroup of patients with 
T2DM who do not have CVD (99). Consequently, some studies have 
hypothesized that individuals without CVD may exhibit heightened 
sensitivity to the effects of GLP-1R agonists, potentially due to more 
favorable changes in vascular function than those with CVD, or at 
least due to less severe impairment of endothelial function in 
this population.

Sulfonylureas function as insulin secretagogues; however, some 
studies indicate that the association between sulfonylureas and 

FIGURE 2

Epigenetic mechanism of diabetes induction.
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vascular endothelial function is not particularly strong (89). As a 
conventional antidiabetic medication, the cardiovascular implications 
of sulfonylureas in individuals with T2DM remain debatable (106). A 
meta-analysis encompassing a network of 18 studies involving 
sulfonylureas revealed that neither gliclazide nor glibenclamide was 
associated with an elevated risk of cardiovascular mortality, although 
glibenclamide was associated with an increased risk of cardiovascular 
death (107). This phenomenon may be attributed to their inhibitory 
effects on ATP-sensitive potassium channels in the cardiovascular 
smooth muscle cells. Such an effect can hinder myocardial ischemic 
preconditioning, leading to reduced coronary blood flow and 
increased peripheral vascular resistance (108).

Dipeptidyl peptidase 4 (DPP-4) and sodium-glucose 
cotransporter 2 (SGLT2) inhibitors represent two emerging classes of 
antidiabetic medications. The Saxagliptin Assessment of Vascular 
Outcomes Recorded in Patients with Diabetes Mellitus-Thrombolysis 
in Myocardial Infarction (SAVOR-TIMI) trial (99) was among the 
first completed studies evaluating DPP-4 inhibitors. This trial 
indicated that saxagliptin, a DPP-4 inhibitor, was associated with an 
increased hospitalization rate in patients with heart failure, thereby 
raising concerns regarding the cardiovascular safety of this 
pharmacological class (99). Subsequent randomized controlled trials 
(RCTs) focusing on MACE as the primary endpoint, such as the 
Sitagliptin Cardiovascular Outcomes Assessment Trial (TECOS), 
demonstrated no significant difference in the incidence of MACE 
between DPP-4 inhibitor treatment and placebo (109). Reaven et al. 
(110) noted that both SAVOR-TIMI and TECOS were primarily 
designed as non-inferiority trials, suggesting that their 
methodological frameworks lack sufficient power to adequately 
evaluate the cardiovascular benefits of DPP-4 inhibitors. Furthermore, 
two studies (104, 111) examining FMD from baseline to medium- 
and long-term follow-ups revealed that sitagliptin, a member of the 
DPP-4 inhibitor class, did not exhibit a discernible impact on 
endothelial function during the final observation period. The findings 
from the TECOS trial also indicated that DPP-4 inhibitors did not 
significantly decrease the incidence of MACE (109), implying that the 
protective effects of DPP-4 inhibitors on endothelial function 
remain limited.

SGLT2 inhibitors are pharmacological agents that lower blood 
glucose levels by obstructing renal reabsorption of glucose, thereby 
promoting its excretion in urine (112). The hypoglycemic action of 
these inhibitors is independent of the insulin levels. Studies have 
demonstrated that SGLT2 inhibitors effectively diminish postprandial 
blood glucose levels and overall glycemic fluctuations in individuals 
with DM (113, 114). Furthermore, these agents reduce insulin 
resistance and enhance peripheral insulin sensitivity (115–117). In 
addition to their glycemic effects, SGLT2 inhibitors also exert 
additional metabolic benefits, including reduction in plasma lipid 
concentrations, blood pressure, and body weight. Consequently, 
SGLT2 inhibitors may improve endothelial function by mitigating 
oxidative stress by reducing blood glucose levels in an insulin-
independent manner, minimizing acute glycemic variations, 
enhancing insulin sensitivity, and improving various metabolic 
parameters. Several meta-analyses derived from small RCTs have 
indicated that SGLT2 inhibitors positively influence endothelial 
function, as assessed by FMD (89). However, it is important to note 
that SGLT2 inhibitors may elevate the risk of amputation in patients 
with T2DM and are significantly linked to peripheral vascular 
hypoperfusion (118). Additionally, clinical investigations have 
confirmed that SGLT2 inhibitors enhance endothelial function in 
individuals with DM (119–122).

A meta-analysis encompassing five RCTs investigating 
α-glucosidase inhibitor therapy indicated that these inhibitors 
effectively delayed the progression of carotid intima-media thickness 
(CIMT) in individuals diagnosed with T2DM (123). This finding 
implies that α-glucosidase inhibitors may exert beneficial effects on 
the vascular endothelial function. Postprandial elevation in glycemic 
levels is known to induce oxidative stress, which adversely affects 
endothelial cell functionality (124). Consequently, α-glucosidase 
inhibitors significantly mitigate postprandial hyperglycemia and 
reduce oxidative stress-related damage, thereby safeguarding the 
vascular endothelium. The Cardiovascular Evaluation Trial (ACE) 
involving acarbose, a member of the α-glucosidase inhibitor class, 
represents a completed RCT (125) that focused on this therapeutic 
category. However, the trial did not demonstrate a reduction in the 
incidence of heart failure or cardiovascular mortality in patients with 

TABLE 2 Effects of hypoglycemic drugs on endothelial function.

Drug category Primary effect Mechanism of action Effectiveness References

GLP-1R agonists Anti-inflammatory, blood glucose reduction Activates AMPK-eNOS pathway, promotes NO 

production, reduces inflammatory factors

High (93–105)

Metformin Enhances insulin sensitivity, reduces 

oxidative stress

Activates AMPK, inhibits NF-κB, reduces free radical 

production

High (129–137)

Sulfonylureas Increases insulin secretion Stimulates insulin secretion, indirectly improves 

endothelial function

Moderate (106–108)

α-Glucosidase 

inhibitors

Reduces glucose fluctuation, lowers 

oxidative stress

Inhibits carbohydrate breakdown, alleviates postprandial 

hyperglycemia-induced endothelial damage

Moderate (123–125)

SGLT2 inhibitors Improves glucose fluctuation and metabolic 

parameters

Protects endothelial function by reducing oxidative 

stress and inflammation

High (112–122)

TZDs 

(Thiazolidinediones)

Reduces insulin resistance Activates PPARγ pathway, decreases inflammation and 

oxidative stress

Moderate (126–128)

DPP-4 inhibitors Improves postprandial glucose fluctuation, 

partial anti-inflammatory effect

Inhibits DPP-4 enzyme activity, extends endogenous 

GLP-1 action duration

Low (99–109)
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T2DM or impaired glucose tolerance. It is important to note that this 
study had certain limitations, as it was conducted exclusively in China 
and the participant cohort consisted of individuals with impaired 
glucose tolerance and pre-existing coronary heart disease.

The impact of thiazolidinediones (TZDs), traditional 
insulinotropic agents, on cardiovascular events remains a subject of 
considerable debate, with previous RCTs yielding inconsistent 
findings. In a study utilizing a hypertensive rat model (126), 
pioglitazone (noting that rosiglitazone and troglitazone were 
withdrawn from first-line treatment and are therefore not addressed) 
was demonstrated to activate peroxisome proliferator-activated 
receptors (PPARs) through the modulation of ET-1 expression, which 
subsequently mitigated the effects of oxidative stress on vascular 
structures. Furthermore, pioglitazone has been shown to enhance 
vascular relaxation (126) by increasing the expression of ET-1 receptor 
B (ETB), facilitating the release of factors that promote endothelial cell 
relaxation. The PROspective pioglitazone Clinical Trial In 
macroVascular Events (PROactive trial) represents the first large-scale 
RCT evaluating the effects of pioglitazone monotherapy on 
cardiovascular outcomes. Findings from this trial indicated that 
pioglitazone significantly reduced all-cause mortality as well as the 
risk of nonfatal myocardial infarction and stroke in patients with 
T2DM and macrovascular disease (127). Additionally, a meta-analysis 
suggested that pioglitazone may have a beneficial effect on the risk of 
recurrent cardiovascular events in individuals with established CVDs 
(128). Nonetheless, it remains uncertain whether improvements in 
endothelial function attributed to pioglitazone translate into favorable 
outcomes regarding future cardiovascular events.

Metformin, recognized as an insulin sensitizer, has demonstrated 
efficacy in enhancing endothelial function, with a notable correlation 
between endothelial function and insulin resistance following 
treatment in individuals diagnosed with T2DM (129). Furthermore, 
metformin has been shown to enhances endothelial function in 
patients who do not have diabetes but exhibit insulin resistance (130). 
In a long-term RCT, the incorporation of metformin into treatment 
regimens significantly decreased the levels of various biomarkers 
indicative of endothelial function, which are associated with the 
morbidity risk of CVDs in T2DM patients, in comparison to a placebo 
group (131). In vitro studies also indicated that the beneficial effects 
of metformin may arise from multiple mechanisms, including the 
activation of adenosine 5′-monophosphate (AMP)-activated protein 
kinase (AMPK), endothelium-dependent vascular responses, and 
protection of ECs against oxidative stress (132). Preclinical 
investigations have revealed that metformin enhances endothelial 
function through phosphorylation of eNOS via AMPK activation 
(133, 134), activation of sirtuin-1 (135, 136), and promotion of 
antioxidant activity (132). Collectively, these findings suggest that 
metformin may improve endothelial function through a range of 
mechanisms, some of which may not be directly related to insulin 
resistance (133, 137).

Effect of traditional Chinese medicine on 
diabetic endothelial dysfunction

As a significant component of complementary and alternative 
medicine, Chinese medicine plays a crucial role in addressing 
endothelial dysfunction associated with DM. Traditional Chinese 

medicine (TCM) is primarily employed for the management of 
endothelial dysfunction in DM, and various research findings have 
emerged in this area. Recent years have witnessed substantial 
advancements in the investigation of the individual components of 
TCM in the treatment of endothelial dysfunction related to DM (See 
Table 3).

Research has demonstrated that turmeric extract can modulate 
plasma levels of endothelin, thromboxane, and prostaglandins, while 
mitigating vasospasm and enhancing both vasodilation and 
contraction in rats with T2DM over a treatment period of 16 weeks. 
The extract exerts its effects by inhibiting the activities of COX-2, 
NF-κB, and PKC as well as by altering the ratio of PGI2 to TXA2 in 
streptozotocin (STZ)-induced diabetic rats, thereby alleviating 
diabetes-induced vascular dysfunction. Additionally, turmeric extract 
inhibits the formation of glycated human serum albumin (CSA) 
through promoter activation. This treatment also leads to the 
induction and upregulation of IL-8 in VSMCs, which may obstruct 
the AMPL/p38MAPK signaling pathway and thereby protect 
endothelial cell function in T2DM rats (138–140).

Resveratrol inhibits the expression and upregulation of IL-8 in 
VSMCs induced by CSA (139). Furthermore, it activated nicotinamide 
adenine dinucleotide (NAD)-dependent sirtuin 1 in rats with T2DM 
exhibiting macroangiopathy over a 24-week period. This activation 
leads to deacetylation of sirtuin 1 target molecules, including 
NF-κB. Additionally, resveratrol enhances the expression of 
antioxidant enzymes through the activation of nuclear factor 
E2-related factor 2 (Nrf2) and reduces the activity of NADPH oxidase 
via established mechanisms, thereby inhibiting ROS production 
(141, 142).

Matrine alkaloids, which are bioactive compounds derived from 
Sophora flavescens, have been used to treat DM. Research indicates 
that these alkaloids can promote the phosphorylation of MAPK 
kinases, specifically MKK3 and MKK6, facilitating the nuclear 
translocation of Nrf2, enhancing the binding activity of antioxidant 
response elements, and increasing the expression of heme oxygenase 
and NADPH quinone oxidoreductase. Furthermore, matrine alkaloids 
have been shown to inhibit ROS production in aortic ECs and reduce 
endothelial cell apoptosis, both in  vivo and in  vitro (143). 
Consequently, it can be hypothesized that the MKKs/p38 MAPK/Nrf2 
signaling pathway plays a significant role in the mechanism by which 
matrine alkaloids mitigate AGE-induced oxidative stress and 
subsequent apoptosis in diabetic ECs.

Tanshinone IIA reverses the uncoupling of eNOS induced by high 
glucose levels. This restoration occurs through the inhibition of 
several factors including NADPH oxidase, heat shock protein 90 
(HSP90), GTP cyclin-1 (GTPCH1), dihydrofolate reductase (DHFR), 
and PI3K. Additionally, Tanshinone IIA ameliorated abnormal 
oxidative stress and enhanced endothelium-dependent relaxation in 
ECs of diabetic rats. The expression of eNOS is initiated at the 
transcriptional level, leading to increased production of NO, which 
serves a protective function against endothelial health (144, 145).

Puerarin was administered via intraperitoneal injection to rats 
with T2DM over a three-week period. These findings indicate that 
puerarin can modulate the NF-κB pathway and mitigate oxidative 
stress associated with NADPH oxidase isoforms NOX2 and NOX4. 
Consequently, this intervention resulted in the downregulation of cell 
adhesion molecule expression (146), thereby providing protective 
effects in the aorta of T2DM rats.
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Hu Jing’s research revealed for the first time that the combination 
of danshensu and paeonol can markedly reduce the apoptosis of 
vascular ECs triggered by elevated glucose levels. This effect is 
mediated through inhibition of the p38 MAPK signaling pathway. 
Additionally, preliminary findings suggest that this combination may 
safeguard vascular smooth muscle function in diabetic arteries by 
upregulating BKCa protein expression (147).

These findings indicate that the protective effects of astragaloside 
on aortic ECs in rats with T2DM may be  associated with the 
modulation of glucose and lipid metabolism abnormalities, alleviation 
of oxidative stress damage, and suppression of TGF-β1/Smad signaling 
pathways. Additionally, astragaloside appears to influence the 
expression of apoptosis-related genes, specifically Bcl-2, Bax, and 
Caspase-3 (148). Furthermore, it has been documented that both 
astragaloside IV and ferulic acid, administered at a dose of 50 mg/kg 
over a period of 10 weeks in diabetic rats, can inhibit the activation of 
the NF-κB signaling pathway by lowering blood glucose levels and 
decreasing oxLDL and TNF-α concentrations, demonstrating a 
synergistic effect (149).

Berberine is an isoquinoline alkaloid. Both traditional and 
contemporary medical research indicates that berberine exhibits a 
range of pharmacological properties, including hypolipidemic, 
antidiabetic, antitumor, anti-inflammatory, antidiarrheal, and 
antibacterial effects (150). Fatahian et al. (151) demonstrated that 
berberine may possess atheroprotective properties by lowering 
elevated plasma cholesterol levels, particularly low-density 
lipoprotein cholesterol (LDL-C), through mechanisms that are both 
dependent and independent of LDL receptors (LDLR). Additionally, 
berberine has been shown to inhibit macrophage migration and 
inflammatory responses, enhance endothelial cell function via its 

antioxidant properties (152–154), and suppress VSMC proliferation 
(155, 156).

Quercetin is an important flavonoid compound recognized for its 
pronounced anti-atherosclerotic properties. Contemporary research 
has demonstrated that quercetin exhibits potent antioxidant, anti-
inflammatory, and antibacterial activities (157). Qian et  al. (158) 
demonstrated that quercetin can diminish the release of ROS and 
nitric oxide synthase (NOS), thereby safeguarding ECs. Additionally, 
it enhances the expression of ATP-binding cassette transporters 
ABCA1 and ABCG1 as well as cytochrome P450 7A1 (CYP7A1), 
facilitating cholesterol efflux from macrophages. Quercetin also 
downregulates the expression of p53, p21, p16, and extracellular 
signal-regulated kinase (ERK) while promoting autophagy to 
counteract apoptosis. Furthermore, it inhibits monocyte 
chemoattractant protein-1 (MCP-1) and various inflammatory 
cytokines including interleukins IL-1, IL-2, IL-1β, IL-6, and TNF-α 
(159–162).

Shortcomings and prospects

This study conducted a comprehensive evaluation of representative 
anti-diabetic medications and TCM for DM, revealing significant 
disparities in their effects on vascular function. Notably, GLP-1 
receptor agonists, a class of novel anti-diabetic agents, appear to 
possess distinct advantages in enhancing vascular function in patients 
with DM. However, these studies have several limitations must 
be  acknowledged in these investigations. For instance, the data 
extraction and transformation processes utilized in two of the 
included studies (101, 104) may introduce follow-up bias. 

TABLE 3 Effect of TCM on endothelial dysfunction in DM.

TCM name Active component Mechanism of action Main findings References

Tanshinone IIA Lipophilic diterpenoids Inhibits NADPH oxidase, reduces oxidative stress, 

enhances eNOS expression, and promotes NO production

Improves endothelial-dependent 

relaxation and endothelial function

(144, 145)

Berberine Isoquinoline alkaloid Inhibits NF-κB activity, reduces inflammatory responses Protects against vascular damage and 

anti-atherosclerosis

(150–156)

Resveratrol Polyphenol compound Activates SIRT1, upregulates Nrf2, and reduces ROS 

production

Prevents endothelial cell aging, reduces 

oxidative stress

(139, 141, 142)

Puerarin Isoflavone glycoside Regulates NF-κB, inhibits NOX2 and NOX4-mediated 

oxidative stress

Protects the aorta of diabetic rats by 

reducing cell adhesion molecule 

expression

(146)

Curcumin Polyphenolic compound Blocks AMPL/p38 MAPK pathway Protects endothelial cells from oxidative 

stress in diabetic rats

(138–140)

Matrine 

alkaloids

Sophora alkaloids Activates MKK3/p38 MAPK/Nrf2 signaling pathway, 

reduces AGEs-induced apoptosis

Prevents apoptosis of diabetic 

endothelial cells

(143)

Astragaloside 

IV

Triterpene saponin Modulates glucose/lipid metabolism, inhibits TGF-β1/

Smad signaling, reduces oxidative stress

Protects aortic endothelial cells and 

inhibits NF-κB activation

(148, 149)

Danshensu + 

Paeonol

Phenolic acids Inhibits p38 MAPK signaling, enhances BKCa protein 

expression in vascular smooth muscle cells

Reduces vascular endothelial cell 

apoptosis in diabetic conditions

(144, 145)

Quercetin Flavonoids compounds Increases the expression of ABCA1, ABCG1 and CYP7A1, 

promoted cholesterol efflux from macrophages, down-

regulated the expression of p53, p21, p16 and ERK, 

enhanced autophagy to anti-apoptosis, and inhibited 

MCP-1 and inflammatory cytokines

Reduces ROS and releases NOS to 

protect endothelial cells

(157–162)
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Furthermore, while our analysis encompassed eight anti-diabetic 
drugs, variations may exist even among products within the same 
category. Additional factors contributing to the inconsistencies 
observed in this study include the duration of DM, which ranged from 
newly diagnosed cases to those exceeding three years, as well as racial 
and regional differences among the participants involved in the 
analysis. Moreover, although all included studies reported that the 
assessment of FMD was conducted by a professional sonographer in 
a blinded manner, the potential for measurement errors remains 
a concern.

TCM has been shown to have beneficial effects on blood glucose 
levels, insulin resistance, lipid metabolism, and oxidative stress through 
pathways involving AGE, PI3K/Akt, NF-κB, and AMP-AMPK, thereby 
ameliorating the endothelial dysfunction associated with DM. However, 
the existing body of research consists primarily of in vitro and animal 
model studies focusing on TCM extracts and their individual 
components, with a notable scarcity of human clinical trials. In 
comparison with contemporary antidiabetic pharmacotherapies, there 
is a limited amount of clinical trial data (163) evaluating the efficacy of 
TCM in addressing biomarkers of endothelial dysfunction in 
DM. Furthermore, TCM’s approach of TCM to disease treatment is 
predicated on syndrome differentiation, which involves tailoring 
prescriptions and therapies to specific syndromic presentations. 
Current in vitro and animal studies using TCM monomers and extracts 
do not adequately capture the principles of syndrome differentiation 
inherent in TCM practice, highlighting a significant gap in clinical 
research. Additionally, it is important to acknowledge that the indirect 
agonistic effects of certain TCM extracts, such as resveratrol and 
quercetin, are relatively weak, their bioavailability is insufficient, and 
there is a paucity of in vivo pharmacokinetic studies, which represents 
a limitation in the current research landscape.

Currently, our research group is engaged in investigating the 
treatment of endothelial dysfunction associated with DM using 
TCM. For instance, the study conducted by Dr. Xu et al. (164) utilized 
network pharmacology, molecular docking, and in vitro experimental 
validation to demonstrate that Danggui Liuhuang Decoction 
(DGLHD), a traditional Chinese medicinal formulation, effectively 
mitigates the release of pro-inflammatory factors and vascular 
endothelial growth factor by inhibiting the JAK2/STAT3 signaling 
pathway, thereby alleviating endothelial dysfunction in 
DM. Additionally, Dr. Sha et al. (who is also a co-author of this work) 
(165) discovered both in  vivo and in  vitro that Astragalus 
polysaccharide (APS) enhances vascular endothelial function in DM 
by activating the Nrf2/HO-1 pathway, which promotes macrophage 
polarization towards the M2 phenotype. Another investigation led by 
Dr. Sha (166) revealed that miR-142-3p contributes to the progression 
of diabetes by suppressing SPRED2-mediated autophagy, resulting in 
increased apoptosis, oxidative stress, and inflammatory cytokine 
secretion, which were ameliorated by resveratrol. Furthermore, Zhang 
et al. (167) identified a significant association between high-density 
lipoprotein cholesterol ratio (MHR) and endothelial dysfunction in 
T2DM in a cross-sectional study involving 243 patients, suggesting 
that MHR may serve as a novel biomarker for assessing vascular 
endothelial function. Wei et al. (168) reported that puerarin (Pue) 
mitigates endothelial cell injury and cardiovascular complications 
related to DM induced by LPS-ATP or high glucose through the 
ROS-NLRP3 signaling pathway. Along with my colleagues, Dr. Jin and 
Dr. Yu, I am also actively contributing to this field of research, and 

we  are optimistic about achieving further advancements in the 
near future.

Conclusion

Endothelial dysfunction is a significant therapeutic target in 
individuals diagnosed with DM. The pathophysiology underlying this 
dysfunction may be attributed to oxidative stress induced by acute 
glucose fluctuations, chronic hyperglycemia, and diminished NO 
production, resulting from selective insulin resistance in ECs. A 
multifaceted approach is recommended to address this issue, 
encompassing lifestyle modifications, such as weight reduction, 
engagement in aerobic exercise, and cessation of smoking. 
Furthermore, the use of antidiabetic medications that mitigate acute 
glucose variations, such as glinides, alpha-glucosidase inhibitors, and 
DPP-4 inhibitors, as well as those that enhance insulin sensitivity, 
including thiazolidinediones and metformin, are anticipated to 
positively influence endothelial function in patients with 
DM. Preclinical investigations have demonstrated that GLP1-R 
agonists, metformin, and SGLT2 inhibitors can enhance endothelial 
function through various mechanisms, some of which are independent 
of glycemic control or insulin signaling pathways, such as the 
activation of eNOS phosphorylation via AMP-AMPK and sirtuin-1. 
Careful selection of appropriate antidiabetic pharmacotherapy aimed 
at improving endothelial function is clinically important for the 
prevention of vascular complications associated with DM, thereby 
enhancing the overall prognosis for patients with this condition.

The pathophysiological mechanisms underlying morbidity 
associated with DM are intricate, and vascular endothelial dysfunction 
has received considerable attention in recent years. ECs are crucial 
components of the endocrine system and are particularly susceptible 
to environmental influences. Factors such as hyperglycemia, AGEs, 
oxidized low-density lipoprotein (ox-LDL), and abnormal insulin 
expression can directly or indirectly induce endothelial dysfunction. 
TCM holds significant potential in the clinical management of diabetic 
endothelial dysfunction owing to its multi-component and multi-target 
nature. Increasing recognition among pharmacological researchers has 
emerged regarding the efficacy of TCM monomers, extracts, and 
compounds for addressing endothelial dysfunction associated with 
DM. Recent studies have shown that TCM primarily modulates several 
signaling pathways, including AGEs, PI3K/AKT, NF-κB, Nrf2, LOX-1, 
and AMPK, to enhance NO bioavailability, inhibit angiotensin II 
synthesis, mitigate oxidative stress, regulate inflammatory and 
angiogenic factors, and prevent thrombosis. These actions contribute 
to the effective restoration of vascular ECs and attenuation of the onset 
and progression of endothelial dysfunction in DM.

However, the complex composition and numerous targets of TCM 
pose challenges in elucidating its mechanisms of action and the 
associated signaling pathways that ameliorate endothelial dysfunction 
in DM. Future research endeavors may benefit from integrating 
network pharmacology and proteomics to identify key genetic 
information and signaling pathways.

While this article aims to underscore a holistic approach to 
treating endothelial dysfunction in DM, it is noteworthy that the 
integration of Western medicine with TCM in the management of 
related diseases is actively practiced in China, yielding positive 
outcomes. Nonetheless, there remains a paucity of comprehensive 
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clinical studies that are multi-centered, involve large sample sizes, and 
maintain high quality for the treatment of endothelial dysfunction in 
DM. This gap represents a focal point for our research group, which 
aspirates for more extensive, thorough, and in-depth experimental 
and clinical investigations within the medical community.
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Glossary

DM - Diabetes mellitus

CVDs - Cardiovascular diseases

T2DM - Type 2 diabetes mellitus

ACH - Acetylcholine

EDRF - Endothelium-derived relaxing factors

NO - Nitric oxide

PGI2 - Prostacyclin

EDHFs - Endothelium-derived hyperpolarizing factors

ET-1 - Endothelin 1

PGF2α - Prostaglandin F2α

TXA2 - Thromboxane A2

RAS - Renin-angiotensin system

ROS - Reactive oxygen species

O2• −  - Superoxide anion radical

BH4 - Tetrahydrobiopterin

eNOS - Endothelial nitric oxide synthase

XO - Xanthine oxidase

COX - Cyclooxygenase

MAPK - Mitogen activated protein kinase

PI3K - Phosphatidylinositol-3 kinase

VSMCs - Vascular smooth muscle cells

ECM - Extracellular matrix

ECs - Endothelial cells

TNF - Tumor necrosis factor

IL-1β - Interleukin-1β

IFN-γ - Interferon-γ

VCAM-1 - Vascular cell adhesion molecule-1

ICAM-1 - Intercellular adhesion molecule-1

AGEs - Advanced Glycation End Products

NF-κB - Nuclear factor-κB

RAGE - Receptor for advanced glycation end products

ATP - Adenosine triphosphate

H2O - Hydroxylic acid

CO2 - Carbon dioxide

NADH - Nicotinamide adenine dinucleotide

FADH2 - Flavine adenine dinucleotide-reduced

TCA - Tricarboxylic acid

GAPDH - Glyceraldehyde 3-phosphate dehydrogenase

PKC - Protein kinase C

HbA1c - Glycated hemoglobin

RCTs - Randomized controlled trials

DCCT - Diabetes Control and Complications Trial

UKPDS - United Kingdom Prospective Diabetes Study

miRs - MicroRNAs

FMD - Flow-mediated dilation

T1DM - Type 1 diabetes mellitus

LEADER - The Liraglutide Effect and Action in Diabetes: Evaluation 
of Cardiovascular Outcome Results

SUSTAIN-6 - Semaglutide in Subjects with Type 2 Diabetes

GLP-1R - Glucagon-like peptide 1 receptor

DPP-4 - Dipeptidyl peptidase 4

SGLT2 - Sodium-glucose cotransporter 2

SAVOR-TIMI - The Saxagliptin Assessment of Vascular Outcomes 
Recorded in Patients with Diabetes Mellitus-Thrombolysis in 
Myocardial Infarction

MACE - Major adverse cardiovascular events

TECOS - Sitagliptin Cardiovascular Outcomes Assessment Trial

CIMT - Carotid intima-media thickness

ACE - Acarbose Cardiovascular Evaluation
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TZDs - Thiazolidinediones

PPARs - Peroxisome proliferator-activated receptors

ETB - ET-1 receptor B

PROactive trial - The prospective pioglitazone clinical trial in 
macrovascular events

AMP - Adenosine 5′-monophosphate

AMPK - Activated protein kinase

TCM - Traditional Chinese medicine

STZ - Streptozotocin

GSA - Glycated serum albumin

NAD - Nicotinamide adenine dinucleotide

Nrf2 - Nuclear factor E2-related factor 2

HSP90 - Heat shock protein 90

GTPCH1 - GTP cyclin-1

DHFR - Dihydrofolate reductase

oxLDL - Oxidized low-density lipoprotein
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