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Background: Knowledge-driven prioritization of candidate genes derived from 
large-scale molecular profiling data for targeted transcriptional profiling assays 
is challenging due to the vast amount of biomedical literature that needs to 
be harnessed. We present a workflow leveraging Large Language Models (LLMs) 
to prioritize candidate genes within module M12.15, a plasma cell-associated 
module from the BloodGen3 repertoire, by integrating knowledge-driven 
prioritization with data-driven analysis of transcriptome profiles.

Methods: The workflow involves a two-step process: (1) high-throughput 
screening using LLMs to score and rank the 17 genes of module M12.15 based on 
six predefined criteria, and (2) prioritization employing high-resolution scoring 
and fact-checking, with human experts validating and refining AI-generated 
scores.

Results: The first step identified five candidate genes (CD38, TNFRSF17, IGJ, 
TOP2A, and TYMS). Following human-augmented LLM scoring and fact 
checking, as part of the second step, CD38 and TNFRSF17 emerged as the 
top candidates. Next, transcriptome profiling data from three datasets was 
incorporated in the workflow to assess expression levels and correlations with 
the module average across various conditions and cell types. It is on this basis 
that CD38 was prioritized as the top candidate, with TNFRSF17 and IGJ identified 
as promising alternatives.

Conclusion: This study introduces a systematic framework that integrates 
LLMs with human expertise for gene prioritization. Our analysis identified 
CD38, TNFRSF17, and IGJ as the top candidates within the plasma cell-
associated module M12.15 from the BloodGen3 repertoire, with their relative 
rankings varying systematically based on specific evaluation criteria, from 
plasma cell biology to therapeutic relevance. This criterion-dependent ranking 
demonstrates the ability of the framework to perform nuanced, multi-faceted 
evaluations. By combining knowledge-driven analysis with data-driven metrics, 
our approach provides a balanced and comprehensive method for biomarker 
selection. The methodology established here offers a reproducible and scalable 
approach that can be applied across diverse biological contexts and extended 
to analyze large module repertoires.
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1 Introduction

The development of targeted transcriptional profiling assays is 
crucial for translating large-scale molecular profiling data into actionable 
clinical insights (1–4). These assays enable precise, quantitative 
assessments of the abundance of panels comprising tens to hundreds of 
transcripts, offering advantages such as cost-effectiveness, rapid 
turnaround times, and the ability to process large sample numbers (5–7). 
However, the critical task of selecting relevant candidate genes for 
inclusion in targeted assays can be  challenging, especially when 
contending with the extensive volumes of biomedical information 
generated by systems-scale profiling technologies (8).

Knowledge-driven methods for candidate gene prioritization must 
efficiently sift through vast amounts of literature to identify the most 
promising candidates. This process can be lengthy and may lack depth 
due to the sheer volume of information available for each gene. While 
resources such as gene ontologies and curated pathways can help, they 
often provide only superficial information about the genes and may lack 
context (9).

Given these limitations, there is a clear need for more efficient and 
comprehensive methods to prioritize candidate genes from large-scale 
molecular profiling data. The introduction of Large Language Models 
(LLMs) has opened up new possibilities for leveraging collective 
biomedical knowledge in candidate gene prioritization. LLMs, such as 
GPT-4 (OpenAI), Claude (Anthropic), and PaLM (Google), have 
demonstrated remarkable capabilities in natural language understanding 
and generation (10–12). Building upon previous work demonstrating the 
utility of LLMs in manual candidate gene prioritization (13), we sought 
to further streamline the process by developing an automated LLM-based 
workflow. This automated approach aims to enable the prioritization of 
extensive module repertoires, such as BloodGen3, and facilitate the 
design of disease-specific panels.

In the current study, we focus on module M12.15, a plasma cell-
associated module from the BloodGen3 repertoire. The plasma cell 
signature captured by module M12.15 has been linked to various 
physiological and pathological conditions, including antibody responses 
to vaccines, autoimmune diseases, and certain hematological 
malignancies (14–17). Our stepwise approach leverages the capabilities 
of LLMs to score and rank candidate genes based on predefined criteria 
and incorporate reference transcriptome data to guide the final selection. 
We introduce a novel human-in-the-loop augmented scoring process, 
where human experts validate and refine the LLM-generated scores, 
ensuring accuracy and relevance. Through this process, we ultimately 
identify a top candidate gene for module M12.15, showcasing the 
potential of LLMs to enhance the efficiency and scalability of knowledge-
driven candidate biomarker prioritization.

2 Methods

2.1 BloodGen3 module repertoire

This study employs the BloodGen3 module repertoire, a 
comprehensive framework for blood transcriptome analysis 

developed by Altman et al. (14). The repertoire was constructed 
using 16 reference whole blood transcriptome datasets, 
encompassing 985 distinct transcriptional profiles across 16 medical 
conditions: B-cell deficiency, chronic obstructive pulmonary 
disease (COPD), pregnancy, multiple sclerosis (MS), juvenile 
dermatomyositis (JDM), post-liver transplantation (liver 
transplant), melanoma, human immunodeficiency virus infection 
(HIV), tuberculosis (TB), sepsis, Staphylococcus aureus infection 
(Staph), systemic lupus erythematosus (SLE), influenza virus 
infection (influenza), respiratory syncytial virus infection (RSV), 
Kawasaki disease (Kawasaki), and systemic onset juvenile idiopathic 
arthritis (SoJIA). Through co-expression analysis, 382 modules 
were identified, each representing a set of genes exhibiting 
coordinated expression patterns across diverse pathological 
conditions. These modules are further organized into higher-level 
structures termed aggregates, where each aggregate comprises 
multiple modules sharing similar expression characteristics across 
the reference cohorts.

2.2 Large language models

To facilitate the prioritization and selection of candidate genes, 
we utilized state-of-the-art LLMs. Specifically, we employed GPT-4 
(developed by OpenAI), Claude 3 (created by Anthropic), and 
Consensus GPT (a specialized AI research assistant integrated with 
ChatGPT) (18–20). GPT-4 is an advanced autoregressive language 
model with over 1 trillion parameters, capable of generating human-
like text by leveraging patterns learned from exposure to a vast corpus 
of internet data (19) Claude 3, on the other hand, incorporates 
constitutional AI techniques alongside its extensive parameter count, 
ensuring outputs align with predefined constraints (18).

Consensus GPT, built on the foundation of GPT-4, has access to 
over 200 million academic papers, providing a more comprehensive 
and potentially more accurate evaluation compared to generic LLMs. 
It is specifically designed for scientific literature analysis and fact-
checking (20).

These models represent significant advancements in natural 
language processing and generation, offering improved performance 
and reliability compared to their predecessors. By employing multiple 
LLMs, we aimed to leverage the strengths of each model and enhance 
the robustness of our gene prioritization process.

2.3 Module selection for candidate gene 
prioritization (step 1)

The initial step in our workflow involves selecting a module 
from the BloodGen3 repertoire for candidate gene prioritization. 
This selection is guided by several considerations, including: (1) 
association with specific cell types or biological processes, as 
determined by prior research (14–17); (2) abundance pattern across 
reference patient cohorts, which can provide insights into its 
potential clinical relevance; and (3) connection to various disease 
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states and physiological conditions, as established by previous 
studies and published literature. For the current study, we focused 
on module M12.15, which our prior work has linked to plasma cell 
activity and antibody production (14).

2.4 LLM-driven scoring of module genes 
(step 2)

To enhance the robustness of our gene prioritization process, 
we employed two distinct LLM scoring approaches that reflect the 
advancements in LLM capabilities over the years since the initiation 
of this research.

2.4.1 Step 2a: LLM chat scoring
Following the scoring approach described by Toufiq et al. (13), 

we utilized OpenAI’s GPT-4 and Anthropic’s Claude to score the genes 
within the selected module. Each LLM was tasked with scoring the 
genes on a scale of 0 to 10 based on six criteria, providing an evaluative 
comment and supporting references when applicable. The 
criteria included:

 a. Association with plasma cell responses: Scored based on 
evidence of the gene’s role in modulating or responding to 
plasma cell-related processes, including B cell differentiation, 
activation, antibody secretion, immunoglobulin production, or 
involvement in signaling pathways pertinent to plasma 
cell functions.

 b. Relevance to circulating leukocytes immune biology: Scored 
based on evidence linking the gene to the development, 
function, or regulation of circulating leukocytes, including 
impacts on leukocyte differentiation, activation, signaling, or 
effector functions;

 c. Current use as a biomarker in clinical settings: Scored based on 
evidence of the gene or its products’ application as biomarkers 
for diagnosis, prognosis, or monitoring of diseases in clinical 
settings, with a focus on their validated use and acceptance in 
medical practice.

 d. Potential value as a blood transcriptional biomarker: Scored 
based on evidence supporting the gene’s expression patterns in 
blood cells as reflective of specific physiological or pathological 
states, considering both current research findings and potential 
for future clinical utility;

 e. (e) known drug target status: Scored based on evidence of the 
gene or its encoded protein serving as a target for therapeutic 
intervention, including approved drugs targeting this gene, 
compounds in clinical trials, or promising preclinical studies;

 f. (f) therapeutic relevance for diseases involving the immune 
system: Scored based on evidence linking the gene to the 
pathogenesis, progression, or treatment of diseases involving 
the immune system, including its role in immune dysregulation, 
or as a target for immunotherapy.

The scoring criteria ranged from 0 (no evidence found) to 10 
(strong evidence), with intermediate scores reflecting varying levels of 
evidence and validation. The model’s output was structured as a table, 
with genes as rows and columns for gene names and scores for each 
criterion (a–f). This systematic scoring approach allowed for a 

comprehensive evaluation of each gene’s relevance to plasma cell 
biology, immune function, and potential clinical applications.

2.4.2 Step 2b: LLM high-throughput chat scoring
To leverage the enhanced capabilities of LLMs and to efficiently 

process larger gene sets, we employed Claude 3.5 Sonnet for a high-
throughput scoring approach. This method allowed for the evaluation 
of genes in larger batches (up to 10 genes), potentially reducing bias 
and increasing efficiency. The scoring was run in triplicates, and the 
scores were averaged to enhance reliability and account for potential 
variations in LLM outputs.

2.5 Selection of top candidates (step 3)

We first ranked the genes based on the cumulative scores 
generated by the LLMs and then identified the top five candidates 
selected by each LLM. These candidates were pooled and subjected to 
further analysis in the next step.

2.6 High-resolution scoring and 
human-in-the-loop fact-checking using 
consensus GPT (step 4)

Following the initial scoring by GPT-4 and Claude 3.5, 
we implemented a more rigorous, human-augmented scoring and 
fact-checking process using the Consensus GPT app, a custom GPT 
model available in the OpenAI Plus environment.1 This step was 
designed to provide a more detailed and evidence-based evaluation of 
the top-scoring genes identified in Step 2. We prompted Consensus 
GPT to generate scores for each of the six criteria, along with 
justifications and references. This process was repeated for each of the 
top-scoring genes identified in Step 2. Crucially, a human expert then 
evaluated the backing references provided by Consensus GPT for 
accuracy and relevance. When discrepancies or inadequacies were 
identified in the AI-generated content, the human expert prompted 
Consensus GPT to revise its evaluation, providing additional context 
or pointing to more appropriate references as necessary. This iterative, 
human-in-the-loop approach ensured that the final scores and 
justifications were not only comprehensive but also verified by human 
expertise. The process allowed for a more nuanced and accurate 
evaluation of the scientific literature supporting each gene’s relevance 
to plasma cell biology, immune function, and potential 
clinical applications.

2.7 Refinement of candidate gene selection 
(step 5)

In this step, we further refined the selection of the top candidate 
gene by incorporating additional transcriptome profiling data from 
three different datasets previously deposited by us: a reference RNA-seq 
dataset (GSE60424) (21), and a dataset from the Molecular Signature 

1 https://chatgpt.com/g/g-bo0FiWLY7-consensus
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in Pregnancy (MSP) study (PRJNA898879) (4), which comprises 88 
samples collected at 6 of ∼15 available time points from 15 women with 
uncomplicated pregnancies, as well as a comprehensive microarray 
dataset covering 16 disease states and physiological conditions 
(GSE100150) (14). Refinement of candidate gene selection involved 
two sub-steps: (1) flagging the candidate with low expression, and (2) 
flagging the candidate with low correlation to the module average.

2.7.1 Step 5.1: flagging candidates with low 
expression

The expression data was provided to GPT-4 in a CSV file format. 
GPT-4 was instructed to apply a combined filter to identify genes suitable 
for reliable measurement in an RT-PCR assay based on their expression 
levels. The filtering criteria were: (1) a median count of at least 50 across 
all samples; (2) expression levels greater than 15 in at least 50% of the 
samples. GPT-4 calculated these metrics for each gene and generated a 
summary table including: (1) the median count of each gene across all 
samples; (2) the percentage of samples where each gene is expressed at 
levels greater than 15; (3) a flag indicating whether each gene meets both 
criteria. Genes that did not meet both criteria were flagged as potentially 
challenging to measure reliably in the targeted assay.

2.7.2 Step 5.2: flagging candidates with low 
correlation to module average

We compiled a CSV file for each dataset containing correlation 
coefficients between the expression levels of individual genes within 
the M12.15 module and the average expression of all genes in that 
module. GPT-4 was instructed to analyze this data and filter out genes 
that are not representative of the module’s behavior across these 
conditions. To filter these gene candidates, we used the following 
criteria: (1) median correlation coefficient across all reference cohorts 
for each gene; (2) percentage of reference cohorts in which each gene’s 
correlation coefficient exceeds our cut-off; (3) identification of genes 
with exceptionally low correlation coefficients that fall below the lower 
bound of the Interquartile Range (IQR). GPT-4 generated a 
comprehensive table including gene symbol or identifier, median 
correlation coefficient across all cohorts, percentage of cohorts in 
which the gene’s correlation coefficient is above our cut-off, and a 
Boolean indicator showing whether the gene is considered an outlier 
based on exceptionally low correlations. The table was sorted by the 
Median Correlation in descending order to highlight the most 
representative genes at the top. Genes that did not meet both criteria 
were flagged as potentially less reliable surrogates for the module.

2.8 Utilization of LLMs for manuscript 
preparation

In addition to the development and application of the automated 
gene prioritization workflow, we also explored the potential of LLMs 
in assisting with the preparation of this manuscript. Specifically, 
Claude 3.5, developed by Anthropic, was utilized for this task. The 
paper by Toufiq et al. (13) and a manuscript we wrote focusing on the 
prioritization of M14.51, which used the same methodology and 
workflow, were loaded as context, providing background information 
and a foundation for Claude to build upon. Data, figures, and key 
findings from the current study were also provided to the 
LLM. Claude was employed in an iterative process to generate text 

from outlines and following general instructions. This process 
involved multiple rounds of revisions at different levels (section, 
paragraph) as needed. The AI assistant was also used for editing and 
refining the content to ensure clarity, coherence, and adherence to 
scientific writing conventions. All AI-generated text was reviewed 
and validated by the human authors, who provided additional 
context, corrections, and interpretations as needed.

3 Results

3.1 Selection and prioritization of module 
M12.15

The current study focused on module M12.15, a component of 
the BloodGen3 module aggregate A27. Detailed information 
pertaining to the module construction is illustrated in Figure 1. This 
module was selected for further analysis based on its expression 
patterns observed across a sample of 16 reference patient populations 
(Figure  2A). Moreover, the presence of genes such as CD38, IGJ 
(Immunoglobulin J chain), and TNFRSF17 (also referred to as 
BCMA, B-cell maturation antigen) in module M12.15 suggests a 
potential association with plasma cell responses and antibody 
synthesis, given their well-established roles in the biology of plasma 
cells (22–24). This association is further supported by the module’s 
higher expression in plasmablasts and B cells compared to other cell 
types, as evident from the heatmap depicting the module’s expression 
across different cell subsets (Figure 2B) (25).

3.2 Dual LLM scoring approach employing 
chat-GPT-4 and Claude for M12.15 gene 
prioritization

Module M12.15 encompasses 17 genes: ABCB9, CCNB2, CD38, 
CDC20, CDCA5, IGJ, IGLL3, KIAA0101, LOC649923, LOC652775, 
MGC29506, TNFRSF17, TOP2A, TXNDC5, TYMS, UBE2C, and 
UHRF1. To prioritize these genes, we  implemented two distinct 
scoring methodologies leveraging the capabilities of LLMs: an initial 
methodology (Step  2a) employing GPT-4 and Claude, and an 
alternative approach (Step 2b) utilizing Claude 3.5 in high-throughput 
mode (see methods for details).

Figure  3 illustrates the results from both scoring methods. 
Remarkably, both approaches identified the same set of genes as the 
top five candidates: CD38, TNFRSF17, IGJ, TOP2A, and TYMS. In 
the GPT-4 scoring, CD38 emerged as the leading candidate with the 
highest cumulative score, closely followed by TNFRSF17 (Figure 3A). 
IGJ, TOP2A, and TYMS also received notable scores. In the Claude 
3.5 scoring, TNFRSF17 emerged as the top candidate with the highest 
cumulative score, with CD38 ranking second (Figure 3B). Averaging 
the scores from GPT-4 and Claude 3.5 revealed TNFRSF17 as the top 
candidate, followed by CD38 (Figure  3C). The Claude 3.5 high-
throughput scoring is consistent with these findings, with TNFRSF17 
and CD38 maintaining their positions as the leading candidates, and 
IGJ, TOP2A, and TYMS securing the third, fourth, and fifth places, 
respectively (Figure 3D).

Intriguingly, while CD38 and TNFRSF17 consistently scored 
highly across all selection criteria, the other top genes exhibited more 
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variable profiles. IGJ obtained a high score for plasma cell biology but 
lower scores for drug target potential, suitability as a blood biomarker, 
and clinical relevance. Conversely, TOP2A (26) and TYMS received 
lower scores for plasma cell and leukocyte biology but ranked highly 
as potential drug targets, blood biomarkers, clinical markers, and 
therapeutic targets (27–32).

The robustness and consistency of the scoring results were 
underscored by the excellent correlation observed between the three 
independent runs for each LLM and across the three distinct LLMs 
(Figure  3E). This strong agreement across diverse models and 
iterations lends further credence to the selection of top-tier 
candidate genes.

FIGURE 1

Schematic overview of the targeted panel development strategy. This figure presents our novel workflow for candidate gene prioritization (Panel C) 
within a broader omics data-driven strategy for developing targeted transcriptome fingerprinting assays (TFAs). (Panel A) illustrates the data-driven 
construction of co-expressed blood transcriptional modules derived from 16 reference datasets, encompassing 985 transcriptome profiles. This “fixed 
transcriptional repertoire” comprises 382 modules organized into 38 aggregates, representing 14,168 transcripts analyzed across patients with sixteen 
distinct medical conditions: B-cell deficiency, chronic obstructive pulmonary disease (COPD), pregnancy, multiple sclerosis (MS), juvenile 
dermatomyositis (JDM), post-liver transplantation (liver transplant), melanoma, human immunodeficiency virus infection (HIV), tuberculosis (TB), sepsis, 
staphylococcus aureus infection (Staph), systemic lupus erythematosus (SLE), influenza virus infection (influenza), respiratory syncytial virus infection 
(RSV), Kawasaki disease (Kawasaki), and systemic onset juvenile idiopathic arthritis (SoJIA). (Panel B) demonstrates how the application of BloodGen3 
across multiple studies provided insights into the biological and clinical relevance of its modular signatures, leading to the identification of module 
aggregate A27, which shows strong associations with plasma cells, vaccine responses, and B-cell disorders. This module was subsequently prioritized 
for inclusion in a generic Immune Profiling TFA panel (ImmP-TFA). (Panel C) illustrates our novel workflow that leverages Large Language Models 
(LLMs) for prioritizing candidate genes, providing a systematic approach for comprehensive characterization and evaluation of candidates for potential 
inclusion in the ImmP-TFA panel.
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3.3 High-resolution scoring and 
fact-checking prioritizes top M12.15 
candidates

We employed Consensus GPT to further refine our top candidate 
selection. Consensus GPT scored each gene across six criteria, 
providing justifications and references for scores of 4 or above. 
Human experts then verified these references and critically evaluated 

the scores. When necessary, experts prompted the model to reassess 
its evaluations, offering additional context or highlighting overlooked 
literature. This iterative, human-in-the-loop process allowed for 
refinement of the AI-generated assessments. This process, although 
more labor-intensive, provides a level of scrutiny and validation 
essential for confident gene selection.

Figure 4 compares the scoring results from three different LLM 
approaches  - Claude3.5/GPT, Claude3.5 high-throughput, and 

FIGURE 2

Expression patterns of module M12.15 across 16 reference patient populations. (A) Heatmap showing the relative abundance of module M12.15 across 16 
distinct medical conditions: patients with B-cell deficiency, chronic obstructive pulmonary disease (COPD), pregnancy, multiple sclerosis (MS), juvenile 
dermatomyositis (JDM), post-liver transplantation (liver transplant), melanoma, human immunodeficiency virus infection (HIV), tuberculosis (TB), sepsis, 
Staphylococcus aureus infection (Staph), systemic lupus erythematosus (SLE), influenza virus infection (influenza), respiratory syncytial virus infection (RSV), 
Kawasaki disease (Kawasaki), and systemic onset juvenile idiopathic arthritis (SoJIA). The color scale represents standardized expression levels (red: higher 
expression; blue: lower expression). (B) Heatmap visualizing module M12.15 expression across distinct cell types and subsets. Cell populations include 
plasmablasts, B cells, basophils, dendritic cells, monocytes, neutrophils, Natural Killer (NK) cells, Peripheral Blood Mononuclear Cells (PBMC), progenitor T 
cells, and various T cell subsets. Yellow indicates higher expression, while blue indicates lower expression. Data sourced from Monaco et al. (25).
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FIGURE 3

Dual LLM scoring approach for prioritizing genes within module M12.15. (A) Cumulative scores of M12.15 genes generated by GPT-4, with CD38 
emerging as the top candidate (A). Cumulative scores of M12.15 genes generated by Claude 3.5, with TNFRSF17 ranking as the top candidate (B). 
Average scores from GPT-4 and Claude 3.5, revealing TNFRSF17 as the top candidate, followed by CD38 (C). Claude 3.5 high-throughput scoring 
results, consistent with the averaged scores, with TNFRSF17 and CD38 maintaining their positions as the leading candidates (D). Correlation matrix 
illustrating the consistency of scoring results across three independent runs for each LLM and three distinct LLMs (E).
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Consensus - across six key criteria. The scoring patterns appear to 
be  relatively consistent across the three LLM approaches for each 
criterion, with some minor variations. CD38 and TNFRSF17 
consistently emerged as the top two candidates across all approaches. 
With Consensus GPT, CD38 generally generated a higher or equal 
score compared to TNFRSF17, but both demonstrated strong 
performance across multiple criteria. The Consensus scoring, being 
the most comprehensive and rigorous approach, serves as the basis for 
the final gene prioritization.

A detailed breakdown of scores and justifications for each gene 
across the six criteria, complete with supporting references and 
evaluative comments, is provided in Supplementary Table 1. Based on 
this comprehensive analysis, we conclude that CD38 and TNFRSF17 
are the most promising candidate genes for module M12.15, exhibiting 
strong performance across multiple key criteria.

3.4 Refinement of gene selection for 
module M12.15

3.4.1 Flagging candidates with low expression
To ensure the reliable measurement of selected genes in the 

targeted assay, we  analyzed the expression levels of the top five 
candidate genes (CD38, TNFRSF17, IGJ, TOP2A, and TYMS) in two 
different datasets: a leukocyte-specific RNA-seq dataset (GSE60424) 
and an MSP dataset (PRJNA898879) (Figure 5 and Table 1).

Figure 5A illustrates the expression levels of the candidate genes 
across various cell types and whole blood. IGJ, CD38, and TNFRSF17 
show the highest expression in B-cells, followed by whole blood, 
consistent with their known roles in B-cell function and antibody 
production. In contrast, TOP2A and TYMS display lower expression 
across all cell types.

The box plot in Figure 5B represents the expression levels of the 
candidate genes in the leukocyte-specific dataset (GSE60424). IGJ 
demonstrates the highest median expression, followed by CD38 and 
TNFRSF17. TOP2A and TYMS show lower median expression levels. 
In this dataset, only IGJ met the criteria for reliable measurement, with 
a median expression of 59.8. The other genes, including CD38, 
TNFRSF17, TOP2A, and TYMS, showed lower median expression 
levels, ranging from 2.745 to 4.54, and did not meet the criteria 
(Table 1).

In contrast, the box plot in Figure 5C represents the expression 
levels of the candidate genes in the MSP dataset (PRJNA898879). All 
five genes show higher median expression levels compared to the 
leukocyte-specific dataset, with IGJ exhibiting the highest median 
expression at 1549, followed by CD38 at 128.86. TOP2A, TYMS, and 
TNFRSF17 also show high median expression levels (79.71, 62.23, and 
61.32, respectively). In the MSP dataset, all five genes met the criteria 
for reliable measurement, with 100% of samples having expression 
levels above 15 for IGJ and CD38, and over 97% for TOP2A, TYMS, 
and TNFRSF17.

3.4.2 Flagging candidates with low correlation to 
module average

To select candidate genes representative of the entire module 
M12.15, we examined the correlation of each gene’s expression with 
the module average across different conditions using a microarray 
dataset covering 16 disease states and physiological conditions 

(GSE100150) (Figure 6A). The analysis shows that all five genes (IGJ, 
TNFRSF17, CD38, TOP2A, and TYMS) had strong correlations with 
the module average, with TOP2A having a slightly lower median 
correlation compared to the other genes (Table 2). When looking at 
each condition individually, the fold change of CD38 closely matches 
the expression of the module, further supporting its potential as a 
reliable representative of the module’s behavior in a wide range of 
physiological and disease states (Figure 6B).

3.5 CD38 emerges as the top candidate 
gene from the M12.15 module

Through our comprehensive, multi-step prioritization process, 
CD38 consistently emerged as the top candidate gene from 
module M12.15, closely followed by TNFRSF17. Despite the 
relatively low expression levels of CD38 observed in the leukocyte-
specific RNA-seq dataset (GSE60424), the MSP RNA-seq dataset 
(PRJNA898879) showed high expression levels for CD38, meeting 
the cut-off criteria for reliable measurement. Additionally, the 
microarray dataset (GSE100150) analysis revealed that CD38’s 
fold change closely matched the module’s expression pattern 
across various physiological and pathological conditions, 
supporting its potential as a reliable biomarker. The importance 
of CD38 in plasma cell biology and its potential as a therapeutic 
target warrant its inclusion in a targeted assay, even if its detection 
may require optimization of the assay conditions in 
certain contexts.

4 Discussion

In this study, we aimed to demonstrate the potential of LLMs in 
streamlining the knowledge-driven prioritization of candidate genes 
derived from systems-scale profiling data. We focused on module 
M12.15, a plasma cell-associated module from the BloodGen3 
repertoire, which has been linked to various physiological and 
pathological conditions, including antibody responses to vaccines, 
autoimmune diseases, and certain hematological malignancies (14–
17). By prioritizing the constituent genes of module M12.15 and 
selecting the most promising candidate for downstream 
characterization, we sought to showcase the utility of our automated 
LLM-based approach in enhancing the efficiency and scalability of 
candidate biomarker prioritization.

Our approach leveraged the capabilities of GPT-4, Claude 3.5, and 
Consensus GPT to score and rank candidate genes based on 
predefined criteria such as their association with plasma cell responses, 
relevance to leukocyte biology, potential as biomarkers, and 
therapeutic implications. Integrating this LLM-driven analysis with 
expression data from whole blood and leukocyte-specific datasets, 
we identified CD38, TNFRSF17, and IGJ as the top candidate genes, 
with CD38 emerging as a particularly promising target.

The value of our AI-human hybrid framework extends beyond 
merely confirming known plasma cell markers. While our analysis did 
identify CD38, TNFRSF17, and IGJ as top candidates, their selection 
emerged through a systematic, criterion-dependent evaluation process 
rather than predetermined expectations. Our detailed scoring analysis 
revealed the dynamic nature of genes marker rankings, which shifted 
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FIGURE 4

Comparison of scoring results from LLM approaches for the top candidate genes. (A) The line plot displaying the scores generated by Claude3.5/GPT, 
Claude3.5 high-throughput, and Consensus GPT across six key criteria: plasma cell biology, leukocyte biology, clinical biomarker potential, drug target 
status, blood biomarker potential, and therapeutic relevance. (B) Stacked line graph showing the consensus GPT scoring for all six criteria for the top 
five candidate genes. The cumulative scores are represented by the height of each stacked line.
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FIGURE 5

Expression analysis and comparison of top candidate genes in leukocyte-specific and MSP datasets. (A) Stacked bar chart depicting the expression 
levels of CD38, TNFRSF17, IGJ, TOP2A, and TYMS across different cell types in the leukocyte-specific dataset (GSE60424). The y-axis represents the 
expression level in normalized counts, while the x-axis shows the various cell types, including whole blood, neutrophils, monocytes, B cells, CD4, CD8, 

(Continued)
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based on specific evaluation criteria ranging from plasma cell biology 
to therapeutic relevance, demonstrating the capacity of the framework 
for nuanced, multi-dimensional assessment.

CD38, also known as cyclic ADP ribose hydrolase (22, 33), is a 
transmembrane glycoprotein involved in various biological processes, 
including cell adhesion, signal transduction, and calcium signaling 
(34–36). It is strongly associated with plasma cell responses, being 
highly expressed on plasma cells and involved in their survival and 
proliferation (34, 37). CD38 has established clinical relevance as a 
biomarker (38–45) and therapeutic target, particularly in multiple 
myeloma, where anti-CD38 antibodies like daratumumab have shown 
significant efficacy (38). The biological significance and clinical 
relevance of CD38 in plasma cell-related disorders (40–43), along with 
its consistent high scores across our prioritization process, make it a 
compelling candidate for inclusion in a targeted assay.

The role of CD38 in multiple myeloma extends beyond its utility 
as a plasma cell marker. Recent studies have revealed its complex 
functions in the bone marrow microenvironment (46) and its impact 
on disease progression (47). The clinical efficacy of anti-CD38 
monoclonal antibodies, such as daratumumab and isatuximab, has 
been demonstrated in various phases of multiple myeloma treatment, 
including newly diagnosed, relapsed, and refractory settings (47–53). 
These antibodies function through multiple mechanisms, including 
complement-dependent cytotoxicity (CDC), antibody-dependent 
cellular cytotoxicity (ADCC), and direct induction of apoptosis (54–
57). In addition, anti-CD38 therapy has been shown to deplete CD38-
expressing immunosuppressive cells, further enhancing antitumor 
immune responses (48, 58, 59). Given the multifaceted biological roles 
of CD38 and its therapeutic implications, its inclusion in targeted 
assays can facilitate a more comprehensive understanding of plasma 
cell-related disorders and improve the precision of 
therapeutic interventions.

In our analysis, we used a cut-off of 15 read counts and a median 
of 50 read counts to determine the suitability of genes for reliable 
measurement in targeted assays. The 15 read count cut-off was chosen 

based on earlier studies suggesting that expression levels below 10 
counts are considered background or very low (60). In our previous 
study (MSP), we arbitrarily selected a median of 50 read counts as a 
cut-off to filter out low-expressed genes (4) when constructing a panel 
of 192 genes. After panel construction, we observed that all genes with 
a median expression above this threshold were consistently detectable 
using high-throughput RT-PCR (data not shown). These thresholds 
ensure that the selected genes have sufficient expression levels to 
be  reliably measured in targeted assays, reducing the risk of false 
negatives and ensuring the reproducibility of results.

Despite its promising performance in the LLM-based 
prioritization, our analysis of expression data revealed that CD38 has 
relatively low expression levels in the leukocyte-specific dataset 
(GSE60424), failing to meet the cut-off criteria for reliable 
measurement. This finding highlights the potential challenges in 
detecting CD38  in blood-based assays using this dataset  alone. 
However, in contrast, the MSP RNA-seq dataset (PRJNA898879) 
demonstrated high expression levels for CD38, meeting the cut-off 
criteria and suggesting its suitability for reliable measurement in the 
context of pregnancy. These findings highlight the importance of 
integrating data-driven approaches with knowledge-based 
prioritization to ensure the technical feasibility of detecting candidate 
genes in targeted assays. While sensitive methods like RT-PCR or 
RNA-seq with high sequencing depth might still allow for the reliable 
detection of CD38, its low expression levels in certain contexts warrant 
careful validation before final selection.

In the event that CD38 proves to be challenging to detect reliably, 
TNFRSF17 and IGJ, which also showed strong performance in our 
prioritization process, could serve as potential alternative candidate 
genes for module M12.15. TNFRSF17, also known as B-cell 
maturation antigen (BCMA), plays a critical role in the survival and 
differentiation of plasma cells and has emerged as a promising 
therapeutic target for multiple myeloma and other plasma cell 
disorders (61–74). IGJ, on the other hand, exhibited higher expression 
levels and strong correlations with the module average across various 

and NK cells. (B) Box plot illustrating the expression levels of the top candidate genes in whole blood samples from the leukocyte-specific dataset 
(GSE60424). The y-axis represents the expression level in normalized counts, while the x-axis shows the individual genes. The box plot displays the 
median, interquartile range, and outliers for each gene. The dotted lines indicate the 15-count and 50-count thresholds used for assessing the 
suitability of genes for reliable measurement in targeted assays. (C) Scatter plot depicting the expression levels of the top candidate genes across 
individual samples in the MSP dataset (PRJNA898879). The y-axis represents the expression level in normalized counts, while the x-axis shows the 
individual samples. The dotted line indicates the 15-count threshold used for assessing the suitability of genes for reliable measurement in targeted 
assays. The scatter plot highlights the variability in expression levels across samples and the higher overall expression of the candidate genes in the 
MSP dataset compared to the leukocyte-specific dataset.

FIGURE 5 (Continued)

TABLE 1 Flagging candidates with low expression (Step 5a).

Gene Leukocytes (GSE60424) MSP (PRJNA898879)

Median 
Expression

% of 
Samples > 15

Meets 
Criteria

Median 
Expression

% of Samples > 15 Meets 
Criteria

CD38 4.54 0 False 128.86 100 True

TNFRSF17 2.745 0 False 61.32 97.30 True

IGJ 59.8 0 True 1,549 100 True

TOP2A 3.5 0 False 79.71 100 True

TYMS 3.54 0 False 62.23 97.29 True
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conditions in our analysis. As a key component of the secretory 
immunoglobulin complexes IgM and IgA, IGJ plays a crucial role in 
the assembly and transport of these antibodies, which are essential for 
the functions of plasma cells (75–78).

Our current study builds upon and significantly enhances the 
workflow from our previous publications (13, 79) by introducing a 
novel two-step process that combines AI-driven analysis with human 
expertise. This approach not only incorporates additional data-driven 

FIGURE 6

Correlation analysis of top candidate genes with module M12.15 average expression across various conditions. (A) Heatmap showing correlations 
between candidate genes (CD38, TNFRSF17, IGJ, TOP2A, and TYMS) and module M12.15 average expression across 16 medical conditions: patients 
with B-cell deficiency, chronic obstructive pulmonary disease (COPD), pregnancy, multiple sclerosis (MS), juvenile dermatomyositis (JDM), post-liver 
transplantation (liver transplant), melanoma, human immunodeficiency virus infection (HIV), tuberculosis (TB), sepsis, Staphylococcus aureus infection 
(Staph), systemic lupus erythematosus (SLE), influenza virus infection (influenza), respiratory syncytial virus infection (RSV), Kawasaki disease (Kawasaki), 
and systemic onset juvenile idiopathic arthritis (SoJIA). (B) Line plot comparing module average expression (black line) with individual candidate gene 
expression patterns across all conditions, demonstrating the strong correlation of CD38 with overall module behavior.
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steps but also introduces human-augmented scoring and generation, 
addressing key limitations of relying solely on LLM-based knowledge 
synthesis. The first step involves an initial high-throughput screening 
to identify top-tier candidate genes using multiple LLM approaches. 
The second step employs high-resolution scoring and concurrent fact-
checking. In this step, human experts actively validate and refine 
AI-generated scores, ensuring accuracy and relevance. This human-
in-the-loop process allows for real-time adjustments based on expert 
knowledge, significantly enhancing the reliability of our 
gene prioritization.

Furthermore, we have incorporated additional data-driven steps 
to provide a more comprehensive evaluation of gene suitability for 
targeted assays. Step 5a, which focuses on evaluating expression levels 
in whole blood, addresses the critical issue of technical feasibility by 
ensuring that selected genes have sufficient expression for reliable 
measurement in targeted assays. Step 5b, which assesses the correlation 
of each gene with the module average across whole blood 
transcriptome datasets, ensures that selected genes consistently 
represent the module’s behavior across various physiological and 
pathological states.

Importantly, our integrated approach demonstrated the value 
of balancing statistical significance with biological relevance and 
clinical utility. For instance, while purely statistical analysis of 
expression data might prioritize genes like TOP2A and TYMS 
based on strong fold changes or correlation coefficients, our 
framework revealed their limited biological association with 
plasma cell function. This highlights the importance of 
considering multiple dimensions when selecting candidates for 
targeted assays, ensuring that the chosen genes are not only 
statistically significant but also biologically relevant to the context 
of interest.

In conclusion, our study demonstrates the successful development 
of an AI-human hybrid framework for systematic gene prioritization, 
with implications extending beyond the identification of plasma cell 
markers. The significance of our findings lies in establishing a 
structured methodology that combines multiple analytical approaches, 
providing detailed, criterion-specific assessments through multiple 
analytical approaches. This systematic process ensures consistent 
evaluation while maintaining the flexibility to address various research 
contexts and priorities, validating its potential for analyzing diverse 
modules across the BloodGen3 repertoire.

Despite our study demonstrated the utility of LLMs in candidate 
gene prioritization and selection, it is important to acknowledge its 
limitations. The performance of LLMs is dependent on the quality 
and scope of their training data, and they may not capture the most 

recent findings or niche areas of research. Additionally, the 
LLM-generated information is not always factual, requiring manual 
curation and fact-checking. Furthermore, the relative importance of 
the criteria used for gene prioritization may vary depending on the 
specific research question or clinical application, which might require 
the adjustment of weights.

Future research should focus on further validating and refining 
the AI-human hybrid framework across a broader range of biological 
contexts and module repertoires. This could involve applying the 
framework to less well-characterized modules, assessing its 
performance in identifying novel biomarker candidates, and 
comparing its results with those obtained through traditional data-
driven approaches. Additionally, exploring the integration of more 
advanced AI techniques, such as few-shot learning or transfer 
learning, could further enhance the adaptability and efficiency of 
framework in handling diverse datasets and research questions.
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