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Objectives: Glioblastoma (GBM) is a highly malignant brain tumor with 
complex molecular mechanisms. Histopathological images provide valuable 
morphological information of tumors. This study aims to evaluate the predictive 
potential of quantitative histopathological image features (HIF) for molecular 
characteristics and overall survival (OS) in GBM patients by integrating HIF with 
multi-omics data.

Methods: We included 439 GBM patients with eligible histopathological images 
and corresponding genetic data from The Cancer Genome Atlas (TCGA). A total of 
550 image features were extracted from the histopathological images. Machine 
learning algorithms were employed to identify molecular characteristics, with 
random forest (RF) models demonstrating the best predictive performance. 
Predictive models for OS were constructed based on HIF using RF. Additionally, 
we enrolled tissue microarrays of 67 patients as an external validation set. 
The prognostic histopathological image features (PHIF) were identified using 
two machine learning algorithms, and prognosis-related gene modules were 
discovered through WGCNA.

Results: The RF-based OS prediction model achieved significant prognostic 
accuracy (5-year AUC = 0.829). Prognostic models were also developed using 
single-omics, the integration of HIF and single-omics (HIF + genomics, HIF + 
transcriptomics, HIF + proteomics), and all features (multi-omics). The multi-
omics model achieved the best prediction performance (1-, 3- and 5-year AUCs 
of 0.820, 0.926 and 0.878, respectively).

Conclusion: Our study indicated a certain prognostic value of HIF, and the 
integrated multi-omics model may enhance the prognostic prediction of GBM, 
offering improved accuracy and robustness for clinical application.
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1 Introduction

Glioma is the most prevalent primary malignant tumor of the 
brain, accounting for 40–50% of intracranial tumors (1). Glioblastoma 
(GBM), classified as a WHO grade IV glioma, is the most common 
(57.3% of all gliomas) and aggressive form of glioma in adults (2, 3). 
The age-adjusted incidence rate of GBM is 3.22 per 100,000 
population, with a median overall survival (OS) of 12–15 months with 
standard treatment, while population studies suggest a median 
survival of 8–10 months (4, 5). Approximately 7% of GBM patients 
live for at least 5 years after diagnosis, defined as long-term survivors 
(LTS) in previous research (6–8). Conventional treatments of GBM 
include maximal surgical resection, postoperative radiotherapy and 
chemotherapy; however, complete tumor resection is often 
unattainable due to the tumor’s invasive nature and high recurrence 
rate (9). Prognostic factors such as tumor stage, age, pathological 
grade, KPS, extent of resection and certain molecular markers have 
been identified as key indicators of GBM prognosis (10, 11). Therefore, 
as a cancer characterized by multiple genetic and pathway alterations, 
further investigation into comprehensive prognostic markers is critical 
for guiding risk stratification, clinical treatment decisions and survival 
prediction in GBM patients.

GBM derives from glial cells and neurons and exhibits a complex 
gene expression profile with various molecular alterations that drive 
its oncogenesis and progression (12). Notably, isocitrate 
dehydrogenase-1 (IDH-1) and IDH-2 mutations are observed in 
primary (6%) and secondary (70%) GBMs (13). Compared with IDH1 
wild-type, the survival of IDH1 mutant high-grade glioma patients is 
significantly prolonged (14). The O6-methylguanine-DNA 
methyltransferase (MGMT) coded protein involved in methylated 
bases and DNA repair and the methylation status of MGMT promoter 
may be  a significant predictor for sensitivity to chemotherapy or 
radiotherapy (15, 16). Telomerase reverse transcriptase (TERT) can 
activate telomerase to keep the telomeres intact and promote cell 
proliferation. IDH1 mutant gliomas with mutations in TERT promoter 
have exhibited better prognosis (17). Alpha thalassemia/X-linked 
intellectual disability (ATRX) is also discovered as a mutational cancer 
driver in GBM (18). GBM can be classified into subtypes based on 
molecular features, including transcriptional profiles (classical, 
mesenchymal, neural, proneural), genetic mutations (e.g., IDH1 
mutations), and epigenetic alterations (e.g., CpG island methylator 
phenotype, CIMP) and so on (19, 20). Therefore, establishing a 
comprehensive and effective biomarker will be  of great benefit to 
prognostic prediction and therapeutic strategies for GBM patients.

In clinical practice, in addition to imaging examinations such as 
CT and MRI, the final diagnosis is confirmed through 
histopathological biopsy following tumor resection. Histopathological 
images obtained from H&E-stained tumor tissue slides are routinely 
used in definite diagnosis and staging of different cancers. The 
development of computer-assisted medical image processing and 
analysis systems is increasingly employed in digital pathological image 
assessment. These systems can accurately and reproducibly capture 
morphological, structural, and compositional changes in tissues and 
cells, reducing the subjectivity associated with traditional pathologist 
assessments (21). Commonly extracted histopathological image 
features such as texture structure, gray level distribution and 
morphological features including the size and shape of cell and nuclei, 
have demonstrated potential in pathological diagnosis, classification 

and prognosis of human cancers such as breast cancer (22), colorectal 
cancer (23) and lung cancer (24). In addition to histopathological 
images, omics profiles such as genomics, transcriptomics and 
proteomics have also been applied to patient stratification and 
prognostic prediction. Integrating histopathological image features 
with multi-omics data has shown promise in various cancers, 
including renal cancer (25), lung cancer (26) and head and neck 
squamous cell carcinoma (27). Therefore, exploring the integration of 
histopathological image features with omics data holds significant 
potential for prognostic prediction in clinical settings.

In this study, we  focused on the analyses of histopathological 
image features (HIF) and their correlation with genomic and 
transcriptomic profiles, which has not been explicitly demonstrated 
in GBM. We first assessed the overall capacity of HIF in classifying 
somatic mutations, molecular and methylation subtypes of GBM via 
different machine learning approaches. Subsequently, we identified 
the prognosis-related histopathological image features and evaluated 
the underlying correlation with gene expression profiles. Finally, 
we constructed survival prediction models based on various omics 
profiles and their integration. We validate these models with both an 
internal test cohort and an external validation cohort, expecting to 
enhance the accuracy of prognostic prediction for GBM patients.

2 Materials and methods

2.1 Study design and data acquisition

The overall framework of the study is illustrated in Figure 1, and 
the specific process is described in the following sections. We obtained 
a cohort of GBM samples with accessible clinical information, 
genomics and transcriptomics data from The Cancer Genome Atlas 
(TCGA) data portal1 and matched proteomics profile from The 
Cancer Proteome Atlas (TCPA) repository.2 The corresponding H&E 
histopathological images were obtained from The Cancer Imaging 
Archive (TCIA).3 A total of 439 GBM patients were selected from 
TCGA based on the completeness of clinical records and image 
availability of high-quality histopathological images in TCIA, 
excluding cases with incomplete data. All included patients had 
corresponding genomic, transcriptomic, and proteomic data for a 
comprehensive multi-omics analysis. The GBM tissue microarrays 
(TMA) of 67 patients with clinical and follow-up data were purchased 
from Shanghai Outdo Biotech Co., Ltd. (Shanghai, China). Clinical 
information of patients involved in TMA and TCGA cohorts is 
provided in Supplementary materials 2, 3.

2.2 Image processing and feature 
extraction

To extract the quantitative features from whole-slide 
histopathological images, we applied the Openslide Python library 
(28) to segment the images into 1,000 × 1,000 pixel sub-images. 

1 https://portal.gdc.cancer.gov

2 http://tcpaportal.org/tcpa/

3 http://www.cancerimagingarchive.net/

https://doi.org/10.3389/fmed.2025.1510793
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://portal.gdc.cancer.gov
http://tcpaportal.org/tcpa/
http://www.cancerimagingarchive.net/


Huang et al. 10.3389/fmed.2025.1510793

Frontiers in Medicine 03 frontiersin.org

FIGURE 1

The workflow of data analysis and prognostic model construction. (1) The whole-slide histopathological images of GBM were segmented into sub-
images of 1,000 × 1,000 pixels. Through CellProfiler the histopathological image features (HIF) were extracted for subsequent analyses. (2) Image 
feature selection and molecular features prediction based on HIF using different combinations of machine learning algorithms. (3) Construction of 
prognostic models for overall survival in TCGA training set based on HIF genomics, transcriptomics and proteomics data. (4) Selection of prognostic 
histopathological image features (PHIF) by two machine learning methods. Identification of prognostic gene modules and gene pathway analysis were 
performed subsequently.
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Furthermore we randomly selected 50 sub-images on behalf of each 
patient to minimize selection bias and reduce computational load. 
Image feature extraction was conducted by CellProfiler (29),4 an open-
source tool for biological-image analysis. The H&E-stained images 
were converted to grayscale for the extraction of features, which can 
be specifically categorized into 10 aspects including correlation, image 
area occupied, image granularity, image intensity, image quality, object 
intensity, object neighbors, object radial distribution, object size shape 
and texture. In particular, the textural features were calculated by 
CellProfiler to quantitatively present the perceived textures of 
histopathological images, thereby measuring the extent and nature of 
textures within objects in grayscale images. Through automatic 
identification and segmentation, these quantitative features objectively 
interpret the size, shape, spatial distribution, the texture of nucleus 
and the relationship of pixel intensities, etc. Afterwards, each 
sub-image was screened to exclude irrelevant features. Eventually, a 
total of 550 image features were extracted, with the average feature 
values of 50 representative sub-images of each slide calculated for 
subsequent analysis.

2.3 Statistical analysis

2.3.1 Mutations and subtypes prediction
Initially, we randomly assigned the GBM samples into a training 

set and a test set by a ratio of 1:1 using R package “randomizr.” In order 
to reduce overfitting caused by the large number of features, 
we initially employed four machine learning algorithms for feature 
selection to extract the most informative histopathological image 
features (HIFs), including least absolute shrinkage and selection 
operator (LASSO) (30), random forest (RF) (31), gradient boosting 
decision tree (GBDT) (32), and extreme gradient boosting (XGBoost) 
(33). Subsequently, we evaluated eight classifiers including RF, GBDT, 
adaptive boosting (AdaBoost) (34), logistic regression (LR) (34), 
decision tree (DT) (35), support vector machine (SVM) (36), naive 
Bayesian (NB) (37) and K-nearest neighbor (KNN) (38) to determine 
the optimal classification algorithm through the prediction of frequent 
somatic mutations (i.e., ATRX, IDH, MGMT, and TERT) and 
molecular subtypes defined by transcription profiles and epigenetics 
(i.e., classical, mesenchymal, neural, proneural, and G-CIMP) based 
on the selected imaging features and evaluated with 5-fold cross-
validation. By applying multiple approaches, we intended to verify the 
feasibility and stability of the method in different algorithms. Based 
on the test set, the performances of trained classifiers were validated 
and compared respectively, among which RF demonstrated the 
highest predictive accuracy, as evidenced in Supplementary material 1 
and Figure 2.

2.3.2 Survival analysis
For survival analysis, we divided patients in the training cohort 

into two groups based on the median value of individual HIFs, which 
was used for Kaplan–Meier survival analysis and log-rank test to 
compare overall survival (OS) between high-risk and low-risk groups, 
with p  < 0.05 considered statistically significant. Univariate Cox 

4 https://cellprofiler.org/

regression was conducted based on all HIFs as continuous variables 
to determine the hazard ratio (HR) and 95% confidence interval (CI) 
and identify features significantly associated with overall survival.

2.3.3 Data pre-processing and feature selection
To synthetically evaluate the prognostic value of various omics 

data types, we  included independent omics data (HIF, genomics, 
transcriptomics and proteomics) and integration of multiple features 
(HIF + genomics, HIF + transcriptomics, HIF + proteomics and 
HIF + omics) for further analysis. Patients were randomly distributed 
into training and validation sets on a ratio of 1:1, ensuring a balanced 
subset size for model training and independent evaluation to assess 
generalizability. In the training set, we first included the 100 most 
frequent somatic mutations to reduce the dimensionality in genomics 
profile for subsequent analyses. Patients with an overall survival (OS) 
of over 60 months were categorized into the long-term survival group, 
while those with an OS of 1–12 months were placed in the short-term 
survival group. Differentially expressed genes (DEGs) between the 
two groups were conducted using the limma package in R, and the 
top  100 significant DEGs were used for survival prediction. 
Additionally, Metascape5 was employed for enrichment analysis based 
on the genomic profile.

2.3.4 Prognostic models construction and 
validation

Based on the training set, we employed the random forest (RF) 
algorithm with 1,000 decision trees and 5-fold cross-validation to 
construct prognostic models via R randomForestSRC package. The RF 
algorithm is a dimension reduction method that has preferable 
performance in accessing vast amounts of input data and gives 
estimates of the importance of variables. It can also conduct internal 
unbiased estimates of the generalization error and improve model 
accuracy. Meanwhile, the RF includes its own regularization through 
tree pruning and ensemble learning. Furthermore, we  performed 
model validation based on the validation set through the estimation 
of the AUC value of time-dependent ROC. Patients were then assigned 
to high-risk group and low-risk group in line with the median value 
of risk score computed by different models. Kaplan–Meier analysis 
and log-rank test were performed between the groups to evaluate the 
prediction capacity. Moreover, we  carried out the decision curve 
analysis (DCA) based on validation set to compare the net benefit 
under a range of threshold probabilities of each model.

2.4 Selection of prognosis-related 
histopathological image features

Two machine learning methods including least absolute shrinkage 
and selection operator Cox (LASSO-Cox) regression (R package 
“glmnet”) and support vector machines-recursive feature elimination 
(SVM-RFE) (R package “e1071”) were performed independently to 
identify potential informative image features related to prognostic 
prediction. LASSO-Cox regression applies L1 regularization, 
effectively reducing multicollinearity, selecting the most 

5 http://metascape.org

https://doi.org/10.3389/fmed.2025.1510793
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://cellprofiler.org/
http://metascape.org


Huang et al. 10.3389/fmed.2025.1510793

Frontiers in Medicine 05 frontiersin.org

survival-associated features and mitigating overfitting by shrinking 
less relevant coefficients to zero (39). The SVM model can classify data 
points by maximizing the distance of the hyperplane with high 
accuracy, thus identifying predictive models or classifiers. SVM-RFE 
is a feature selection algorithm according to recursive feature deletion 
sequences with maximum interval principle. It ranks features based 
on their contribution to classification performance, iteratively 
eliminating the least informative ones. The integration of LASSO-Cox 
and SVM-RFE has been demonstrated to improve the model’s 
generalizability and predictive performance by reducing overfitting 
and enhancing feature selection reliability (40, 41). Eventually, the 
features within the intersection of the results by two algorithms were 
identified as the prognostic histopathological image features (PHIF).

2.5 Gene co-expression network analysis

We performed weighted gene co-expression network analysis 
(WGCNA) based on training set to investigate the association of the 

prognostic histopathological image features and corresponding gene 
expression, aiming to further understand the upstream biological 
mechanisms. WGCNA (42) has been applied to identify modules of 
genes with highly correlated expression by analyzing the connections 
between corresponding genes and converting the expression profile 
into the weighted network. Co-expressed gene networks may facilitate 
the identification of underlying biological processes, candidate 
biomarkers and certain clinical traits. Additionally, we  applied 
Metascape for enrichment analysis to estimate the interlinkage 
between key modules.

3 Results

3.1 Prediction performance of HIF on 
somatic mutations and molecular subtypes

In total we  included 439 GBM patients with the matched 
information of histopathological images and other omics from TCGA 

FIGURE 2

The predictive power of HIF in molecular features. Four machine learning algorithms (GBDT, LASSO, RF, and XGBoost) were applied for feature 
selection. Eight machine learning classifiers (RF, GBDT, Addaboost (ADABAG), LR, DT, SVM, NB, and KNN) were applied for molecular feature 
classification.
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portal. To minimize overfitting caused by high-dimensional image 
features, we initially employed XGBoost, GBDT, LASSO, and RF for 
feature selection and extracted 550 histopathological image features 
(HIFs) out of the segmented tumor tissue images. Subsequently, to 
evaluate the clinical practicability of the 550 HIFs, we employed eight 
algorithms (RF, GBDT, AdaBoost, LR, DT, SVM, NB, and KNN) as 
classifiers in predicting four common somatic mutations (ATRX, 
IDH, MGMT, and TERT) and five RNA-based molecular subtypes 
(classical, mesenchymal, neural, proneural, and G-CIMP). 
We  systematically compared the predictive performances of all 
classifiers across multiple molecular features, and RF consistently 
achieved the highest predictive accuracy among the eight classifiers, 
independent of the feature selection method used. The AUC values for 
RF models showed superior classification ability across all tested 
molecular characteristics as shown in Figure  2 and 
Supplementary material 1. Therefore, we selected RF as a robustly 
performed algorithm for subsequent prognostic model construction. 
Additionally, the HIF models validated by GBDT and AdaBoost 
(ADABAG) also achieved a relatively accurate classification effect 
under different feature screening methods, which indicates the clinical 
practicability of HIFs in distinguishing the somatic mutations and 
molecular subtypes of GBM.

3.2 Prognostic value evaluation of 
histopathological image features

To assess the correlation between histopathological image features 
(HIFs) and the prognosis of GBM patients, we  conducted survival 
analyses based on individual HIFs. We first assigned the patients into 
two groups in line with the median value of each HIF (higher than 
median vs. lower than median) for survival analyses. Afterwards, 
we carried out univariate Cox analyses based on all HIFs to identify 
protective prognostic imaging factors, and the top  20 features 
significantly correlated with the overall survival (OS) was demonstrated 
in Figure 3A. The four most significant HIFs, with the smallest p-value 
included one Zernike shape feature (Median_Cells_AreaShape_
Zernike_5_5) and three cell texture features (Mean_Cells_Texture_
Contrast_3_45, Mean_Cells_Texture_DifferenceEntropy_3_45 and 
StDev_Cells_Texture_SumAverage_3_0). In particular, Zernike features 
are a series of 30 shape features based on Zernike polynomials, ranging 
from order 0 to order 9, which have been frequently extracted for 
representing the shape parameters in cell nucleus. Cell texture features 
quantify the correlations between nearby pixels in the regions of interest, 
which suggests that the global modes of cell nuclei and cytoplasm are 
all related to clinical survival outcomes. The Kaplan–Meier survival 
curves of four image features indicated significant differences between 
groups with high-value and low-value features, demonstrating the 
feasibility of HIFs in predicting the survival of GBM patients 
(Figure 3B).

Additionally, according to the expression level of the four 
predictive features mentioned above, we evaluated the sub-images 
of high-expressed and low-expressed prognostic features. 
We utilized TCGA internal validation and TMA external validation 
cohorts to assess the robustness of the predictive models and 
reduce the potential overfitting to the specific characteristics of the 
initial dataset. These validation steps serve as important safeguards 
against overfitting and bias, which enhances the reliability of our 

models across diverse datasets. The patients were identified as 
high-risk and low-risk groups based on the median value of risk 
scores, and the representative histopathological sub-images 
showed visible differences in TCGA and TMA external validation 
cohorts (Figure  3C). The image processing involving cell 
recognition and segmentation was conducted by CellProfiler, and 
different cell types were also outlined.

3.3 Integrated prognostic model of 
histopathological image features and 
genomics

To develop a more accurate predictive model for overall survival 
(OS) in GBM patients, we estimated the prognostic value of genetic 
profiles and further incorporated the HIFs with genomics data. 
Patients were randomly assigned into training (n = 136) and validation 
(n = 135) sets. To enhance the stability of the measurement, 
we estimated the mutation status of genes in training set and included 
the 100 most common somatic mutations in the prognostic model to 
reduce the dimensionality of the genomics data. The top 15 genes with 
the most frequent alterations are presented in Figure 4A. Based on the 
HIFs and 100 mutations we constructed prognosis-relate models in 
the training set. We applied time-dependent ROC in the validation set 
since it is more appropriate to represent time-to-event outcomes in the 
prognostic models compared to the classical ROC curve analysis 
approach (43). As illustrated in Figures  4C–E, the AUCs for 
histopathological image features (HIF) model exceeded those of 
genomics (G) model in 1-year (0.715 vs. 0.634), 3-year (0.813 vs. 
0.723) and 5-year (0.829 vs. 0.692) respectively. Moreover, the 
integrated model of HIF and genomics (HIF + G) reached a better 
predictive capacity in 3-year and 5-year (AUC = 0.826 and 0.834) than 
the former two single-omics models. According to the median value 
of risk score acquired from each model, the patients were then divided 
into high-risk and low-risk groups. The HIF model and integrative 
model (HIF + G) showed more accurate prognostic performance 
(HR = 3.86, 95%CI: 2.67–5.30, p < 0.001, Figure  4) as depicted in 
Kaplan–Meier curves (Figure 4B).

To further validate the predictive power of the prognostic model, 
we implemented an external verification using the TMA-GBM cohort. 
Patients in the external validation set were also divided into high-risk 
and low-risk groups according to the median risk score. The Kaplan–
Meier survival curve revealed a significant difference in survival 
probability between the groups (p = 0.039, Figure 4F). The 1-year, 
3-year and 5-year AUCs of time-dependent ROC were 0.716, 0.712, 
and 0.703, respectively (Figure  4G). The results thus verified the 
prognostic capacity of the HIFs in GBM patients.

3.4 Integrated prognostic model of HIF and 
transcriptomics

Transcriptomics can serve as an approach for a comprehensive 
understanding of the interconnection between the genome, proteome, 
and cellular phenotype by analyzing the RNA transcripts that reflect 
the underlying genotype. Based on the training set, we involved 100 
whole expressed mRNA genes to decrease the dimensionality and 
further build the transcriptomics predictive model of OS. The patients 
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were categorized into short-term group (deceased, 12 months ≥ OS 
≥1 month) and long-term group (OS ≥60 months) according to the 
clinical survival status (4, 5, 7, 8). In addition, we applied Metascape 
for pathways enrichment in the short-term survival group based on the 
mRNA sequencing data (Figure 5A). Regulation of insulin-like growth 

factor (IGF) transport and uptake by insulin-like growth factor binding 
proteins (IGFBPs) has been proven to modulate essential cellular 
processes and be implicated in certain disorders including malignant, 
metabolic and immune diseases (44, 45). Previous studies have 
reported the potential effect of IGF in biological processes associated 

FIGURE 3

Univariate survival analyses based on HIF. GBM patients were assigned into high-risk and low-risk group according to the median value of each feature. 
(A) Hazard ratio of survival difference between two groups in univariate Cox regression. (B) Kaplan–Meier curves for groups with high-value and low-
value “Median_Cells_AreaShape_Zernike_5_5,” “Mean_Cells_Texture_Contrast_3_45,” “Mean_Cells_Texture_DifferenceEntropy_3_45” and “StDev_
Cells_Texture_SumAverage_3_0.” (C) Representative sub-images of high-risk and low-risk groups in both TCGA and TMA validation cohorts.
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with tumor growth and invasion inhibition in GBM (46), which may 
suggest a new effective target for anti-cancer treatment strategies.

As demonstrated in the validation set, the transcriptomics model 
(RNA) displayed a good predictive performance for OS (1-year 
AUC = 0.751, 3-year AUC = 0.795 and 5-year AUC = 0.809), which were 
about equal to the HIF model (1-year AUC = 0.722, 3-year AUC = 0.815 
and 5-year AUC = 0.835). Furthermore, we  incorporated the 

transcriptomics and image features as the integrated model (HIF + RNA), 
which achieved the highest accuracy with the 1-year, 3-year and 5-year 
AUC increased to 0.769, 0.831 and 0.848 (Figures 5C–E). Additionally, 
Kaplan–Meier survival analyses also revealed significant differences in 
survival outcomes between the two groups, with the integrative 
HIF + RNA model presenting the most notable prognostic value 
(HR = 7.15, 95%CI: 4.51–10.41, p < 0.001, Figure 5B).

FIGURE 4

Prognostic models integrating HIF and genomics. (A) The waterfall plot of the top 15 most common somatic mutations in training set. (B) Kaplan–
Meier curves of histopathological image features model (HIF), genomics model (G) and integrative histopathology + genomics model (HIF + G) in the 
validation set. (C–E) The (C) 1-year, (D) 3-year, and (E) 5-year area under the time-dependent receiver operating curve (AUC) of the three prognostic 
models in the validation set. (F) Kaplan–Meier curves of high-risk group and low-risk group in the TMA external validation cohort. (G) Time-dependent 
ROC of 1-year, 3-year, and 5-year OS in the TMA external validation cohort.
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3.5 Integrated prognostic model of HIF and 
proteomics

To improve the prognostic prediction of GBM we  also 
incorporated proteomics profile from TCPA portal for further analysis 
through the reverse phase protein array (RPPA), a high-throughput 
proteomics method that can assess protein expression and activation 
states in abundant samples using small amounts of material. In total 
we involved 179 eligible protein profiles in the proteomics model based 
on the validation set. The integration of image features and proteomics 
features (HIF + P) achieved the highest AUCs in 1-year, 3-year and 
5-year compared with the proteomics model (0.752 vs. 0.743, 0.835 vs. 
0.813, 0.854 vs. 0.818) or the HIF model alone (Figures 6A–C). As 
shown in the survival analyses, patients in the high-risk group were 
significantly related to poor OS, and the integrated model (HIF + P) 
attained the best performance in prognosis prediction among the three 
models (HR = 6.35, 95%CI: 4.05–9.20, p < 0.001, Figure 6D).

3.6 Integrated multi-omics features for 
survival prediction

According to the previous analyses, the histopathological image 
features have presented certain effectiveness in prognostic prediction 
for GBM patients, and histopathology + omics models have also 
indicated enhancement in predictive performance and accuracy than 

the single-omics models. Therefore, we  expect to explore the 
prognostic capacity of a multi-omics predictive model incorporating 
all the omics features (HIF, genomics, transcriptomics, and 
proteomics). Based on the validation set, the multi-omics model 
achieved a 1-year AUC of 0.820, 3-year AUC of 0.926 and 5-year AUC 
of 0.878, representing an improvement over the HIF + genomics, 
HIF + transcriptomics and HIF + proteomics models (Figure 7A). 
Kaplan–Meier survival analysis illustrated a significant difference in 
survival between high-risk and low-risk groups (HR = 13.14, 95% CI: 
7.95–25.95, p < 0.001, Figure  7B). Furthermore, the multi-omics 
model demonstrated superior net benefit in survival prediction 
compared to the other models (Figure 7C).

In order to identify the histopathological image features with 
higher prognostic value for OS, LASSO-Cox regression and SVM-RFE 
were performed independently. These combined approaches help 
mitigate the risk of overfitting and ensure the robustness of selected 
features across different selection frameworks. Previous studies (39–
41) have demonstrated that the combination of LASSO and SVM-RFE 
enhances the reliability of prognostic feature identification in cancer 
research. A total of five imaging features involved in prognosis were 
selected via LASSO-Cox regression model, and SVM-RFE selected 12 
imaging features with the most significant predictive ability. 
Ultimately, three overlapped features were identified as prognostic 
histopathological image features (PHIF), including StDev_Cells_
AreaShape_FormFactor, StDev_Cells_AreaShape_Orientation and 
Mean_Cells_Texture_InfoMeas1_MaskedHematoxylin_3_90 

FIGURE 5

Prognostic models integrating HIF and transcriptomics (RNA). (A) Metascape enrichment network visualization cluster of genes and associated 
biological pathways based on training set. Each circled node represents a term and each color represents its cluster identification, showing the intra-
cluster and inter-cluster similarities of enriched terms. (B) Kaplan–Meier curves of prognostic models (HIF, RNA, and HIF + RNA) in the validation set. 
(C–E). The (C) 1-year, (D) 3-year and (E) 5-year AUCs of the three prognostic models in the validation set.
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(Figures 8A,B). Representative sub-images and detailed information 
of patients with high expressed and low expressed PHIF were 
displayed in Figure 8C and Supplementary material 4.

To explore the upstream genetic mechanisms, we  employed 
WGCNA to construct a gene co-expression network in the training 
set and identify the gene clusters significantly correlated with the 
PHIF in GBM samples. Module-trait correlation analysis showed that 
the red module (219 genes) and turquoise module (868 genes) were 
significantly associated with the three prognostic image features of 
GBM among the six identified gene co-expression modules 
(Figure 9A). Therefore, we defined the red and turquoise module as 
the key modules of significant prognostic relevance for 
subsequent research.

Subsequently, we performed an enrichment analysis to explain the 
biological interpretations of the gene expression profile in the two 
modules. Genes in the red module were significantly related to several 
biological processes and pathways such as defense response to other 
organism, myeloid leukocyte activation, leukocyte cell–cell adhesion, 
activation of immune response and response to bacterium (Figure 9B). 
The results indicated that these genes may be involved in immune 

function, a crucial aspect of tumor immunology, which plays an 
important role in tumor initiation and progression. The genes in the 
turquoise module were primarily enriched in categories related to cell 
morphogenesis involved in differentiation, regulation of neuron 
differentiation and nervous system development, synapse organization 
and signaling (Figure  9C). These findings implied that turquoise 
module genes may have potential association with central nervous 
system pathways and cerebral function, which may correspond to 
tumorigenesis and progression in GBM.

4 Discussion

In this study, we  extracted quantitative image features from 
histopathological images of GBM patients, and subsequently 
constructed machine learning classifiers based on the HIFs to 
discriminate the common molecular features of GBM. A predictive 
model incorporating HIFs was established in the training set, with its 
prognostic validity subsequently verified in both internal and external 
validation cohorts. The results demonstrated the prognostic 

FIGURE 6

Prognostic models integrating HIF with proteomics (P). (A–C) The (A) 1-year, (B) 3-year and (C) 5-year AUCs of the three prognostic models (HIF, P and 
HIF + P) in the validation set. (D) Kaplan–Meier curves of the three prognostic models in the validation set.
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robustness of the predictive model. To enhance the predictive 
performance, comprehensive prognostic models were built by 
integrating HIFs with multi-omics data. Based on machine learning 
approaches, we selected prognostic histopathological image features 
(PHIF) and identified gene modules most strongly correlated with 
PHIF through bioinformatics techniques. Notably, the predictive 
power of OS in patients was significantly enhanced in multi-omics 
models compared with the single-omics models, suggesting that this 
approach may be promising for risk stratification and individualized 
treatments for GBM patients.

Based on histopathological image features, we performed the 
prediction of the common somatic mutations (ATRX, IDH, and 

TERT) and methylation (MGMT) in GBM through combinations 
of eight independent machine learning algorithms. IDH mutations, 
which occur in approximately 12% of GBM cases, are a well-
established prognostic marker associated with prolonged OS (47). 
The mutation can induce downstream effects on cellular 
metabolism and epigenetic regulation (48). Previous studies have 
reported the predictive value of MRI radiomics models for 
identifying IDH1 mutations in GBM (49, 50), as well as the 
characterization of core signaling pathways in IDH wild-type 
tumors (51). The prediction ability of histopathological image 
features in IDH mutation has not been widely explored, while it 
may represent an important avenue for further research in 

FIGURE 7

Prognostic models of survival integrating HIF and multiple omics features. (A) AUCs of multi-omics model in the validation set. Kaplan–Meier curve of 
multi-omics model (integrating HIF, radiomics, genomics, transcriptomics, proteomics) in the validation set. (B) Decision curves analysis for different 
models in the validation set. (C) The gray oblique line represented the net benefit of intervention for all patients, while the horizontal line represented 
the net benefit of no intervention. The multi-omics model achieved higher net benefit than single-omics models across the major range of threshold 
probability.
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FIGURE 8

Selection of prognostic histopathological image features (PHIF). (A) Twelve image features were selected by SVM-RFE. (B) Five image features were 
selected by LASSO-COX regression model. Three image features within the overlap were defined as PHIF. Three image features within the overlap 
were defined as PHIF. (C) Representative sub-images of patients with high expressed and low expressed PHIF. The groups were defined by the median 
value of each image feature.
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prognostic evaluation and targeted therapies for GBM. MGMT 
methylation status and TERT promoter mutations have also been 
recognized as powerful diagnostic and prognostic indicators in 
GBM (2, 52). Meanwhile, we also conducted the prediction of four 
mRNA-based molecular subtypes (classical, mesenchymal, neural, 
proneural) and the G-CIMP methylator phenotype. The prognostic 
significance of G-CIMP+ subsets among glioma types has been 
investigated in previous studies (53, 54). For instance, 1p/19q 
codeletion and MGMT promoter methylation may act as 
therapeutic predictive markers in GBM (55). Our random forest 
predictive model based on HIFs exhibited certain accuracy and 
effectiveness in predicting GBM molecular characteristics, which 
may contribute to improving current clinical examinations and 
diagnostic practices.

Subsequently, we  constructed prognostic models through 
random forest algorithm based on single-omics and integrated 
multi-omics data. Image features of histopathology tissue slides 
can infer morphological changes in tumor cells and 
microenvironment, which have proven valuable in identifying 
pathology biomarkers and predicting clinical outcomes through 
machine learning techniques (56–58). A fair number of 
computational histopathologic models have also been applied in 

the prognostic prediction of diseases such as breast (59), lung (60) 
and colorectal cancers (61). Consistent with previous studies, the 
image features with significant prognostic power of OS we selected 
primarily pertained to Zernike and cell texture (i.e., contrast, sum 
average, and difference entropy). Zernike shape features in nuclei 
and cytoplasm are extracted frequently to identify long and short 
term survival (62). In addition, the texture features are frequently 
used to represent the distribution and variation of pixel intensity, 
as well as the relationship between pairs with different intensity 
values in the regions of interest. While many studies have 
established prognostic modules based on single-omics data source 
or combination of quantitative histopathological image features 
and genomics features (21, 53), our study focused on a more 
comprehensive evaluation of image features to provide additional 
prognostic efficiency and precision of the prognostic model. By 
integrating HIFs with genomics, transcriptomics and proteomics 
data, we  developed a multi-omics model incorporating all 
features, which eventually achieved superior prediction 
performance compared to other models. Additionally, we further 
proposed external validation by involving an extra TMA cohort, 
further supporting the robustness and generalizability of 
our findings.

FIGURE 9

Identification of co-expressed gene modules. (A) Heatmap of the relationship between gene modules and prognostic histopathological image features 
(PHIF) through WGCNA. The red module and turquoise module showed the most significant correlation. (B) Metascape enrichment network of genes 
in the red module. Each circled node represents a term and each color represents its cluster identification, showing the intra-cluster and inter-cluster 
similarities of enriched terms. (C) Metascape enrichment network of genes in the turquoise module.
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An intriguing observation in our study was that the model 
based solely on HIFs slightly outperformed the combined HIF and 
genomics (HIF + G) model in terms of predictive performance, as 
shown in Figure 4B. This unexpected finding prompted further 
reflection on the interaction between histopathological and 
genomic data in prognostic modeling. One possible explanation 
lies in feature redundancy and confounding effects that HIFs 
inherently capture tumor morphological and microstructural 
features, which may already correlate with patient prognosis. The 
addition of genomic features that provide overlapping or weakly 
correlated prognostic signals may introduce noise rather than 
improving predictive accuracy. This aligns with established 
principles in machine learning, where the mere inclusion of 
additional variables does not necessarily enhance model 
performance; instead, feature interactions must be  carefully 
managed to avoid confounding effects. Moreover, the non-linearity 
between histopathological and genomic data may contribute to 
this outcome. While HIFs reflect macroscopic tumor morphology, 
genomic alterations influence prognosis through intricate 
molecular pathways that may not exhibit direct correlations with 
image-derived features. Traditional machine learning models may 
struggle to capture these complex interactions effectively, 
highlighting the need for alternative fusion strategies such as deep 
learning or graph neural networks to better integrate data from 
different modalities.

Despite the robust predictive power of HIFs alone, we emphasize 
the importance of multi-omics integration for comprehensive patient 
profiling. While the HIF + G model did not significantly outperform 
the HIF model alone, the incorporation of transcriptomic and 
proteomic data substantially improved the accuracy of our prognostic 
models. This suggests that multi-omics integration holds promise for 
enhancing model generalizability and robustness across diverse 
patient populations. Further optimization of feature selection and 
model refinement will be necessary to fully leverage the potential of 
multi-omics data.

Through SVM-RFE and LASSO-Cox regression machine learning 
algorithms, we identified three prognostic histopathological image 
features (PHIF) concerning cell morphology and texture. We also 
explored the upstream molecular mechanisms of these features by 
identifying relevant gene co-expression modules via weighted gene 
co-expression network analysis (WGCNA). Enrichment analysis of 
the red and turquoise gene modules demonstrated significant 
prognostic association with molecular pathways mainly involved in 
immune response, cell morphogenesis involved in differentiation, 
development and regulation of central nervous system function. For 
instance, leukocyte cell adhesion plays a crucial role in the progression 
and resolution of innate immunity (63). Myeloid leucocyte activation 
reveals exposure to activating factors and has been regarded as one of 
the major forces in immunosuppression in tumor progression (64). 
The genes enriched in cell morphogenesis related pathways might 
suggest the association with tumor angiogenesis and cell adhesion. In 
addition, regulation of neuron differentiation, trans-synaptic signaling 
and gliogenesis also suggest a close connection with biological 
processes in GBM development (65–67). The results may offer an 
opportunity to comprehend the association of histopathological image 
features and the upstream mechanisms of the oncogenesis and 
progression of GBM.

In conclusion, this study demonstrated the potential of 
histopathological image features in predicting molecular 
characteristics and classifying molecular subtypes. By integrating 
histopathological image features with multi-omics data, we developed 
comprehensive prognostic models and subsequently analyzed the 
associated upstream biological processes. The integrative multi-omics 
model has the potential to enhance prediction performance for OS 
with greater accuracy and robustness, thereby contributing to risk 
stratification, prognostic evaluation, and personalized treatment 
strategies for GBM patients.

However, several limitations should be addressed. Firstly, while the 
prognostic models were validated using an external TMA cohort to 
assess prediction stability, a larger-scale multi-center dataset is needed to 
enhance the applicability and reliability of our findings. Secondly, the 
genomic features of patients with intermediate survival (12–60 months) 
warrant further investigation, as they may provide additional insights 
into treatment response and prognostic markers. Additionally, 
discrepancies and potential biases in multi-omics data could impact the 
results. Future research should explore alternative data integration 
strategies to optimize the synergy between histopathology and molecular 
alterations. We also acknowledge the lack of unified visualization for all 
survival curves and model comparisons. Although constrained by 
computational limitations, we  recognize the value of such visual 
summaries and are committed to improving model visualization and 
interpretability in future work, hoping to provide clearer insights for both 
clinical and research applications. Lastly, further clinical and 
experimental research is required to elucidate the molecular mechanisms 
underlying the relationship between histopathological image features 
and survival outcomes in GBM patients.
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Glossary

AdaBoost - Adaptive boosting

AUC - Area under the curve

CI - Confidence interval

DCA - Decision curve analysis

DEG - Differently expressed gene

DT - Decision tree

GBDT - Gradient boosting decision tree

GBM - Glioblastoma

HIF - Histopathological image features

HR - Hazard ratio

KNN - K-nearest neighbor

LASSO - Least absolute shrinkage and selection  
operator

LR - Logistic regression

NB - Naive Bayesian

OS - Overall survival

PHIF - Prognostic histopathological image features

RF - Random forest

ROC - Receiver operating characteristic

SVM - Support vector machine

TMA - Tissue microarrays

WGCNA - Weighted gene co-expression network  
analysis

XGBoost - Extreme gradient boosting
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