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Introduction: Accurate segmentation of pelvic fractures from computed
tomography (CT) is crucial for trauma diagnosis and image-guided reduction
surgery. The traditional manual slice-by-slice segmentation by surgeons is time-
consuming, experience-dependent, and error-prone. The complex anatomy of
the pelvic bone, the diversity of fracture types, and the variability in fracture
surface appearances pose significant challenges to automated solutions.

Methods: We propose an automatic pelvic fracture segmentationmethod based
on deep learning, which e�ectively isolates hipbone and sacrum fragments
from fractured pelvic CT. The method employs two sequential networks: an
anatomical segmentation network for extracting hipbones and sacrum from CT
images, followed by a fracture segmentation network that isolates the main and
minor fragments within each bone region. We propose a distance-weighted loss
to guide the fracture segmentation network’s attention on the fracture surface.
Additionally, multi-scale deep supervision and smooth transition strategies are
incorporated to enhance overall performance.

Results: Tested on a curated dataset of 150 CTs, which we have made publicly
available, our method achieves an average Dice coe�cient of 0.986 and an
average symmetric surface distance of 0.234 mm.

Discussion: The method outperformed traditional max-flow and a transformer-
based method, demonstrating its e�ectiveness in handling complex fracture.

KEYWORDS

CT segmentation, deep learning, pelvic fracture, reduction planning, image-guided

surgery

1 Introduction

Pelvic fractures are classified as one of the most severe forms of orthopedic injury,

typically resulting from high-energy trauma. A study involving 11,149 patients has

demonstrated that pelvic fracture leads to a mortality of 14.2%, significantly higher than

other types of injuries (1). The anatomical complexity of the pelvic ring involves numerous

muscle groups, ligaments, neurovascular bundles, and other soft tissues, making its surgical

intervention the most challenging one and posing significant treatment obstacles (2).

The goal of surgical management for pelvic fractures is to restore the bone’s original

anatomy to regain lost functional mobility. This process is categorized into open reduction

and closed reduction surgeries. Open reduction surgery often necessitates extensive

dissection, leading to considerable tissue damage and an elevated risk of complications.

In contrast, closed reduction surgery is desired for its minimally invasive nature and hence
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the reduced recovery time (3). In recent years, the exploration

and clinical implementation of robotic-assisted closed fracture

reduction surgery have significantly enhanced the accuracy of

fracture reduction while minimizing radiation exposure for both

patients and surgeons (4). Regardless of whethermanual or robotic-

assisted reduction is employed, segmentation of the fractures

from preoperative computed tomography (CT) is crucial. This

step is fundamental for trauma diagnosis and reduction planning,

aiming to identify and determine the optimal anatomical reduction

position to restore the natural state of the pelvic bone.

Conventionally, semi-automated approaches are employed

to delineate the anatomy of pelvic fractures. The initial steps

involve thresholding and region-growing techniques to extract

bone regions by adjusting the threshold and precisely locating

seed points (5). Subsequently, the fracture surface is manually

outlined, either by refining segments in a 3D view or by editing the

segmentation masks on a slice-by-slice basis. This labor-intensive

process often takes more than 30 minutes, especially when fracture

fragments are intertwined or partially attached (6). Furthermore,

the complexity and the induced variability of pelvic fractures

mean that manual segmentation relies heavily on the clinician’s

experience, highlighting a pressing need for an automated solution

for segmenting pelvic fracture fragments from CT images.

Deep learning has been successfully applied to various

bone segmentation tasks, demonstrating its effectiveness (7).

Nevertheless, learning-basedmethods specifically addressing pelvic

fracture segmentation remain under-explored. Several factors in

image characteristics contribute to this challenge:

• The intricate anatomy of the fractured pelvis, combined

with surrounding bones such as sacralized lumbar vertebra,

fractured vertebra or femur, and the potential presence

of patient’s hands during CT scanning, complicates the

differentiation of pelvic bones.

• Unlike the more prevalent organ segmentation tasks, where

models can often intuitively grasp the typical shape of an

object, discerning the shape of bone fragments is more

complex due to the significant variation in fracture types and

morphologies (8).

• The actual fracture surface is diverse in its presentation. It

can manifest as a vast space when fragments are isolated and

displaced, a minor gap when fragments are isolated but stable,

a crease when fragments are not fully separated, compression

when fragments collide, or a blend of these scenarios. This

diversity results in quite different image intensity profiles

around the fracture site.

• The inconsistency in the number of bone fragments present

in pelvic fractures poses a challenge in establishing a uniform

labeling approach suitable for every fracture type and case.

In this study, we propose a deep learning-based method to

segment pelvic fracture fragments from preoperative CT images.

Our major contributions are threefold:

• We proposed a completely automated pipeline for pelvic

fracture segmentation, which is the first attempt to apply deep

learning to this task to the best of our knowledge.

• We designed a novel multi-scale distance-weighted loss to

boost segmentation accuracy near fracture sites, incorporating

deep supervision and a smooth transition strategy during

training to elevate local accuracy without compromising the

overall performance.

• We curated a benchmark dataset of pelvic fracture CT

images, encompassing 150 fractured cases with well-annotated

ground-truth anatomical and fracture labels.

Our dataset and source code have been made publicly available

at https://github.com/YzzLiu/FracSegNet.

2 Related work

2.1 Medical image segmentation

The encoder-decoder architecture introduced by U-Net has

established a strong foundation for both 2D and 3D medical image

segmentation tasks (9), (10). Subsequent models such as U-Net++

and V-Net have refined this approach with improvements like

nested skip connections and volumetric convolutions (11), (12).

More recently, researchers have enhanced U-Net by integrating

new architectural concepts. Transformer-based hybrids, including

Swin-UNETR and TransUNet, incorporate global context through

self-attention mechanisms, while CNN-focused enhancements

such as MedNext and STU-Net improve feature extraction

using advanced convolutional techniques (13–16). Additionally,

innovative models like U-Mamba employ state-space models

to better capture long-range dependencies (17). Furthermore,

systematic benchmarking, as demonstrated by nn-UNet, reveals

that careful attention to implementation details, such as the

choice of loss function and data augmentation strategies, can yield

performance gains that rival or even surpass those achieved by

novel architectural designs (18).

2.2 Bone segmentation

Bone segmentation methods can be broadly categorized

into traditional approaches based on intensity, template-based

methods, and deep learning-based methods (19–21). Traditional

intensity-based approaches often struggle with the distinct intensity

discrepancies between cortical and trabecular bones, compounded

by the overlapping intensity ranges between trabecular bones

and soft tissues. This often results in the formation of hollows

within the segmentation masks. Such inaccuracies are particularly

problematic in tasks like screw fixation planning, where a

precise understanding of the pelvic bone topology is critical (19).

Template-based methods involve registering a CT scan with a

healthy template and employing graph partitioning techniques

to propagate labels. However, this strategy heavily relies on the

accuracy of registration and can yield unreliable results in the

presence of fractures (20). Deep learning-based bone segmentation

has demonstrated significant success across various anatomies,

such as the pelvis, ribs, spine, and skull (22–25). Liu et al.

applied a cascade 3D UNet for the anatomical segmentation of
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the hipbone, sacrum, and lumbar vertebrae in CT, demonstrating

the effectiveness and robustness of deep learning methods in pelvic

bone segmentation (22).

2.3 Fracture detection

The application of deep learning in handling fractured images

was initially explored in fracture detection tasks aimed to facilitate

diagnosis. It has been applied across various anatomical sites,

including the hand, ribs, pelvis, and spine (26, 27), (28, 29). Notably,

Jin et al. formulated rib fracture detection as a segmentation

task. While this provided a rough outline of the fractured region,

it is not capable of delineating the fracture surface and the

fragment accurately (27). In the context of pelvic fractures, Ukai

et al. integrates parallel 2D YOLOv3 models to detect pelvic

fractures and subsequently combines 2D fracture candidate points

to delineate the 2D fracture region (28). Additionally, Zeng et

al. propose a two-stage structure-focused contrastive learning

strategy that effectively exploits the symmetry of pelvic structures

for fracture detection (30). While these methods can provide

substantial aid in trauma diagnosis and clinical decision-making,

they fall short in applications requiring precise delineation of

fragments for image-guided surgery.

2.4 Fracture segmentation

Various methods have been explored to isolate fractured bone

fragments from CT scans, including fixed or adaptive thresholding,

watershed algorithms, non-rigid registration, sheetness-based

approaches, and region growing (6, 31–34). These techniques

generally rely on the intensity similarity and continuity of boundary

gradients to segment fractures. For instance, Yuan et al. proposed a

semi-automatic graph cut method based on continuous max-flow

to segment pelvic fractures, which involves manual selection of

seed points and a trial-and-error process (5, 35). Similarly, Wang

et al. developed an automatic max-flow segmentation approach

using graph cuts and boundary-enhancing filters. While effective in

separating fragments, this method often struggles with fragments in

collision or compression (36). Despite these advancements, a fully

automatic and robust solution for fracture segmentation remains

elusive.

Deep learning fracture segmentation remains a relatively

under-explored area, yet several studies have demonstrated its

significant potential. For instance, Yang et al. applied a two-

stage Mask R-CNN model to locate and segment intertrochanteric

fractures in 2D images (37). Kim et al. leverages a DeepLab

model to automatically segment bone fragments in tibia and

fibula from CT scans (38). Furthermore, Wang et al. employed

the V-net architecture for segmenting intertrochanteric femoral

fractures (39). Data size has been identified as a common challenge

in these studies that limits the segmentation accuracy, especially

for small bone fragments. This limitation underscores the need for

innovative solutions in both the development of robust datasets and

the more efficient use of available data.

2.5 Di�erences from the conference
version

This study expands upon our initial conference paper presented

at the 26th International Conference onMedical Image Computing

and Computer Assisted Intervention (MICCAI 2023), advancing

the original work in its performance, depth, and practical

utility (40). Firstly, we have enhanced the fractured CT dataset with

a larger patient cohort, a more comprehensive range of fracture

types, and refined annotations of pelvic bone fragments. Secondly,

we have optimized the design of the anatomical segmentation

network and experimented on its training setups, substantially

boosting its performance on fractured data. Thirdly, we have

incorporated more thorough experiments on comparing methods

and parameter searching for the fracture segmentation network,

demonstrating the model’s effectiveness and robustness with

detailed analysis.

3 Methods

3.1 Overview

Our study is dedicated to the automated segmentation of target

bone fragments (specifically, the left and right hipbones and the

sacrum) from CT scans. As shown in Figure 1, our methodology

unfolds in three steps. Initially, an anatomical segmentation

network, leveraging a cascaded 3D nn-UNet architecture, is

deployed to isolate the pelvic bones from the CT scans. This

network, pre-trained on a comprehensive dataset of pelvic CT

images (22) undergoes further refinement on our dataset of

fractured cases. Following this, a fracture segmentation network is

used to segment the bone fragments within each extracted hipbone

and sacral region. To establish a uniform labeling protocol across

all fracture types, we assign three labels per bone: the background,

the main fragment, and minor fragments. The main fragment,

typically the most substantial piece located centrally within each

bone, contrasts with the minor fragments, which represent the

remainder. The post-processing step further separates and labels

isolated components to yield the final segmentation result.

3.2 Pelvic bone extraction

In the initial step, we develop an anatomical segmentation

network to extract pelvic bones from CT images. We employed a

cascaded 3D UNet framework to predict anatomical labels from

pre-processed CT images. Two five-layer UNet models are trained

sequentially: The first UNet is trained on low-resolution images to

enhance its contextual understanding through larger receptive field,

producing coarse segmentations of hipbones and sacrum. Then,

the second UNet is trained on full-resolution images to refine local

details, taking concatenated coarse segmentation labels and CT

volumes as inputs to produce precise segmentations.

The networks are pre-trained on the CTPelvic1K dataset, which

contains over 1,000 high-resolution scans of pelvis, and is refined

on the curated Pelvic Bone Fragments with Injuries (PENGWIN)
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FIGURE 1

Overview of the proposed pelvic fracture segmentation method. In Step 1, a cascaded UNet is employed to predict anatomical labels from pelvic CT
images, which are then utilized to extract the pelvic bones from the CT. In Step 2, a distance-weighted UNet is used to segment main and minor
fragments from the extracted bone regions. In Step 3, connected component analysis is performed to obtain the final segmentation results.

dataset, which contains a broader range of fracture cases (detailed

in Section 3.5).

3.3 Bone fragment segmentation

We develop a fracture segmentation network to further isolate

main andminor fragments from each extracted region. As shown in

Figure 2, a 3D UNet, based on nn-UNet, is selected as the backbone

model (18). The model learns a non-linear mapping relationship

M : X → Y , where X and Y are the masked CT volume and

ground truth fragment label, respectively.

3.3.1 Fracture distance map
The contact fracture surface (CFS) is the part where the

bones collide and overlap due to compression, and is the most

challenging part for both human operators and network models to

delineate. We are particularly concerned about the segmentation

performance in this region. To this end, we introduce guidance into

the network training using fracture distance map (FDM).

The FDM is computed on the ground-truth segmentation of

each data sample before training. This representation provides

information of the boundary, shape, and position of the object to

be segmented. First, CFS regions are identified by comparing the

labels within each voxel’s neighborhood. Then, the distance of each

foreground voxel to the nearest CFS is calculated as its distance

value Dv, and is then normalized.

Dv = I(Yv ≥ 1)minu∈CFS||v− u||2, (1)

D̂v =
Dv

maxv∈V Dv
, (2)

where V is the set of all foreground voxels, v =
(

hv,wv, dv
)

is the

index of a voxel in V , u =
(

hu,wu, du
)

is the voxel index. Y is the

ground-truth segmentation, I(Yv ≥ 1) is the indicator function for

foreground, and D̂ is the normalized distance. The distance is then

used to calculate the FDM weight Ŵ:

Wv = λback + I (Yv ≥ 1)
1− λback

1+ eλFDMD̂v−5
, (3)

Ŵv =
Wv · |V|
∑

v∈V Wv
. (4)

where λback is the weight for the background voxels, λFDM is

the slope parameter in the activation function. To ensure the

equivalence of the loss among different samples, the weights are

normalized by their sum.

3.3.2 Distance-weighted loss
The FDM weight Ŵ is then used to calculate the weighted

Dice Ldice and cross-entropy loss Lce, so that the CFS gains more

importance in training.

Ldice = 1−
2

|L|

∑

l∈L

∑

v∈V ŴvP
l
vY

l
v

∑

v∈V ŴvPlv +
∑

v∈V ŴvY l
v

, (5)

Lce = −
1

|V||L|

∑

v∈V

∑

l∈L

ŴvY
l
vlog

(

Plv

)

, (6)

where L is the number of classes, Plv and Y l
v are the output

prediction and the ground truth for the vth voxel of the lth label.

The overall loss is their weighted sum:

Ltotal = λdiceLdice + λceLce, (7)

where λdice and λce are balancing weights.
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FIGURE 2

Training process of the fracture segmentation network. The contact fracture surfaces (CFS) are computed from the manually annotated ground truth
to generate the fracture distance map (FDM), which is then mapped to the FDM weight and incorporated into the loss function. Deep supervision and
the smooth transition strategy are employed to prevent excessive focus on local features.

3.3.3 Multi-scale deep supervision
We use a multi-scale deep supervision strategy in model

training to learn different features more effectively (41). The deep

layers mainly capture the global features with shape/structural

information, whereas the shallow layers focus more on local

features that help delineate fracture surfaces. Auxiliary losses

are integrated into the decoder at different resolution levels

(except the lowest resolution level). The losses are calculated using

the corresponding down-sampled FDM Ŵn
v , and down-sampled

ground truth Yn
v . The loss for the nth level Ln is calculated with

a different λFDM in Equation 3. The λFDM of each layer decreases

by a factor of 2 as the depth increases, i.e., λn+1 = λn/2. In

this way, the local CFS information are assigned more attention in

the shallow layers, while the weights become more uniform in the

deep layers.

3.3.4 Smooth transition
To stabilize network training, we use a smooth transition

strategy to maintain the model’s attention on global features

at the early stage of training and gradually shift the attention

toward the fracture site as the model evolves (42). The

smooth transition dynamically adjusts the proportion of the

FDM in the overall weight matrix based on the number of

training iterations. The dynamic weight is calculated using the

following formula:

Wst =















J , if t < τbegin,
1

1+δ
J + δ

1+δ
Ŵ, if τbegin ≤ t ≤ τbegin + τsmooth,

Ŵ, if t > τbegin + τsmooth,

(8)

δ = − ln

(

1−
t − τbegin

τsmooth + ǫ

)

, (9)

where J is an all-ones matrix with the same size as the input

volume, t is the current iteration number, τbegin is the iteration

where the transition begins, τsmooth is the duration of the smooth

transition phase, and ǫ is a small positive constant. The dynamic

weight Wst is adjusted by controlling the relative proportion of J

and Ŵ.

3.4 Post-processing

Connected component analysis (CCA) has been widely

used in segmentation (43). However, its direct application to

fracture segmentation is often complicated due to the collision

between fragments. Nevertheless, after the removal of the main

central fragment, the minor fragments become naturally isolated.

Therefore, in the post-processing step, we further isolate the

remaining minor fragments by CCA. The isolated components

are then assigned different labels. Additionally, we exclude any

fragments smaller than 1 cm3, as they typically do not significantly

impact the outcomes in robotic surgery contexts.

3.5 Dataset

3.5.1 Data collection and distribution
We curated PENGWIN, a dataset of 150 CT scans representing

a wide range of common pelvic fractures. These scans were

obtained from patients who underwent pelvic reduction surgery
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between 2017 and 2023 at six medical centers: Beijing Jishuitan

Hospital (JST), Foshan Hospital of TCM (FSHTCM), the First

Bethune Hospital of Jilin University (JLUFH), the Third Bethune

Hospital of Jilin University (JLUTH), NanfangHospital (NFH), and

Tianjin Hospital (TJH). Imaging was performed using seven CT

scanners, including the Toshiba Aquilion Prime, United Imaging

uCT 550, Philips Brilliance 64, Siemens Sensation 64, Toshiba

Aquilion One, Siemens Somatom Force, and GE Optima CT660.

The retrospective use of these scans was approved by the respective

institutional ethics committees.

The dataset includes patients aged 16 to 94 years, comprising 63

females and 87 males. The average voxel spacing is (0.83, 0.83, 0.89)

mm, with typical image dimensions of approximately (488, 426,

323). To ensure a representative distribution, we incorporated five

primary fracture types: pelvic ring dislocation (5 cases), unilateral

hip fracture (54 cases), bilateral hip fractures (31 cases), sacral

fracture (5 cases), and combined sacral and hip fractures (55 cases).

For model development, stratified sampling allocated 120 cases for

training and 30 for testing.

3.5.2 Annotation
The dataset is processed by two experienced annotators and a

senior expert. The inter-annotator variability between annotators

was characterized by an Intersection over Union (IoU) of 0.984 and

an Adjusted Rand Index (ARI) of 0.993. The data annotation was

structured into a four-step workflow:

• Initial automatic segmentation: we employ a pre-trained

segmentation network based on the nn-UNet framework

to produce preliminary anatomical segmentations (22). This

network was trained on CTPelvic1K, with the majority of them

not presenting any fractures.

• Manual refinement of anatomical labels: The initial

anatomical labels undergo a meticulous refinement process by

annotators using the 3D Slicer platform.

• Identification of fractured fragments: leveraging the refined

anatomical labels, the annotators identify and label fractured

bone fragments. This operation is also carried out on the 3D

Slicer platform.

• Expert validation: as a final checkpoint, a senior expert

rigorously reviews and modifies the annotated fracture labels,

ensuring their precision and consistency.

3.5.3 Labeling rule
The primary objective of our investigation is to streamline

the process for automated fracture reduction planning in

robotic surgeries. Within this framework, the main fragment is

maneuvered to a predefined location using a robotic arm, while

the minor fragments are either manually adjusted by surgeons

or simply ignored. Based on our findings, separating the minor

fragments is often not necessary. Hence, for consistency in

annotations across our dataset, we limit the fragment count for

each bone to three. This rule has been uniformly applied across all

150 cases within our dataset. In addition, to enhance the utility of

our research for future studies, we have compiled a separate dataset

version that includes detailed separation of minor fragments.

4 Experiments and results

4.1 Implementation

The method was implemented with PyTorch and SimpleITK.

Experiments were performed with an Intel Xeon 40-core CPU, a

Quadro RTX 5000 GPU, and a 256 GB memory.

4.1.1 Anatomical segmentation network training
All images underwent b-spline interpolation to resample voxel

spacing to (0.83, 0.83, 0.89) mm, followed by z-score normalization.

To enhance the variability of our dataset, for each training sample,

four augmented samples are generated. These images were created

by applying random elastic distortions within a range of 80%–

120%, along with random translations and rotations within the

ranges of -20 to 20 mm and -30 to 30 degrees for each axis,

respectively. To further strengthen resilience against noise, random

noise was added with a probability of 15%. This included Gaussian

blur values ranging from 0.5 to 1.0, brightness scaling from 75%

to 125%, contrast adjustments from 75% to 125%, and gamma

transformations from 0.7 to 1.5.

ADAM optimizer with an initial learning rate of 0.0001 and

a batch size of 2 was used. The learning rate was subjected to

exponential decay. We performed five-fold cross-validation on

training set. Each model underwent training for 2,000 epochs.

4.1.2 Fracture segmentation network training
We cropped the resampled bone volumes by calculating

bounding box, and normalized themwith z-score. For each training

sample, eight augmented images were generated. This process

involved mirror flipping along three axes, accompanied with

random distortions, translations, rotations, and noise simulation

similar to those employed in the anatomical network.

ADAM optimizer with a learning rate of 0.0001 and a batch size

of 2 was used. λback was set 0.2. Both λdice and λce were set to 1. The

initial λFDM was set to 16.We conducted a five-fold cross-validation

on the training set, where each model underwent training for 2000

epochs.

4.2 Evaluation

We assessed the performance of various methods in anatomical

and fracture segmentation using Dice Similarity Coefficient

(DSC), average symmetric surface distance (ASSD), and the

95th percentile of the Hausdorff Distance (HD95). To account

for labels that were entirely missing in the prediction, their

HD95 and ASSD were assigned the diameter and radius of the

ground truth’s circumferential sphere, respectively. Furthermore,

we also incorporated the median HD95 for a more comprehensive

evaluation, which mitigates the impact from the failure cases.

For fracture segmentation, we evaluated the local Dice similarity

coefficient (LDSC) within a 10 mm range around the CFS to

measure performance in critical areas. Two-tailed t-tests were used

to examine the statistical significance.
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4.3 Experiments on anatomical
segmentation

We conducted a comparative analysis of anatomical

segmentation models trained on three distinct datasets: CTpelvic1K

alone, PENGWIN alone, and a combination where training began

on CTpelvic1K followed by fine-tuning on PENGWIN.

Figure 3 illustrates the results across five typical fracture types.

The model trained solely on CTpelvic1K displayed suboptimal

performance, particularly in cases involving lumbar sacralization

and fractures with fragments distanced from the main fragment.

This limitation is largely attributed to the dataset’s predominance

of intact pelvis scans and a limited diversity in fracture types. In

contrast, the model trained on the combined dataset exhibited

superior overall performance, benefiting significantly from the

enhanced variety in fracture characteristics. Table 1 provides a

quantitative comparison of the anatomical segmentation results on

the test set, with paired t-tests indicating that the model trained on

the combined dataset achieved better or at least comparable results

to other methods across all evaluated metrics.

4.4 Experiments on fracture segmentation

4.4.1 Ablation study and benchmark comparison
We conducted an ablation study for the fracture segmentation

network, comparing the proposed method (FDMSS-UNet) against

the model without smooth transition and deep supervision (FDM-

UNet) and the model without distance weighting (UNet). In

addition, we also compared the methods against the traditional

max-flow segmentation approach and a Swin-UNETR model (5,

13).

Figures 4, 5 provide qualitative comparisons in both 3D

and 2D slice views, respectively. While max-flow segmentation

yields reasonable results in cases where the CFS is clear or the

fragments are non-contacting, it underperforms in more complex

scenarios. Both Swin-UNETR andUNet effectively identify fracture

fragments but struggle with accurate delineation in complex CFS

areas, leading to errors in fracture surface identification. FDM-

UNet improves upon max-flow, Swin-UNETR, and UNet near

the CFS areas but occasionally misidentifies non-fractured areas

far from the CFS as fractured. The inclusion of FDM weighting

and deep supervision with a smooth transition in FDMSS-UNet

significantly enhances its performance, particularly near the CFS,

making it the most effective model among those tested. In

addition, Figure 6 presents the segmentation performance on both

an osteoporotic fracture case and a highly complex fracture case,

demonstrating that our method is effective for these two types of

fracture cases.

Table 2 presents the quantitative results. The main fragments,

which occupy a larger proportion and are always present, generally

show better metric outcomes compared to the minor fragments.

Deep learning methods significantly outperform traditional max-

flow in the success rate of identifying fragments, particularly small

ones, with statistically significant improvements. The introduction

of FDM notably increases prediction accuracy in the CFS area.

The strategies of deep supervision and smooth transition stabilize

training, balance local and global performance, and yield the best

overall results.

4.4.2 Comparison of training setups
We compared the performance of three different training

setups for the FDMSS-UNet: (a) a three-class setup that

differentiates the main fragment, anterior iliac (or left sacral)

fragments, and posterior iliac (or right sacral) fragments; (b) a

two-class setup where models were trained separately for the

hipbone and sacrum data, each distinguishing between the main

andminor fragments; and (c) a two-class setup with mixed hipbone

and sacrum data used for training. The results are also shown

in Table 2. Overall, the two-class models demonstrated superior

performance across most metrics compared to the three-class

model, with exceptions on HD95 and ASSD for the hipbone main

fragment.Moreover, training amixedmodel with both hipbone and

sacrum data generally yielded better results than training separate

models, likely due to a more diverse representation of fracture

surface characteristics in the mixed dataset. While the separate

sacrum model performed slightly better than the mixed model, the

difference was not statistically significant.

4.4.3 Hyper-parameters for smooth transition
To assess the behavior of the proposed smooth transition

scheme, we conducted a grid search experiment to optimize τbegin

and τsmooth in Equation 8, exploring values of 0, 500, and 1000 for

each. The results indicate that the FDMSS-UNet achieved the best

overall performance across most metrics when τbegin is set to 0 and

τsmooth is set to 1000.

4.4.4 Influence of fragment size
We evaluated the impact of fragment size on segmentation

accuracy using the FDMSS-UNet. The results, shown in

Figure 7, reveal no significant correlation between the size of

the fragments and the overall segmentation accuracy. Specifically,

DSC exhibited a weak positive correlation with fragment size,

while HD95 and ASSD exhibited a weak negative correlation with

fragment size.

5 Discussion

5.1 E�ectiveness of the distance-weighted
loss

Our network is trained using a FDM-based loss function

and multi-scale deep supervision and smooth transition

strategies. Compared to other methods, our approach

utilizes FDM related to the CFS to guide network training,

helping to focus on features near the CFS. Multi-scale deep

supervision and smooth transition ensure local accuracy

improvements without affecting overall performance.

Experimental results show that our method achieves the

best results.
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FIGURE 3

Example anatomical segmentation results from di�erent models. (a) Pelvic ring dislocation. (b) Unilateral hip fracture. (c) Bilateral hip fractures. (d)
Sacral fracture. (e) Combined sacral and hip fractures.

TABLE 1 Quantitative comparison of anatomical segmentation.

Training data Metric Sacrum Left hipbone Right hipbone Total

CTpelvic1K DSC 0.982± 0.016* 0.985± 0.015* 0.983± 0.015* 0.983± 0.010*

HD95 (mean) 1.595± 3.67 16.382± 41.580* 21.140± 58.755 13.039± 23.683*

HD95 (median) 0.810 0.800* 0.800 0.835*

ASSD 0.548± 0.934* 1.109± 2.242* 1.989± 6.06 1.215± 2.247*

PENGWIN DSC 0.986± 0.007* 0.991± 0.004* 0.990± 0.005* 0.989± 0.004*

HD95(mean) 0.946± 0.521 7.534± 36.835 0.867 ± 0.309 3.115± 12.260

HD95(median) 0.801 0.795 0.800 0.804

ASSD 0.292± 0.610 0.374± 0.988 0.353± 0.816 0.340± 0.627*

CTpelvic1K & PENGWIN DSC 0.987 ± 0.007 0.993 ± 0.003 0.992 ± 0.005 0.991 ± 0.004

HD95(mean) 0.916 ± 0.387 0.804 ± 0.055 0.867± 0.340 0.862 ± 0.185

HD95(median) 0.802 0.793 0.798 0.802

ASSD 0.098 ± 0.079 0.080 ± 0.106 0.062 ± 0.042 0.080 ± 0.053

HD95 and ASSD are reported in mm. The best values are shown in bold. Statistically significant differences compared to the last method are indicated by *p < 0.05.

In practical applications, especially in semi-automatic pipelines
where human operators canmodify and refine network predictions,

accurate initial segmentation near the fracture site is highly
desirable. The fracture surface itself is often complex and

intertwined, making it difficult for manual operations. Our

method can accurately predict main and minor fragments, greatly

simplifying the workflow. Even when network predictions are

inaccurate, manual operations on a 3D view can suffice for quick

modifications in most cases, eliminating the need for inefficient

slice-by-slice handcrafting.
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FIGURE 4

Example fracture segmentation results using di�erent methods. (a) Anterior ring fracture. (b) Posterior ring fracture. (c) Combined fracture of the
anterior and posterior ring. (d) Left sacral fracture. (e) Right sacral fracture. Fractured regions are marked with red boxes.

FIGURE 5

Example fracture segmentation results shown on 2D axial slices. (a) Isolated and displaced fragments. (b) Isolated but stable fragments. (c) Partially
separated fragments. (d) Compressed and colliding fragments. Fractured regions are marked with red boxes.

Frontiers inMedicine 09 frontiersin.org

https://doi.org/10.3389/fmed.2025.1511487
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Liu et al. 10.3389/fmed.2025.1511487

FIGURE 6

Fracture segmentation results on (a) osteoporotic, and (b) a highly complex case.

5.2 Potential impacts on subsequent tasks

In addition to improving efficiency, our method significantly

enhances the delineation of fracture surfaces and ensures a

consistently filled bone region without gaps in the marrow areas,

compared to traditional max-flow segmentation techniques

used in commercial softwares. These improvements are

crucial for various subsequent tasks in image-guided reduction

surgery (44).

First, precise segmentation of bone fragments and fracture

surfaces facilitates accurate alignment, enabling accurate target

pose planning and navigation. It also minimizes interference in

collision detection, reducing the risk of unexpected tool-bone

contact during intraoperative navigation. Errors in segmentation

can lead to misjudgments, increasing surgical complications. By

providing a complete and reliable bone model, our approach

enhances surgical safety. Furthermore, an intact bone mask is

essential for precise screw placement planning. Our method

ensures structural continuity, allowing for accurate and safe

trajectory design, thereby reducing the risks of implant failure

and neurovascular injury (45). Additionally, our approach

improves intraoperative image registration by eliminating

undesired inner surface points (46). Conventional methods

struggle to differentiate trabecular and cortical bone boundaries,

leading to registration errors. By enhancing segmentation

accuracy, our method improves point cloud registration, ensuring

precise alignment between preoperative CT and intraoperative

CBCT models. This, in turn, enhances the reliability of

surgical guidance.

5.3 Limitations and future work

The variability in the number of bone fragments across different

cases presents a challenge for deep learning-based segmentation

approaches. As mentioned in Sec. 3.5, our study addresses this

by implementing a consistent labeling strategy that simplifies the

annotation process and ensures uniformity across the dataset. We

limit the number of fragments for each bone to three, which aligns

with the requirements of automatic fracture reduction planning

for robotic surgery (47). While this approach streamlines the

labeling process and reduces the complexity of the segmentation

task, it is possible that the CCA cannot fully isolate the smaller

fragments. Figure 8 presents an example of segmentation failures

in case where fractures, though not completely separated,

have experienced significant distortion. These situations

complicate fracture delineation, occasionally resulting in imprecise

segmentation. However, with minimal manual adjustments, the

resulting segmentations remain suitable for subsequent tasks.

Furthermore, the current study was conducted on a limited

benchmarks and did not incorporate validation on additional

external datasets. Due to the difficulty of sourcing additional

large dataset with pelvic fracture, which is rare due to its low

incidence rate, we resort to further validating the robustness of
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TABLE 2 Quantitative comparisons of fracture segmentation.

Method Metric Hip-main Hip-minor Sacral-main Sacral-minor All

Max-flow DSC 0.946± 0.053* 0.272± 0.396* 0.929± 0.150* 0.235± 0.320* 0.765± 0.251*

LDSC 0.765± 0.087* 0.145± 0.298* 0.723± 0.110* 0.166± 0.256* 0.453± 0.180*

HD95 16.782± 20.792* 126.800± 100.140* 5.807± 9.317* 71.083± 59.986* 34.606± 50.730*

ASSD 1.372± 1.898* 27.049± 21.791* 0.691± 1.156* 14.081± 10.993* 7.132± 10.091*

swin-UNETR DSC 0.944± 0.016* 0.812± 0.193* 0.939± 0.023* 0.854± 0.097* 0.911± 0.077*

LDSC 0.463± 0.156* 0.565± 0.194* 0.543± 0.096* 0.725± 0.069* 0.541± 0.132*

HD95 4.156± 8.274* 18.850± 20.617* 1.699± 1.863* 10.581± 13.652 3.195± 6.632*

ASSD 0.557± 0.445* 2.880± 4.403* 0.392± 0.192* 1.482± 2.106* 1.035± 1.681*

UNet DSC 0.994± 0.019 0.944± 0.151* 0.990± 0.031 0.940± 0.094 0.981± 0.062*

LDSC 0.946± 0.052* 0.917± 0.088* 0.925± 0.034* 0.918± 0.040 0.929± 0.063*

HD95 2.484± 11.517 7.275± 23.304* 1.209± 4.494 7.367± 13.929 1.887± 7.776*

ASSD 0.176± 0.798 0.959± 2.657 0.093± 0.312 0.929± 2.053 0.331± 1.159*

FDM-UNet DSC 0.997 ± 0.010 0.955± 0.133 0.990± 0.034 0.938± 0.100 0.984± 0.054

LDSC 0.957± 0.043 0.930± 0.083 0.921± 0.035* 0.913± 0.043 0.938± 0.058

HD95 1.091± 5.277 5.722± 15.094 0.986± 3.489 7.415± 13.786 1.154 ± 5.481

ASSD 0.077± 0.305 1.139± 3.503 0.080± 0.259 1.132± 2.206* 0.346± 1.290*

DSC 0.996± 0.009 0.950± 0.128 0.993± 0.015 0.950± 0.057* 0.984± 0.048

FDMSS-UNet LDSC 0.925± 0.166 0.914± 0.115* 0.915± 0.039* 0.899± 0.062 0.917± 0.124*

(Three-class) HD95 1.052 ± 4.426 10.150± 32.219* 0.569± 0.968 7.282± 13.032* 1.211± 5.092

ASSD 0.073 ± 0.250 1.529± 4.577 0.058± 0.115 0.864± 1.907 0.409± 1.599*

DSC 0.994± 0.019 0.938± 0.155* 0.996 ± 0.005 0.938± 0.111 0.981± 0.061

FDMSS-UNet LDSC 0.945± 0.057* 0.907± 0.107* 0.939 ± 0.029 0.932 ± 0.040 0.928± 0.073

(Separate data) HD95 2.403± 10.931 8.860± 24.888 0.320 ± 0.402 12.290± 24.137 1.382± 6.204

ASSD 0.169± 0.702 1.361± 4.118 0.045 ± 0.085 0.795± 1.227 0.398± 1.492*

DSC 0.996± 0.014 0.957 ± 0.146 0.993± 0.014 0.955 ± 0.056 0.986 ± 0.055

FDMSS-UNet LDSC 0.958 ± 0.042 0.932 ± 0.077 0.929± 0.036 0.920± 0.050 0.940 ± 0.056

(Mixed data) HD95 1.202± 5.883 3.595 ± 12.403 0.548± 0.898 6.325 ± 12.351 1.262± 5.811

ASSD 0.082± 0.366 0.719 ± 2.445 0.054± 0.101 0.764 ± 1.759 0.234 ± 0.981

HD95 and ASSD are presented in mm. The best values are shown in bold. Statistically significant differences compared to the last method are indicated by *p < 0.05.

the proposed dataset and method using a few external special

cases (Figure 6).

In future work, we plan to investigate instance segmentation

setup that accommodates arbitrary number of fragment labels,

potentially offering a more detailed representation of fracture

cases. In addition, we also plan to simplify the current framework

by replacing the initial anatomical segmentation network with

a more lightweight bounding box detection network, which

could potentially accelerate the process, as well as to prevent

error accumulation across segmentation modules. Furthermore,

we aim to extend our evaluations by including a broader

range of benchmarks and datasets, thereby enhancing the

generalizability of our findings. We also plan to apply the

proposed method into downstream tasks including automatic

target pose planning and CT-CBCT image registration to validate

its clinical feasibility in the context of robot-assisted reduction

surgery (46), (48), (49). We plan to assess the performance

through retrospective case studies, cadaver experiments, and

clinical experiments.

6 Conclusion

We have proposed an automatic segmentation

approach for pelvic fractures utilizing deep convolutional

networks, which accurately isolates bone fragments in CT

scans. Our approach incorporates a multi-scale distance-

weighted loss and deep supervision with a smooth

transition strategy, significantly enhancing segmentation

precision at fracture sites while maintaining robust overall

performance. We have evaluated our method on a well-

annotated benchmark dataset of 150 pelvic fracture CT
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FIGURE 7

Influence of fragment size on segmentation accuracy. (a–c) the relationship between fragment size and DSC, HD95, and ASSD. (d) the correlation
matrix between size and the metrics.

FIGURE 8

Failure segmentation examples on specific fractures that are not completely separated but have undergone significant distortion.

scans, which has been made publicly available to foster

further research in this field. The experimental results

demonstrate a significant improvement over traditional

max-flow method and state-of-the-art network model. The

proposed method holds promise for improving image-

guided surgeries through enhanced surgical planning,

registration, and navigation, ultimately contributing to better

clinical outcomes.
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