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Background: Extremely aggressive prostate cancer, including subtypes like 
small cell carcinoma and neuroendocrine carcinoma, is associated with poor 
prognosis and limited treatment options. This study sought to create a robust, 
interpretable machine learning-based model that predicts 1-, 3-, and 5-year 
survival in patients with extremely aggressive prostate cancer. Additionally, 
we  sought to pinpoint key prognostic factors and their clinical implications 
through an innovative method.

Materials and methods: This study retrospectively analyzed data from 1,620 
patients with extremely aggressive prostate cancer in the SEER database (2000–
2020). Feature selection was performed using the Boruta algorithm, and survival 
predictions were made using nine machine learning algorithms, including 
XGBoost, logistic regression (LR), support vector machine (SVM), random 
forest (RF), k-nearest neighbor (KNN), decision tree (DT), elastic network (Enet), 
multilayer perceptron (MLP) and lightGBM. Model performance was evaluated 
using metrics such as AUC, accuracy (F1 score), confusion matrix, and decision 
curve analysis. Additionally, Shapley Additive Explanations (SHAP) were applied 
to interpret feature importance within the model, revealing the clinical factors 
that influence survival predictions.

Results: Among the nine models, the lightGBM model exhibited the best 
performance, with an AUC and F1 score of (0.8, 0.809) for 1-year survival 
prediction, (0.809, 0.751) for 3-year survival prediction, and (0.773, 0.611) for 
5-year survival prediction. SHAP analysis revealed that M stage was the most 
important feature for predicting 1- and 3-year survival, while PSA level had 
the greatest impact on 5-year survival predictions. The model demonstrated 
good clinical utility and predictive accuracy through decision curve analysis and 
confusion matrix.

Conclusion: The lightGBM model has good predictive power for survival in 
patients with extremely aggressive prostate cancer. By identifying key clinical 
factors and providing actionable predictions, the model has the potential to 
enhance prognostic accuracy and improve patient outcomes.
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Introduction

According to the Cancer Statistics 2024 published by the 
American Cancer Society, the United States is expected to diagnose 
approximately 299,010 new cases of prostate cancer in 2024, 
accounting for 14.9 percent of all new cancer cases. In addition, about 
35,250 men are expected to die from prostate cancer in 2024, making 
it the second leading cause of cancer deaths among men in the 
United States (1). Extremely aggressive prostate adenocarcinoma, a 
rare subtype of prostate cancer, represents 5 to 10% of all prostate 
cancer cases (2). This category includes subtypes such as small cell 
carcinoma, squamous cell carcinoma, and neuroendocrine carcinoma, 
which are associated with higher metastatic rates and a worse 
prognosis (3, 4). In contrast to typical prostate adenocarcinomas, these 
aggressive forms are often resistant to standard hormonal therapies 
and present with widespread metastases at the time of diagnosis, 
leading to significantly reduced survival times (5, 6). Once metastasis 
occurs, the median survival for these patients is typically reported to 
be less than one year, and current treatment options show limited 
effectiveness (7, 8).

In recent years, machine learning, a burgeoning tool within the 
realm of artificial intelligence, has found extensive application in the 
medical field (9–11). By leveraging large-scale clinical datasets, 
machine learning can automatically detect and learn complex patterns, 
thereby enhancing the accuracy of disease prognosis predictions (9, 
12). The latest review highlights how machine learning models are 
redefining the diagnosis and management of prostate cancer (13, 14).

Several previous studies have focused on developing machine-
learning-based risk prediction models for prostate cancer. For example, 
Changhee et  al. used machine learning to predict cancer-specific 
mortality in patients with non-metastatic prostate cancer. While Peng 
et  al. developed a machine-learning-based prognostic model for 
patients with lymph node-positive prostate cancer. However, there is a 
lack of clinical tools for prognostic assessment of extremely aggressive 
prostate cancer patients with poor prognosis. Although traditional 
statistical models can provide some prognostic prediction, their ability 
to mine high-dimensional nonlinear data is limited and cannot fully 
reveal the relationship between complex biological features and 
prognostic outcomes (15, 16). Therefore, a novel predictive tool is 
needed to improve model performance and provide guidance for 
individualized treatment decisions. The innovation of this study is to 
combine Shap (Shapley Additive Explanations) with traditional 
machine learning, which breaks through the limitation of “black-
boxing” of traditional machine learning models, and provides the 
importance scores of clinical variables for each prediction. This enables 
the model to not only provide highly accurate predictions but also 
quantify the specific impact of clinical variables on patient prognosis. 
This feature significantly improves the clinical usability of the model, 
and our study provides innovative ideas for the prognostic management 
of patients with extremely aggressive subtypes of prostate cancer.

Methods

Data source and patient selection

Patient information on extremely aggressive prostate cancer was 
obtained from the Surveillance, Epidemiology, and End Results 

(SEER) database, which covers approximately 30% of the 
U.S. population and is publicly accessible. We  selected patients 
diagnosed between 2000 and 2020 with prostate cancer (ICD-O-3 
code C61.9) who had pathological subtypes such as small cell 
carcinoma, large cell carcinoma, neuroendocrine carcinoma, 
squamous cell carcinoma, and aggressive ductal adenocarcinoma. 
Data extraction was performed using SEER*Stat software.

The exclusion criteria were as follows: (1) mismatched 
pathological type; (2) patients with multiple primary tumors; and (3) 
patients with incomplete clinical information, such as missing data on 
race, survival, TNM stage, PSA level, Gleason score, or other key 
clinical variables. The inclusion and exclusion process are depicted in 
Figure 1.

Study variables and feature selection

Data pertaining to demographics and clinical characteristics of 
prostate cancer patients were meticulously extracted from the 
SEER database. This encompassed variables such as age at 
diagnosis, race, gender, TNM stage as per the American Joint 
Committee on Cancer (AJCC) 7th edition, marital status, prostate-
specific antigen (PSA) levels, Gleason score (GS), median 
household income, and various treatment modalities including 
surgery, radiotherapy, and chemotherapy. Following the 
categorization in previous studies (17, 18), age was divided into 
three groups: ≤60, 61–69, and ≥70 years. PSA levels were recorded 
as continuous variables, with values ≤0.1 ng/mL recorded as 
0.1 ng/mL and values ≥98 ng/mL capped at 98 ng/mL, ranging 
from 0.1 to 98 ng/mL. Gleason scores were grouped into categories 
of ≤3 + 4, 4 + 3, 8, and ≥9. Missing data were addressed using the 
following strategies: for variables with missing rates below 20%, 
Random Forest Imputation was employed to estimate and fill in the 
missing values (19). Variables with more than 20% missing data 
were excluded from the analysis. In this study, all variables 
included in the analysis had missing rates below 20%. Among the 
variables included in the analysis, missing rates were as follows: 
Chemotherapy (4.2%), Marital status (6.8%), Income (3.1%), T 
stage (8.7%), N stage (7.3%) and M stage (4.1%). Random Forest 
Imputation (using the missForest package in R) was applied to 
ensure data completeness and consistency. For feature selection, 
we utilized the Boruta algorithm (20), which is a robust method 
for identifying the most significant features within a dataset. It 
determines feature importance by comparing the Z-scores of each 
actual feature against those of corresponding “shadow features.” In 
this process, all genuine features are duplicated and shuffled to 
create shadow features, which are then evaluated using a Random 
Forest model to obtain their respective Z-scores. Additionally, the 
Z-scores of the shadow features are generated by randomly 
permuting the original features (21). A true feature is deemed 
“important” (indicated in green) and classified as an acceptable 
variable if its Z-score consistently surpasses the maximum Z-score 
of the shadow features across multiple independent tests. 
Conversely, if a true feature’s Z-score does not significantly exceed 
that of the shadow features, it is labeled as “unimportant” 
(indicated in red) and classified as an unacceptable variable. 
Acceptable variables are retained during the feature selection 
process as they are considered to contribute positively to the 
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model’s performance. In contrast, unacceptable variables are 
excluded from the final feature set because they do not demonstrate 
sufficient predictive capability for the target variable during the 
feature selection process.

Model development

Prognostic models were constructed using nine machine learning 
algorithms: XGBoost, logistic regression (LR), support vector machine 
(SVM), random forest (RF), k-nearest neighbor (KNN), decision tree 
(DT), elastic network (Enet), multilayer perceptron (MLP), and 
lightGBM. To ensure model stability, the dataset was split into a 70:30 
ratio for training and testing. Cross-validation was performed with 
10-fold testing, and hyperparameters were tuned in the training set. 
Final validation was conducted on the test set. The objective was to 
develop models that could predict the overall survival of patients with 
extremely aggressive prostate cancer at 1, 3, and 5 years.

Statistical analysis

Categorical variables were analyzed using the χ2 test and expressed 
as numbers (n) and percentages (%). Non-normally distributed 

continuous variables were assessed with the Kruskal-Wallis test and 
reported as medians with interquartile ranges (IQR). All statistical 
analyses and model development were conducted using R (version 
4.0.5). A p-value of <0.05 was considered statistically significant.

Model performance evaluation

The performance of the nine machine learning models was 
evaluated using receiver operating characteristic (ROC) curve analysis 
and confusion matrices. The area under the curve (AUC) of the ROC 
curve measures the performance of the model, and F1 scores 
combining sensitivity and specificity are used to assess the robustness 
of the model (22). Additionally, calibration curves based on Bier 
scores and decision curve analysis (DCA) were applied to assess the 
models’ prediction accuracy and clinical utility.

Model interpretation

SHAP (Shapley Additive Explanations) values were used to interpret 
the machine learning models. SHAP values, derived from game theory, 
provide insights into which features most significantly influence the 
model’s predictions and how each feature affects the model’s output.

FIGURE 1

Study design and patient selection flowchart. PSA, prostate-specific antigen; GS, Gleason score; SEER, Surveillance, Epidemiology, and End Results; 
TNM, tumor lymph node metastasis; ROC, curve receiver operating characteristic curve; AUC, area under the curve.

https://doi.org/10.3389/fmed.2025.1512870
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Peng et al. 10.3389/fmed.2025.1512870

Frontiers in Medicine 04 frontiersin.org

Results

Patient characteristics

1,620 patients were included in this study, and the baseline 
characteristics of the training set and test set are shown in Table 1. 

There was no difference between the training set and validation set 
in the baseline data. There were 1,133 columns of patients assigned 
to the training set and 487 columns of patients assigned to the 
validation set. In the training set 631 patients died and 502 patients 
survived. In the validation set 277 patients died and 210 
patients survived.

TABLE 1 Baseline characteristics of extremely aggressive prostate cancer patients.

Characteristics Training cohort (n = 1,133) Validation cohort (n = 487) P value

Age, yr. n (%) 0.53

≤60 197 (17.39) 96 (19.71)

61–69 363 (32.04) 153 (31.42)

≥70 573 (50.57) 238 (48.87)

Race, n (%) 0.09

White 915 (80.76) 386 (79.26)

Black 114 (10.06) 65 (13.35)

Othera 104 (9.18) 36 (7.39)

Clinical T stage, n (%) 0.36

T1 426 (37.6) 211 (43.33)

T2 312 (27.54) 125 (25.67)

T3 204 (18.01) 82 (16.84)

T4 191 (16.86) 69 (14.17)

N, n (%) 0.86

N0 931 (82.17) 398 (81.72)

N1 202 (17.83) 89 (18.28)

M, n (%) 0.46

M0 761 (67.17) 337 (69.20)

M1 372 (32.83) 150 (30.80)

Surgery, n (%) 0.69

No/Unknown 549 (48.46) 230 (47.23)

Yes 584 (51.54) 257 (52.77)

Radiation, n (%) 0.56

Yes 353 (31.16) 144 (29.57)

No/Unknown 780 (68.84) 343 (70.43)

Chemotherapy, n (%) 0.70

Yes 284 (25.07) 117 (24.02)

No/Unknown 849 (74.93) 370 (75.98)

Survival status, n (%) 0.69

Dead 631 (55.69) 277 (56.88)

Alive 502 (44.31) 210 (43.12)

Marital status, n (%) 0.66

Married 791 (69.81) 334 (68.58)

Unmarriedb 342 (30.19) 153 (31.42)

Income, n (%) 0.35

≤100,000 947 (83.58) 397 (81.52)

>100,000 186 (16.42) 90 (18.48)

PSA level (ng/ml) 0.86

Median [IQR] 8.900 [4.700, 19.582] 9.000 [4.300, 20.499]

PSA, prostate specific antigen; IQR, interquartile range; Othera: Asian/Pacific Islander, American Indian/Alaska Native. Unmarriedb: Widowed, Divorced, Separated, Single (never married).
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Feature predictor selection

We use the same feature sets for our 1-, 3-, and 5-year prediction 
models. The Boruta algorithm identified unique feature sets for the 1-, 
3-, and 5-year prediction models (Figure 2). The results showed that 
the feature variables included in the 1-year prognostic model were age, 
radiotherapy, N stage, surgery, PSA level, chemotherapy, and M stage 
(Figure 2A). Characteristic variables included in the 3-year prognostic 
model were T stage, radiotherapy, income level, N stage, age, PSA 
level, M stage and chemotherapy (Figure 2B). Characteristic variables 
included in the 5-year prognostic model were age, survival status, 
surgery, income, PSA level, chemotherapy, and M stage (Figure 2C).

Construction of machine learning 
predictive models

Considering survival months as the prognostic state, we integrate 
the features selected by the appeal-based Boruta algorithm into the 
variable training model. In the training set species, we used 10-fold 
cross-validation for iteration and optimization and finally determined 

that the lightGBM model performs best. We adjusted the parameter 
balance to avoid data overfitting and finally identified the key 
hyperparameters. The key parameters of lightGBM are as follows: 
tree_depth = 1, trees = 458, learn_rate = 0.0059, mtry = 5, min_n = 10, 
loss_reduction = 0.291. See Supplementary material 1 for 
hyperparameters of the nine machine learning models.

Evaluating machine learning prognostic 
models

Our analysis revealed that lightGBM demonstrated consistent 
efficacy in forecasting highly aggressive prostate cancer at 1, 3, and 
5 years, as evidenced by the AUC values derived from the ROC curves 
of both the training and test sets. Data for 1 year (0.777 for the training 
set, 0.8 for the test set), 3 years (0.881 for the training set, 0.809 for the 
test set), and 5 years (0.888 for the training set, 0.773 for the test set) 
are presented in Figure 3 and Table 2.

See Table  2 for the best and most stable performance of 
lightGBM compared to the other 8 machine learning models. In 
addition, we evaluated the accuracy of the lightGBM model using 

FIGURE 2

Importance of each feature in the predictive model based on Boruta’s algorithm. (A) Importance of each feature in the 1-year prognostic model. 
(B) Importance of each feature in the 3-year prognostic model. (C) Importance of each feature in the 5-year prognostic model. The Boruta algorithm 
determines the importance of a feature by comparing the Z-score of each actual feature with the corresponding “shadow feature.” A real feature is 
considered “important” (shown in green), whereas, if the Z-score of a real feature does not significantly exceed the Z-score of the shadow feature, it is 
marked as “not important” (shown in red) and classified as an unacceptable variable.
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a confusion matrix (Supplementary Figure 1). For 1-year, 3-year 
and 5-year survival predictions, F1 scores of lightGBM model 
validation set are 0.809, 0.751 and 0.611, respectively 
(Supplementary Table 1). Therefore, lightGBM model has the best 
predictive performance in 3-year and 5-year models. Although the 
one-year survival prediction is slightly lower than that of Logistic, 
MLP and RF models, the stability of LightGBM model is superior 
to these three models. In summary, we choose LightGBM model as 
the best model.

Finally, we used calibration curves based on Bier scores showing 
that the predictions of 1-, 3-, and 5-year survival probabilities in the 
train and test sets were also more consistent with the actual 
observations (Supplementary Figures 2, 3). Also, DCA decision curve 
analysis showed good clinical utility and positive net benefit of 
lightGBM in 1, 3, 5-year survival prediction (Figure 4).

Interpretation of models

These key features were ranked using a SHAP plot (Figure 5) 
showing the level of influence of the machine learning model for each 
feature. The SHAP plot showed that the largest factor influencing 

patient survival at 1 and 3 years was M stage and the largest factor 
influencing patient survival at 5 years was PSA level.

Application of model

To facilitate clinical adoption, we  have uploaded the R code, 
dataset, and the completed model to Supplementary material 3. 
Additionally, we  propose integrating this model into hospital 
electronic health records (EHRs) and clinical decision support systems 
(CDSS) to assist oncologists in real-time prognostic estimation.

Discussion

Patients with extremely aggressive prostate cancer, including small 
cell carcinoma, large cell carcinoma, squamous cell carcinoma, 
neuroendocrine carcinoma, undifferentiated carcinoma, aggressive 
ductal carcinoma, and ductal adenocarcinoma, often exhibit more 
aggressive biological behavior and have a poorer prognosis compared 
to other forms of prostate cancer (23–25). Accurate survival prediction 
for these patients is therefore clinically significant. However, current 

FIGURE 3

Nine machine learning models evaluated. (A) ROC curves of 1-year prognostic models in the test set. (B) ROC curves of 3-year prognostic models in 
the test set. (C) ROC curves of 5-year prognostic models in the test set. The plot presents the ROC curves for nine different machine learning models 
in a prediction task. The x-axis represents the false positive rate (FPR), and the y-axis represents the true positive rate (TPR). The area under the curve 
(AUC) reflects the overall performance of each model, with a larger AUC indicating better predictive ability.
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clinical tools for prognostic prediction in extremely aggressive prostate 
cancer have substantial limitations, particularly the absence of reliable 
models that leverage artificial intelligence and machine learning.

This research involved the creation of nine models grounded in 
machine learning to forecast survival rates at 1, 3, and 5 years for the 
patient cohort in question. Among these, the lightGBM model showed 
the highest predictive performance, with AUCs of 0.77, 0.80, 0.88, and 
0.81 for the training and test sets at 1, 3, and 5 years, respectively, 
demonstrating strong predictive ability. An AUC value of ≥0.7 is 
considered indicative of a model with sufficient predictive power (26).

In recent years, artificial intelligence has garnered increasing 
attention in the medical field, including in prostate cancer research 
(27–30). In contrast to conventional algorithms, machine learning 
models operate without the limitations imposed by 
non-proportionality, multicollinearity, or nonlinearity challenges (30). 
Thereby minimizing biases that can arise from conventional modeling. 
For example, Peng et al. used machine learning algorithms to develop 
a survival prognostic model for patients with lymph node-positive 
prostate cancer, achieving better predictive performance than 
traditional Cox regression models (31). Similarly, Dai et  al. (32) 
demonstrated that machine learning models outperformed traditional 
algorithms in predicting survival for patients with confined 
prostate cancer.

In this study, we incorporated 12 key clinical characteristics of 
patients with extremely aggressive prostate cancer and used the Boruta 

algorithm, a feature selection method based on random forest 
classifiers, to select the most relevant features for survival prediction. 
The Boruta algorithm is designed to identify all variables that are 
important to the dependent variable, rather than the smallest set of 
features relevant to a particular model (33, 34). In contrast to the 
objective of a typical feature selection algorithm, the Boruta feature 
selection algorithm aims to identify the features that hold the greatest 
relevance to the dependent variable, rather than merely seeking the 
most compact set of features pertinent to a specific model (34). Our 
results identified factors such as age, PSA level, surgery, and 
radiotherapy as key risk factors for prognosis, with tumor metastasis 
(M stage) emerging as the most significant predictor of survival at 1 
and 3 years, and PSA level as the strongest predictor at 5 years. These 
findings have important clinical implications. For example, the model 
highlights surgery and radiotherapy as influential factors, suggesting 
that multimodal treatment approaches may provide survival benefits 
in certain subgroups of patients with highly aggressive prostate cancer. 
This underscores the need for personalized treatment selection based 
on a patient’s predicted prognosis and treatment response patterns.

A systematic review identified high Gleason scores as independent 
risk factors for early tumor progression, and multiple organ metastases 
were associated with reduced survival (35). In a separate investigation, 
the median overall survival for patients newly diagnosed with 
neuroendocrine prostate cancer was recorded at 16.8 months, 
significantly less than the 53.5 months noted in cases associated with 
treatment (36). Regarding treatment, platinum-based chemotherapy 
is commonly used for patients with small cell carcinoma. Combination 
regimens including cisplatin, etoposide, and doxorubicin have shown 
partial benefit, though they are not recommended for neuroendocrine 
prostate cancer patients due to the risk of severe neutropenia. For 
neuroendocrine prostate cancer, immune checkpoint inhibitors, such 
as atezolizumab combined with platinum-based chemotherapy (36) 
or second-line treatments such as natalizumab with ibritumomab may 
be considered (37).

Early detection of prostate cancer is critical. Various 
non-invasive imaging techniques have been studied for predicting 
metastasis (38–40). Multiparametric MRI (mpMRI) has shown 
enhanced sensitivity and specificity relative to conventional MRI in 
the identification of tumors and lymph nodes; however, it may 
experience signal loss or image distortion in DWI sequences (39). 
Similarly, PSMA PET/CT is extensively utilized for the detection of 
prostate cancer in both soft tissue and bone, yet its detection rate 
for lymph node metastases measuring 2–5 mm hovers around 60% 
(40, 41). Emerging imaging techniques, such as MR lymphography 
and targeted PET using superparamagnetic iron oxide (SPIO) 
nanoparticles, are under investigation, though their effectiveness in 
predicting lymph node metastasis remains uncertain (41–43). 
Furthermore, fluid-based diagnostics, exemplified by the 
FDA-approved Prostate Cancer Antigen 3 (PCA3), which is a urine-
based, non-coding RNA biomarker, have demonstrated promise in 
informing decisions regarding repeat biopsies, with reported AUCs 
varying from 0.64 to 0.762 (43, 44). Other urine-based genomic 
assays, including multigene panels (e.g., PUR), exosome-based 
assays (e.g., ExoDx), DNA methylation markers (e.g., epiCaPture), 
and mRNA-based assays (e.g., SelectMDx), have also demonstrated 
prognostic value (44, 45). Lih et  al. (46) identified urinary 
glycopeptides, such as ACPP, CLU, ORM1, and CD97, that may 
help differentiate between low- and high-risk prostate cancer, 

TABLE 2 Performance of predictive models built by 9 machine learning 
algorithms in training and test sets (area under the ROC curve).

1-year 
survival

3-year 
survival

5-year 
survival

Train set

LightGBM 0.777 0.881 0.888

DT 0.856 0.782 0.853

ENET 0.768 0.782 0.853

KNN 0.909 0.788 0.805

Logistic 0.776 0.805 0.824

MLP 0.777 0.869 0.862

RF 0.852 0.796 0.819

SVM 0.779 0.802 0.807

XGBoost 0.763 0.799 0.808

Test set

LightGBM 0.800 0.809 0.773

DT 0.761 0.751 0.75

ENET 0.798 0.795 0.771

KNN 0.769 0.767 0.722

Logistic 0.810 0.799 0.769

MLP 0.808 0.797 0.771

RF 0.804 0.798 0.759

SVM 0.796 0.786 0.758

XGBoost 0.783 0.800 0.764

DT, decision tree; ENET, Elastic Net; KNN, K-Nearest Neighbors; LightGBM, Light Gradient 
Boosting Machine; RF, Random Forest; XGBoost, Extreme Gradient Boosting; SVM, 
Support Vector Machine; MLP, Multi-Layer Perceptron.
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showing potential for early identification of aggressive forms of 
the disease.

This study is the first to develop multiple machines learning 
prognostic models specifically for extremely aggressive prostate 
cancer. We  incorporated 13 significant prognostic features and 

employed SHAP values to assess the contribution of each feature, 
revealing that metastasis, surgery, and PSA level were the most 
impactful variables.

However, this study has several limitations that should 
be acknowledged. First, as a retrospective study utilizing SEER data, 

FIGURE 4

Decision curve analysis curves for the LightGBM model for the training and test sets. (A) 1-year train set. (B) 1-year test set. (C) 3-year train set. 
(D) 3-year test set. (E) 5-year train set. (F) 5-year test set. LightGBM: Light Gradient Boosting Machine. In the figure, the red curve represents the 
predicted performance of the GBM model, respectively. In addition, there are two lines, which represent two extreme cases. The gray vertical line 
indicates the assumption of survival for all patients. The black horizontal line indicates that there is no survival assumption. For example, in the 1-year 
training set, the survival probability is between 0.3 and 0.93. When using this GBM predictive model to make clinical decisions, survival probabilities can 
be distinguished.
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it may be subject to selection bias and incomplete case reporting, 
potentially affecting the generalizability of our findings. Second, the 
SEER database does not provide detailed molecular markers, genetic 
data, or treatment response information, which are critical for a more 
comprehensive prognostic assessment. The absence of these key 
clinical variables may limit the ability of our model to fully capture the 
biological heterogeneity of extremely aggressive prostate cancer. 
Future studies should aim to incorporate multi-omics data and real-
world patient responses to further refine predictive accuracy. 
Additionally, while our model has demonstrated strong internal 
validation, external validation on independent datasets and 
prospective clinical trials are needed to ensure its applicability across 
diverse populations.

Overall, this study highlights the potential of machine learning 
models to guide clinical decisions and optimize treatment strategies 
for extremely aggressive prostate cancer. Specifically, our model can 
be used for risk stratification and treatment planning of patients, as 
well as monitoring and follow-up adjustments for patients at different 
risks, and finally, by integrating the model into EHRs and CDSS, can 
provide real-time survival predictions to help physicians make 
evidence-based treatment recommendations. With the accumulation 
of more clinical data and further optimization of algorithms, AI-based 

prognostic models could significantly improve treatment outcomes 
and survival for patients with extremely aggressive prostate cancer in 
the future.

Conclusion

In conclusion, we developed and evaluated nine machine learning 
models, incorporating SHAP values to enhance interpretability, for 
predicting survival in patients with extremely aggressive prostate cancer. 
Among them, the lightGBM model demonstrated the best predictive 
performance, offering a valuable clinical tool for personalized prognosis 
estimation. Future research should focus on external validation using 
independent cohorts, integrating molecular biomarkers, and exploring 
the incorporation of real-time patient data to further enhance the 
model’s robustness and clinical utility.
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FIGURE 5
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