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Background: Hepatocellular carcinoma (HCC) is the third most prevalent cause 
of cancer-related mortality globally and the sixth most common cancer overall. 
It is critical to investigate new biomarkers and prognostic variables because 
there are currently no early diagnostic indicators. Actin-related proteins (ARPs) 
are involved in transcriptional regulation, chromatin remodeling, and DNA 
repair—all processes that have been connected to the development of cancer. 
However, it’s still unclear how ARPs and HCC are related.

Methods: Through the examination of databases like The Cancer Genome Atlas 
(TCGA) and The International Cancer Genome Consortium (ICGC), we examined 
the variations in the expression of ARPs between the transcriptomes of normal 
tissue and HCC. Furthermore, univariate and multivariate Cox analysis were 
used to assess the prognostic effects of ARPs. The investigation of immune 
cell infiltration and possible functional enrichment followed. Additionally, tissue 
chips containing regional liver cancer specimens were used to confirm ACTR6 
expression and the clinical impact of prognosis using an immunohistochemistry 
(IHC) test. Finally, to investigate the expression and function of ACTR6 in liver 
cancer cells, real-time qPCR (RT-qPCR) assays, CCK-8, clone creation, cell 
cycle, and transwell migration and invasion experiments were carried out.

Results: We found that, in addition to ACTR3C, 17 ARPs were significantly 
overexpressed in HCC compared with normal tissues. In both univariate and 
multivariate Cox models, ACTR6 and ACTL6A were identified as potential 
independent risk factors for the prognosis of HCC, with ACTR6 having the lowest 
p-value. Clinical samples also confirmed this conclusion. Furthermore, ACTR6 
overexpression showed a strong connection with immune cell infiltration levels 
and clinical and pathological factors linked to a poor prognosis. Functionally, 
knocking down ACTR6 inhibited cell migration and proliferation, produced a G1 
cell cycle arrest, and decreased the viability of liver cancer cells.

Conclusion: These findings demonstrate that ACTR6 is highly expressed in HCC 
and is associated with poor prognosis. In addition, ACTR6 may induce immune 
cell infiltration and promote hepatocarcinogenesis by regulating the cell cycle.
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Introduction

In 2020, hepatocellular carcinoma (HCC) accounted for 
approximately 906,000 new cases and 830,000 deaths worldwide, making 
it the sixth most prevalent cancer and the third highest cause of cancer-
related deaths (1). Due to inadequate therapy, the 5-year overall survival 
of HCC patients is less than 20% (2, 3). In developing countries, the 
prevalence of HCC and associated cancer deaths is rising (4). More than 
a million individuals will pass away from HCC in 2030, according to a 
World Health Organization report (5). The pathophysiology of 
hepatocellular carcinoma (HCC) is complex, including fibrosis, liver 
inflammation, and abnormal hepatocyte regeneration. At the moment, 
surgery, chemotherapy, radiation therapy, and targeted therapy are the 
primary clinical therapies for liver cancer (6). Surgery is the most effective 
treatment for people with early-stage liver cancer when compared to 
other options. However, the majority of patients were detected with 
advanced liver cancer, losing the best opportunity for therapy since they 
lack diagnostic markers and show no apparent symptoms in the early 
stages (7). Thus, finding precise biomarkers for early diagnosis and 
efficacious treatment approaches is of crucial clinical importance.

Actin is widely recognized for its capacity to control membrane 
development, shape the cytoplasm, and guarantee the cytoskeleton’s 
dynamic behavior (8). Its activity is accomplished in collaboration 
with actin-related proteins (ARPs), a class of proteins that have 
structural similarities with actin. The actin superfamily, which is made 
up of both conventional actin and ARPs, is a highly conserved and 
ancient collection of proteins. Reuniting and expanding the 
identification and categorization of ARPs, Muller et al. (9) used a 
comparative genomic study of around 700 protein sequences. The 
ARP subfamily was split into Arp1 ~ 11, with Arp1 being the most 
closely linked to actin and Arp10 and Arp11 being the least (9), based 
on sequence consistency and similarity with typical actin. With the 
continuous update of understanding, ARPs family species are divided 
into more and more detailed. We found 18 members of the ARPs 
family, including ACTR1A/ACTR1B/ACTR2/ACTR3/ACTR3B/
ACTR3C/ACTR5/ACTR6/ACTR8/ACTR10/ARPC1A/ARPC2/
ARPC3/ARPC4/ARPC5/ARPC5L/ACTL6A/ACTL8.

Arps and actin exhibit significant sequence identity and similarity, 
indicating that the two proteins may share a tertiary structure that is 
based on a highly conserved ATPase domain—an ATP/ADP-binding 
pocket called the “actin fold” (9). They play a role in DNA repair, 
transcription control, and chromatin modification. The significance 
of ARPs in the development of cancer has progressively come to light 
recently. ACTL6A has been shown to be essential in controlling the 
glutathione (GSH) metabolic pathway because it increases the 
production of gamma-glutamylcysteine ligase catalytic subunits 
(GCLC). This reduces reactive oxygen species (ROS) levels and 
prevents iron mortality in gastric cancer cells (10). Furthermore, 
ACTR2 induced Wnt signaling in diffuse large B-cell lymphoma 
(DLBCL) and used Wnt signaling to cause DLBCL to proliferate both 
in vitro and in vivo (11). In addition, as early as 2020, a study on 
non-small cell lung cancer found that ACTR6 affects the progression 
of the disease by influencing the biology of tumor-associated 
macrophages (TAM), and served as a potential prognostic marker for 
lung cancer (12). In 2022, a study showed that ACTR6 is also one of 
the prognostic risk model genes for HER2+ breast cancer (13).

However, we  do not yet understand how ARPs affect the 
development of liver cancer. In this study, the ARP gene family was 

used as a breakthrough point to discuss ACTR6’s transcriptome, 
genomics, immune infiltration, and prognosis in liver cancer. 
Immunohistochemistry (IHC) was applied to validate the expression 
of ACTR6 in liver cancer. The physiologic roles of ACTR6 in liver 
cancer cells were investigated using real-time qPCR (RT-qPCR) 
assays, CCK-8, clone creation, cell cycle, and transwell migration and 
invasion tests. Our findings will provide additional information on the 
significance of ARPs, especially ACTR6, in liver cancer progression.

Methods

Clinical specimens and data collection

The International Cancer Genome Consortium (ICGC)1 and 
TCGA2 provided the HCC expression and clinical prognostic data for 
the HCC tissue samples. There were 371 HCC tissue samples and 50 
normal liver tissue samples in the TCGA dataset. Additionally, the 
ICGC provided information on 202 normal tissues and 243 
HCC tissues.

Analysis of survival rate of ARPs

OS was chosen as the survival outcome since the majority of HCC 
patients had a poor prognosis. Using a univariate Cox analysis, 
we  eliminated ARPs that were connected to survival (p < 0.05). 
Furthermore, multivariate Cox analysis was used for analyzing the 
ARPs significantly related to OS and its relationship with 
clinicopathological factors. Besides, OS and progression-free survival 
(PFS) time were calculated through Kaplan–Meier plotter.3

Immunity analysis

We initially analyzed 22 different immune cells in each normal 
and HCC sample using the CIBERSORT algorithm in R language. 
Next, we  used TIMER, a platform accessible at https://cistrome.
shinyapps.io/timer/, to evaluate ACTR6 expression in HCC, as well as 
its correlation with immune cell numbers and its impact on immune 
cell markers. The CIBERSORT and TIMER algorithms were used to 
assess the variations in immune cell infiltration or immunological 
responses between the ACTR6 high- and low-expression groups. 
Heatmaps with various methods showed the variations in immune 
cell infiltration.

Identification of DCGs of ACTR6 in HCC

The LinkedOmics database4 provided a total of 8,599 
co-expression genes. Then we  were able to access the target gene 
ACTR6’s correlation gene table and correlation volcano map on the 

1 https://daco.icgc.org/

2 https://cancergenome.nih.gov/

3 http://kmplot.com/analysis/

4 https://www.linkedomics.org/login.php
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LinkFinder plate. Heatmaps of the top 50 genes that are positively and 
negatively correlated with ACTR6 were also acquired.

Functional enrichment analysis

A characteristic gene list of the cell cluster, or the most important 
genes of ACTR6, was uploaded to the Database for Annotation, 
Visualization, and Integrated Discovery (DAVID, v6.8). Homo sapiens 
was chosen as the species and the official gene symbol as an 
identification. Ultimately, enrichment findings were acquired using 
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis 
and Gene Ontology (GO) analysis. In this study, the top six outcomes 
were shown in increasing order of p-value (p < 0.05).

Analysis of gene set variation (GSVA)

Genes associated with the cell cycle were compiled using the 
AmiGO 2 portal.5 Every HCC sample’s functional enrichment score was 
determined using the provided package (R environment) and default 
settings. Using the pheatmap package (R environment), a heatmap of 
the enrichment results was created. Pearson correlation analysis was 
used to ascertain the relationship between ACTR6 and cell cycle.

Cell culture and human tissues

Huh7, HepG2, and Hep3B were human HCC cell lines obtained 
from the Chinese Academy of Sciences Cell Bank. These cell lines 
were maintained in DMEM (Invitrogen, # 11965-118; CA) with 1% 
penicillin–streptomycin and 10% FBS added. We acquired the human 
normal liver cell line Thle-2 from Keycell Biotechnology (Wuhan, 
China). The Thle-2 cells were kept alive in a unique growth medium 
that Keycell Biotechnology supplied. The cells were cultivated at 37°C 
with 5% CO2 in a humidified incubator. Every 3 months, the absence 
of mycoplasma infection was confirmed in all cell lines. Shanghai 
Outdo Biotech Co., Ltd. provided the formalin-fixed paraffin-
embedded HCC cancer tissue microarrays (HLivH180Su30).

Antibodies (abs)

The rabbit polyclonal antibody against ACTR6 (Catalog # 
PA5-58453) was from Thermo Fisher Scientific (Waltham, MA). 
ImmPRESS Universal Polymer Reagent (Horse Anti-Mouse/Rabbit 
IgG) was from Vector Laboratories (S.F, CA).

SiRNA oligos

SiRNAs were transfected using the lipofectamine 3000 
Transfection Kit (ThermoFisher Scientific, #L3000-015) after being 
obtained from Hippobio in Huzhou, China. CCGAGAUAAU 

5 http://amigo.geneontolo gy.org/amigo

CCUUCCGAAUUTT (ACTR6 siRNA1), GCCUGACUUCAGUA 
CAAUUAATT (ACTR6 siRNA2), and GCACAUAGGUAUUU 
CCGAGAUTT (ACTR6 siRNA3) were the siRNA sequences aimed 
against ACTR6.

Quantitative real-time PCR (qPCR)

Following the manufacturer’s instructions, total RNA was isolated 
from cultivated cells using the FastPure® Cell/Tissue Total RNA 
Isolation Kit V2 (Vazyme, # RC112; Nanjing, China). Using a 
StepOnePlusTM Real-Time PCR System (ThermoFisher Scientific), 
15 ng of cDNA that had been generated from 900 ng of total RNA 
using the PrimScriptTM RT reagent Kit with gDNA Eraser (TaKaRa, 
#RR047A; Dalian, China) was exposed to qPCR. The relative gene 
expression levels were normalized against β-actin using the 2−ΔΔCT 
technique. Supplementary Table S1 has a listing of primer sequences.

Cell viability assay

Five thousand cells per well of 96-well plates were used to plate 
Huh7 cells transfected with NC or siACTR6. At the 24-, 48-, and 72-h 
mark, CCK-8 (DOJINDO, # CK04, Japan) was added, and the mixture 
was incubated for a further 2 h. Then, the plates were assayed by 
testing the absorbance at 450 nm.

Colony forming assay

One thousand transfected cells were cultivated for 10–14 days at 
37°C with 5% CO2 after being seeded onto 6-well plates. After discarding 
all liquids, the samples were fixed for 30 min at room temperature in 4% 
paraformaldehyde (Servicebio, #G1101; Wuhan, China), and then 
stained with crystal violet (Beyotime, #C0121; Beijing, China). Bio-Rad’s 
Quantity One® software was used to take counts and photos.

Transwell migration assay

Serum-free media was used to sustain the cells after they were 
planted into the top chambers of 24-well transwell inserts (8 μm, 
Corning, #3422, 5 × 104 cells/well). The medium was added to the 
bottom chambers along with 10% FBS. Following a 16-h incubation 
period, the cells grown in inserts were fixed for 30 min using 4% 
paraformaldehyde (Servicebio, #G1101; Wuhan) and stained for 
8 min with crystal violet dye solution (Beyotime, #C0121; Beijing, 
China). Using a cotton-tipped swab, the non-migrated cells on the 
membranes’ top surface were scrubbed away. Before being quantified 
using the ImageJ program, cells that moved to the membranes’ 
bottom surface were further photographed using an Olympus IX73 
Fluorescence Microscope System.

Transwell invasion assay

Using inserts that had been pre-coated with a suitable quantity of 
Matrigel (BD Biosciences, # 356234; Franklin Lakes, NJ) combined 
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with precooled media at a ratio of 1:8, cell invasion was measured. The 
cells were cultured in serum-free media and seeded into the top 
chambers of 24-well transwell inserts (8 μm, Corning, #3422, 1 × 105 
cells/well). The next experiment followed a similar protocol to the 
transwell migration test previously reported.

Immunohistochemistry assay and 
evaluation

The anti-ACTR6 antibody (dilution ratio, 1:200) was incubated 
for 10 h at 4°C on HCC and nearby tissues. After that, the tissues 
were treated for 30 min at 37°C with Horse Anti-Mouse/Rabbit 
IgG. The samples were then treated with DAB Peroxidase Substrate 
Kit for the reaction, and hematoxylin was used as a counterstain. 
Two different, skilled pathologists evaluated each IHC staining; 
they were unaware of the patient’s clinical status or diagnosis 
beforehand. ACTR6 staining score, including staining density and 
intensity. The scoring methods were as follows: (1) The percentage 
of staining positive cells was divided into 5 grades, namely <1%, 
1–25%, 26–50%, 51–75%, and 76–100%, which were defined as 0, 
1, 2, 3, and 4 points respectively; (2) The staining intensity was 
divided into 4 grades: negative staining (no staining, 0 points), 
weak staining intensity (light brown, 1 point), medium staining 
intensity (brown, 2 points), and strong staining intensity (dark 
brown, 3 points). (3) Immunoreactive score (IRS) = percentage of 
positive cells × staining intensity score, with a total score of 0 ~ 12, 
in which 0 ~ 5 is defined as low expression, and 6 ~ 12 is defined 
as high expression.

Statistics

For all statistical analyses, SPSS 25.0 (SPSS Software, Chicago, 
United  States), GraphPad Prism 9and R v 4.3.26 were used. For 
statistical analysis, the Student’s t test, Mann–Whitney test, one-way 
analysis of variance (ANOVA) test, or Pearson correlation coefficient 
were used. In addition, we investigated the connection between genes 
and illness prognosis using COX analysis.

6 https://www.r-project.org/

Results

Transcriptional levels of ARPs family 
between HCC and normal tissues

ARPC3/ARPC5L/ARPC5/ARPC2/ARPC4/ARPC1A/ACTL8/
ACTL6A/ACTR6/ACTR5/ACTR8/ACTR1B/ACTR3/ACTR10/
ACTR3B/ACTR2/ACTR1A were significantly overexpressed in HCC 
tissues more than in normal liver tissues, according to a combination 
of the analysis results of The Cancer Genome Atlas (TCGA) and 
International Cancer Genome Consortium (ICGC) databases 
(Figure 1; Supplementary Figure S1).

Prognostic value and independent 
prognostic value of ARPs in HCC patients

Further investigation into the relationship between ARPs 
expression and patient OS in the TCGA and ICGC databases revealed 
that, according to Univariate analysis, shorter OS in HCC was correlated 
with higher levels of ARPC2/ARPC3/ARPC4/ARPC5L/ACTR6/
ACTL6A mRNA expression (Figures 2A,B), as well as with T stage, 
pathological stage, and tumor status (Figure 2C). Further multivariate 
analysis revealed that longer OS in HCC patients was correlated with 
higher ACTL6A/ACTR6 mRNA expression (Supplementary Figure S2). 
This suggests that ACTL6A/ACTR6 may be independent risk factors 
for predicting the prognosis of HCC patients, with ACTR6 showing the 
lowest p-value of 0.001  in multivariate Cox analysis (Figure  2D). 
Additionally, we investigated the survival data for ACTR6 expression 
in HCC using a Kaplan–Meier plotter (Figures 2E,F).

The association between ACTR6 
expression and clinicopathological factors 
in patients with HCC

Based on the research mentioned above, it was shown that 
ACTR6 may be used as an independent prognostic factor to predict 
the prognosis of patients with HCC. After examining the 
relationship between ACTR6 expression and clinicopathological 
features of HCC patients, we found that ACTR6 expression was 
higher in deceased patients (Figure 2G) and higher in pathological 
stages (Figure  2H), T stages (Figure  2I) and histological grades 

FIGURE 1

ARPs family transcriptional levels in TCGA and ICGC comparing HCC to normal tissues. HCC, hepatocellular carcinoma; ICGC, The International 
Cancer Genome Consortium; ARP, actin-related proteins; TCGA, The Cancer Genome Atlas.
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FIGURE 2

Value of distinct ARPs mRNA expressions for prognosis in hepatocellular cancer. (A,B) In HCC patients, there was a correlation between the mRNA 
expression level of ARPs and OS. ACTR6 and patient OS were analyzed using univariate (C) and multivariate (D) Cox regression. The association 
between ACTR6 and several clinicopathological variables as determined by the Student’s t test. In patients with HCC, shorter overall (E) and 
progression-free survival (F) times were associated with ACTR6 mRNA expression. Events related to OS (G), pathologic stage (H), T stage (I), histologic 
grade (J), child-pugh grade (K), tumor states (L), inflammation of the surrounding hepatic tissue (M), and albumin (N).
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(Figure 2J). Nevertheless, increased child-pugh grade (Figure 2K), 
tumor status (Figure 2L), surrounding hepatic tissue inflammation 
(Figure 2M), and albumin (Figure 2N) were not linked to increased 
expression of ACTR6.

Functional enrichment analysis of DCGs of 
ACTR6 in HCC

We selected 8,599 DCGs from the LinkedOmics database, 
including 5,969 positively correlated and 2,630 negatively correlated 
genes, in order to investigate the possible mechanism by which 
ACTR6 operates in HCC (Figure 3A). The top 50 DCGs that are 
correlated with ACTR6 were shown on heatmaps (Figures 3B,C). To 
investigate the biological activities associated with ACTR6, the 
TCGA databases’ most closely related genes were eliminated by 
Pearson correlation analysis (|R| > 0.4, p < 0.05). In order to examine 
the important biological processes and functions, these linked genes 
were selected for GO and KEGG enrichment analysis. The GO 
analysis found that the DCGs were mostly involved in the cell 
division, mRNA splicing, and ribosomal small subunit biogenesis at 
the biological process level (Figure  3D). The cellular component 
enrichment study indicates that the most enriched category is 
nucleoplasm (Figure  3E). The most enriched categories at the 
molecular function level were RNA binding and protein binding 
(Figure 3F). The KEGG enrichment analysis showed that the cell 
cycle pathway was most significantly regulated by DCGs (Figure 3G). 
These findings suggested that ACTR6 on HCC probably plays an 
essential role in cell cycle.

Tumor cell ACTR6 is positively correlated 
with most processes of cell cycle

The TCGA databases’ gene set variation analysis was utilized to 
calculate the cell cycle’s enrichment score. The enrichment score and 
ACTR6 expression were connected, and the results indicated that 
ACTR6 expression was positively correlated with most cell cycle 
events, with the exception of damage response signal transduction via 
p53 class mediator (Figure 3H). These findings revealed a connection 
between cell cycle and ACTR6.

The relationship of ACTR6 expression level 
with immune infiltration in patients with 
liver cancer

The development and spread of HCC are significantly influenced 
by immune infiltrations (14). We assessed the degrees of immune cell 
infiltration in both normal and HCC patients using the CIBERSORT 
and TIMER algorithms. The findings demonstrated that HCC 
patients had a greater degree of immune cell infiltration than did 
healthy individuals (Figure 4A). Furthermore, among patients with 
HCC, the group exhibiting high expression of ACTR6 had a greater 
amount of immune cell infiltration (Figure  4B). ACTR6 was 
positively correlated with Eosinophils, Macrophages M0, T cells CD4 
memory activated, etc., and negatively correlated with T cells CD4 
naive, NK cells activated, etc. (Figure 4C). Additionally, we employed 

TIMER online analysis to examine the correlation between ACTR6 
expression and six types of immunological infiltrations (Figure 4D). 
To better understand the relationship between ACTR6 expression 
and immune infiltration, we  also used the TIMER database to 
investigate the relationship between ACTR6 and immune cell 
markers. Following purity-based correction, we  found that most 
immune cell indicators positively correlated with ACTR6 expression 
(Table 1).

Expression validation of ACTR6 in liver 
cancer

Through RT-qPCR we  found that the expression level of 
ACTR6 in the three HCC cell lines was higher than that in normal 
liver cells (Figure 5A) Furthermore, to confirm the expression of 
ACTR6 in hepatocellular carcinoma and its prognostic effect, we used 
immunohistochemical methods to detect the protein expression of 
ACTR6 in 90 pairs (six pairs of which were lost) of formalin-fixed 
paraffin-embedded (FFPE) liver tissue samples (Figure  5B). It is 
determined that hepatocellular carcinoma has greater levels of 
ACTR6 protein expression (Figure 5C). However, the high expression 
of ACTR6 does not appear to be related to various clinicopathological 
factors (Table  2), which may be  due to insufficient sample size. 
Further survival analysis showed that the higher the expression of 
ACTR6  in liver cancer tissues, the shorter the patients’ OS 
(Figure 5D). In addition, multivariate Cox regression analysis also 
showed that high expression of ACTR6 was correlated with OS 
(Table 3). Taken together, these results suggest that ACTR6 expression 
is up-regulated in HCC, and its high expression is associated with 
poor prognosis in HCC patients.

Functional analysis of ACTR6 in liver cancer 
cell

Two significant indicators of the development of cancer are the 
modification of the extracellular matrix and dysregulated cell cycle 
(14). We tried to ascertain ACTR6’s function in controlling cell 
migration and proliferation based on the GSVA results. We used 
three separate siRNAs to knock down ACTR6 in Huh7 and HepG2 
cells in order to functionally investigate the function of this gene in 
controlling the development of hepatocellular carcinoma 
(Figures 6A,B). We discovered that ACTR6 knockdown markedly 
reduced cell proliferation through investigations on clonal 
formation and cell proliferation (Figures  6C–F). Furthermore, 
transwell experiment demonstrated a substantial reduction in cell 
migration following ACTR6 siRNA transfection (Figures 6G,H). 
Ultimately, we  demonstrated by flow cytometry that ACTR6 
knockdown resulted in G1 cell cycle arrest (Figure 6I).

Discussion

Many factors, such as obesity, type 2 diabetes, metabolic 
syndrome, and nonalcoholic fatty liver disease (NAFLD), contribute 
to the development of HCC. It is still among the most deadly 
malignant tumors in the world (15). Abnormal malignant cell 
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FIGURE 3

Analysis of functional enrichment of ACTR6 genes that are differently co-expressed in HCC. (A) Volcano plots of ACTR6 genes that are differently co-
expressed. The top 50 were shown both negatively (C) and positively (B) on the heatmap. In HCC, ACTR6 is intimately related to the cell cycle. (D–F) 
The TCGA database links ACTR6 to biological processes (BP), cellular components (CC), and molecular functions (MF). (G) ACTR6 pathway analysis 
from the Kyoto Encyclopedia of Genes and Genomes (KEGG) in the TCGC database. (H) Pearson connection between cell cycle (GSVA) and ACTR6. 
The R-value was expressed by the band’s width.
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activities such as proliferation, migration, invasion, and autophagy are 
associated with the formation and progression of HCC (16, 17).

ARPs are necessary for the function of chromatin remodeling 
complexes (18). Previous studies have shown that Arp4–Arp9 are 
found in chromatin remodeling and histone modification 

complexes (19). They play a role in DNA repair, transcription 
control, and chromatin modification (20). For instance, ACTL6A, 
also referred to as Arp4, is involved in both the activation and 
repression of transcription from genes (21–24). ACTR5 and 
ACTR8, also referred to as Arp5 and Arp8, are particular INO80 

FIGURE 4

Relationship between immune infiltration in HCC and ACTR6 mRNA expression. (A) The comparison of estimated fractions of 22 immune cells 
between the normal and HCC patients. (B) The heat map illustrates how immune cells infiltrate differently in HCC samples with high and low ACTR6 
expression. (C) The Lollipop graph illustrates the relationship between immune cells and ACTR6 expression. (D) The TIMER online analysis revealed a 
favorable correlation between immune cell expression and ACTR6 expression levels.
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TABLE 1 Analysis of the correlation between ACTR6 and related immune cell genes and markers in TIMER.

Description Gene markers ACTR6

Purity None

Cor p Cor p

B cell CD19 0.192685 *** 0.193888 ***

CD79A 0.09444 0.079827 0.076664 0.140524

Monocyte CD86 0.392374 *** 0.318948 ***

T cell (general) CD3D 0.158044 ** 0.127261 *

CD3E 0.218304 *** 0.17224 ***

CD2 0.182701 *** 0.139423 **

TAM CCL2 0.241741 *** 0.196835 ***

CD68 0.338994 *** 0.296812 ***

IL10 0.342886 *** 0.299218 ***

M1 NOS2 0.211114 *** 0.206415 ***

IRF5 0.369551 *** 0.377102 ***

PTGS2 0.355037 *** 0.281689 ***

M2 CD163 0.321635 *** 0.268725 ***

VSIG4 0.285164 *** 0.227841 ***

MS4A4A 0.296369 *** 0.23676 ***

Neutrophils CEACAM8 0.102313 0.057633 0.08704 0.094126

ITGAM 0.379607 *** 0.32761 ***

CCR7 0.137846 * 0.115018 *

Natural killer cell KIR2DL1 0.023314 0.666093 0.051379 0.32367

KIR2DL3 0.17147 ** 0.155669 **

KIR2DL4 0.140983 ** 0.134195 **

KIR3DL1 0.143188 ** 0.137327 **

KIR3DL2 0.107088 * 0.091035 0.079915

KIR3DL3 0.066917 0.215048 0.102335 *

KIR2DS4 0.089281 0.0978 0.090521 0.08164

Dendritic cell HLA-DPB1 0.199509 *** 0.16376 **

HLA-DQB1 0.105234 0.050823 0.080124 0.123384

HLA-DRA 0.284756 *** 0.240638 ***

CD1C 0.212096 *** 0.184169 ***

NRP1 0.497254 *** 0.488839 ***

ITGAX 0.370632 *** 0.317812 ***

Th1 TBX21 0.149547 ** 0.124282 *

STAT4 0.187802 *** 0.171704 ***

STAT1 0.436577 *** 0.430249 ***

IFNG 0.210708 *** 0.178557 ***

TNF 0.309106 *** 0.262698 ***

Th2 GATA3 0.230782 *** 0.176471 ***

STAT6 0.428644 *** 0.453155 ***

STAT5A 0.362736 *** 0.346094 ***

IL13 0.105611 * 0.106375 *

Tfh BCL6 0.38906 *** 0.394642 ***

IL21 0.123442 * 0.091167 0.079478

(Continued)
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FIGURE 5

The expression of ACTR6 in normal liver cell line and liver cancer cell line Thle-2 was detected by RT-PCR (A). A comparison of paired neighboring 
normal tissues and ACTR6 expression in formalin-fixed paraffin-embedded (FFPE) hepatocellular carcinoma (n = 84 physiologically independent 
samples) using representative microphotographs (B) and a student’s t test analysis (C). (D) Kaplan–Meier analysis of the overall survival probability of 84 
HCC patients, stratified by ACTR6 expression.

TABLE 1 (Continued)

Description Gene markers ACTR6

Purity None

Cor p Cor p

Th17 STAT3 0.36847 *** 0.363055 ***

IL17A 0.164181 ** 0.170844 ***

Treg FOXP3 0.290511 *** 0.274022 ***

CCR8 0.476939 *** 0.431116 ***

STAT5B 0.531094 *** 0.536735 ***

TGFB1 0.228634 *** 0.199066 ***

T cell exhaustion PDCD1 0.162778 ** 0.156384 **

CTLA4 0.22184 *** 0.190123 ***

LAG3 0.094862 0.078482 0.092361 0.075612

HAVCR2 0.356368 *** 0.283981 ***

GZMB 0.07015 0.193652 0.076324 0.142246
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complex components that are preserved. Both of them are mainly 
found within the INO80 complex in yeast. They are essential to the 
enzymatic activity of INO80 (25). Unlike other nuclear Arps, 
which are primarily associated with transcriptional activation, 
ACTR6, also known as Arp6, is required to maintain gene silence 
in heterochromatin. Research has demonstrated that human and 
chicken ACTR6 directly interact with heterochromatin protein 1 
(HP1) in  vitro (26, 27). Furthermore, the vertebrate ACTR6 is 
necessary for the SRCAP complex to function (18). The histone 
variation H2A.Z is incorporated into nucleosomes at promoter 
areas by the SRCAP complex. Via transcriptional control and 
chromosomal architecture, H2A.Z is linked to several physiological 
processes, such as stem cell maintenance, cellular proliferation, 
and stress response (27–29). It also plays significant roles in 
epigenetic regulation and chromosome architecture.

However, the involvement of ARP family proteins in HCC has 
not been completely investigated. We  are in charge of this 
investigation of the expression, mutation, and prognostic 
significance of different ARP family members in HCC. After 
analyzing the TCGA and ICGC datasets, we  discovered that 

patients with HCC had highly overexpressed versions of 17 ARPs. 
A favorable correlation was found between short OS and 
overexpression of ARPC2/ARPC3/ARPC4/ARPC5L/ACTR6/
ACTL6A. Additional multivariate analysis showed that ACTR6/
ACTL6A may function as separate risk variables for the prognosis 
of patients with colorectal cancer. We confirmed the significant 
expression of ACTR6 in liver cancer cells and liver tumor tissues, 
as well as its impact on the prognosis of liver cancer patients, using 
cell assays and immunohistochemistry analysis. Next, we looked 
at ACTR6’s involvement in liver cancer in more detail. On the one 
hand, aberrant proliferation of malignant tumors is primarily 
caused by dysregulation of the cell cycle. In order to estimate 
ACTR6’s biological role, we used GO, KEGG, and GSVA analysis. 
This revealed that ACTR6 may control the cell cycle, which in turn 
controls cell migration and proliferation. The next functional tests 
confirmed that ACTR6 knockdown inhibited cell proliferation by 
causing a G1/S cell cycle arrest as well as limiting cell migration. 
Cancer is characterized by persistent proliferative signaling, which 
promotes unending and excessive cycles of cell division. It has 
recently become clear that, rather than causing unchecked cell 
cycle advancement, these mutations that impede cell cycle exit and 
prevent apoptosis are what propel this uncontrollably dividing 
cell. These include mutations in the signaling pathways that 
trigger cell cycle exit or encourage entrance into the S phase (30), 
although they are significantly less common in the pathways that 
obstruct mitotic entry (31–34) and exit (35–39). On the other 
hand, it is thought that a crucial factor contributing to the 
development of HCC is the chronic inflammatory response (40–
42). Our research revealed a significant association between 
ACTR6 and immune cells, particularly in macrophage and 
dendritic cells. Through the upregulation of proinflammatory 
cytokines and immunological checkpoints, immune cells aid in 
the development of tumors by immune escape (43).

Due to the limitations of our work, additional research is 
required to explore the possible molecular mechanism behind the 
carcinogenesis of ARP family proteins. However, we present the 
first information on the ARPprotein family’s differential 
expression in HCC, specifically in relation to ACTR6, as well as 
its possible diagnostic and prognostic significance. The expression 
of ACTR6 is strongly correlated with a bad prognosis in HCC. It 
can be  explored as a potential target for HCC treatment and 
prognostic biomarkers. Preliminary mechanistic investigations 
have indicated that it increases HCC formation and progression 
via regulating cell cycle and immune cell infiltration. In the future, 
more in vivo experiments should be done to verify the expression 
of ACTR6 and further explore the specific mechanism of ACTR6 
promoting the cell cycle conversion of liver cancer.

TABLE 2 Relationship between ACTR6 expression and clinicopathological 
features of hepatocellular carcinoma patients.

Characteristics ACTR6 expressions p valuea

Low High

Sex

Male 45 28 0.899

Female 7 4

Age

≤60 44 19 0.009

>60 8 13

T stage

T1-2 17 15 0.194

T3-4 35 17

ACJJ Stageb

Stage l-ll 18 15 0.264

Stage ll-V 34 17

Liver cirrhosis

Positive 34 20 0.789

Negative 18 12

aChi-square test; a p value less than 0.05 was considered statistically significant.
bAJCC, American Joint Committee on Cancer.

TABLE 3 Multifactorial analysis affecting the overall survival of patients with hepatocellular carcinoma.

Characteristic Multivariate analysis

HR CI (95%) p value

Age (≤60 years vs. >60 years) 1.856 1.059–3.252 0.031

Pathologic stage (Stage III&IV vs. Stage I&II) 1.925 1.130–3.279 0.016

T stage (T3&T4 vs. T1&T2) 1.389 0.821–2.348 0.220

ACTR6 expression (high vs. low) 1.828 1.057–3.163 0.031
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FIGURE 6

ACTR6 knockdown inhibited cell migration and proliferation. SiRNA suppression of ACTR6 (A,B) reduced proliferation (C,D) and clonal formation (E,F) 
as well as migration and invasion (G,H) of Huh7 and HepG2 cells. Scale bars, 200 μm (cell migration and invasion assay). Using the ImageJ program, 
the numbers of clonal formation, migratory, and invasive cells were quantified. After 24 h, Huh7 cells had a G1 cell cycle arrest due to ACTR6 
knockdown (I).
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