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Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) is a prevalent 
chronic liver condition characterized by lipid accumulation and inflammation, 
often progressing to severe liver damage. We aim to review the pathophysiology, 
diagnostics, and clinical care of MASLD, and review highlights of advances in 
proteomic technologies. Recent advances in proteomics technologies have 
improved the identification of novel biomarkers and therapeutic targets, offering 
insight into the molecular mechanisms underlying MASLD progression. We focus 
on the application of mass spectrometry-based proteomics including single cell 
proteomics, proteogenomics, extracellular vesicle (EV-omics), and exposomics 
for biomarker discovery, emphasizing the potential of blood-based panels for 
noninvasive diagnosis and personalized medicine. Future research directions 
are presented to develop targeted therapies and improve clinical outcomes for 
MASLD patients.
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1 Introduction

Metabolic Dysfunction-Associated Steatotic Liver Disease is a chronic illness characterized 
by fat accumulation in the liver, unrelated to alcohol consumption. MASLD is typically 
asymptomatic and involves fat accumulation in at least 5 percent of hepatocytes without 
hepatocellular damage (1, 2). However, when accompanied by inflammation, it can progress 
to Metabolic Dysfunction-Associated Steatohepatitis (MASH), which can further progress to 
fibrosis and cirrhosis. MASH is characterized by fibrosis, lobular inflammation, hepatocellular 
ballooning, and steatosis (1).

MASLD is influenced by obesity, insulin resistance, high cholesterol, sex, lifestyle, and 
genetic-by-environmental interactions. It is associated with several comorbidities, such as 
diabetes, dyslipidemia, cardiovascular disease, and chronic kidney disease (1, 3, 4). The risk 
of developing this disease increases with low physical activity and high-caloric diets rich in 
saturated free fatty acids, cholesterol, and fructose (5). On the other hand, increased intake of 
antioxidant vitamins and fat esterified with polyunsaturated FFAs are associated with 
decreased risk of MAFLD. In individuals with genetic predispositions, environmental factors, 
such as smoking, pesticides, and air pollution, can further increase the chance of developing 
MASLD (1).
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MASLD affects approximately 32.4% of the global population, 
making it one of the leading causes of chronic liver disease (6, 7). 
Prevalence is exceptionally high in North America, primarily due to 
the high obesity rates (8). Among the North American population, the 
highest prevalence is found in Hispanics (63.7%), followed by 
non-Hispanic whites (56%) and non-Hispanic blacks (40%). In the 
Rio Grande Valley, a region in south Texas where 90% of the 
population is of Mexican origin, the prevalence of MASLD is 64 %. 
This economically disadvantaged region also experiences significant 
health disparities, with high rates of diabetes (32.5%) and obesity 
(55.5%) (2, 9).

Recent advances in proteomics technologies have changed our 
understanding of liver disease pathology, diagnosis, and treatment 
options (10). We aim to provide an overview of proteomics’ current 
and future applications in liver disease research and management. 
We will review the foundation of liver pathophysiology, diagnosis, and 
clinical care and explore how proteomics is critical in advancing the 
study of liver disease.

1.1 Pathophysiology, diagnostics, and 
clinical care for MASLD

1.1.1 Pathophysiology
Triglyceride (TG) accumulation in hepatocytes drives the 

pathophysiology of MASLD (11). MASLD is driven by insulin 
resistance, which disrupts glucose and lipid metabolism, causing 
triglyceride (TG) accumulation in hepatocytes (12). Excess 
triglycerides in the liver result in lipotoxicity, the production of 
reactive oxygen species (ROS), inflammation, and hepatocyte failure, 
which ultimately leads to MASH (13). As the inflammatory disease 
progresses, fibrosis, cirrhosis, and hepatocellular carcinoma may 
develop, resulting in clinical manifestations of liver failure (13). The 
early stages of MASLD are characterized by histological abnormalities 
such as hepatic balloon degeneration, steatosis, lipid buildup, and 
inflammation (14). These changes result from the complex interplay 
between genetics, environmental factors, metabolic abnormalities, 
and their interactions (15). This multifactorial etiology of fatty liver 
disease (FLD) makes diagnosis, clinical trials, and treatment 
challenging (15).

1.1.2 Diagnosis
Diagnostic techniques for liver disease are classified into invasive 

and noninvasive methods (Table 1). Noninvasive methods, such as 
blood-based analysis of hepatic enzymes (transaminases), are often 
used to screen for liver disease because they are cost-effective. 
Unfortunately, they are not valuable to exclude patients from liver 
biopsy (16) but have been incorporated into suggested biomarker 
panels (17). Other noninvasive measures of fibrosis include the 
Metabolic Dysfunction-Associated Fibrosis 5 score.MAF-5, MASLD 
fibrosis score (NFS), the fibrosis-4 index, and the AST (aspartate 
aminotransferase) to platelet ratio index.

Some diagnostic tools focus on microanatomy, including liver 
biopsy, Magnetic Resonance Imaging (with MRI-based MAST score) 
(18), ultrasound (19), and Vibration Controlled Transient 
Elastography (VCTE). VCTE (FibroScan) accurately measures 
steatosis and fibrosis and effectively assesses liver health in community 
settings (20–23). The FibroScan controlled attenuation parameter 

(CAP) measures steatosis by analyzing ultrasonic shear wave 
propagation through the liver, while the liver stiffness measurement 
(LSM) measures hepatic fibrosis. The FAST-AST score—a combined 
measurement of LSM, CAP, and AST—estimates the risk for 
progression to cirrhosis. A FAST score below 0.35 has a sensitivity of 
90% to rule out cirrhosis, while a FAST score above 0.67 has a 
specificity of 90% for ruling it in (19).

Although noninvasive techniques are effective in providing an 
initial assessment of MASLD, the gold standard for diagnosis is an 
invasive liver biopsy, which is commonly associated with distress and 
discomfort (24).

1.1.3 Clinical care
MASLD and early stages are managed with lifestyle modifications 

focusing on dietary changes, increased physical activity, and reduced 
alcohol intake (25). Advanced liver disease and fibrosis are managed 
with more intense lifestyle adjustments to achieve long-term weight 
loss (25). Depending on the severity, weight loss programs, 
medications for treating obesity, and bariatric surgery may also 
be advised (25, 26).

Currently, there are re-purposed pharmacologic and 
non-pharmacologic options for MASLD treatment and prevention, 
including thiazolidinedione (TZD) pioglitazone, glucagon-like 
peptide 1 receptor agonists (GLP-1), sodium-glucose cotransporter 2 
inhibitors (SGLT2 inhibitors), vitamin E, flavonoids, and statins. 
Treatment targets triglyceride synthesis, metabolism imbalance, and 
free fatty acid production that contribute to MASLD. In a mouse 
model, flavonoids, such as Chenopodium quinoa Willd (CQWF), 
inhibit lipid accumulation by down-regulating the expression of two 
genes (CD36 and FASN) (27). Hesperitin, a flavonoid found in citrus 
fruits, influences DRP1, PINK1, and Parkin activity downregulating 
mitochondrial regulation dynamics (28).

Weight gain promotes genetic predisposition towards insulin 
resistance, resulting in excess lipolysis and flow of free fatty acids to 
the liver. This promotes intrahepatic triglyceride accumulation and, 
over time, may progress to steatohepatitis. Medications target reduced 
glucose, insulin secretion, lipid metabolism, weight loss, and hunger 
control and may reduce cardiovascular risk. Currently, Rezdiffra 
(resmethrin) is the only US Food and Drug Administration (FDA) 
approved treatment for noncirrhotic MASH with moderate to 
advanced fibrosis. Phase 3 trials are underway for other medications 
that target liver molecules. An excellent review of the targets for 
managing MASLD outlines the genes and proteins involved in the 
inflammatory pathways involved in fibrosis (29).

1.2 Future research for diagnosis and 
treatment

The utilization of biomarkers is becoming a viable method for 
noninvasive diagnosis of liver disease, monitoring of treatment 
response, and enabling personalized medicine. Identifying novel 
biomarkers for MASLD is crucial for advancing early disease diagnosis 
and improving clinical outcomes. Recent research has identified 
candidate serum biomarkers corresponding to each liver disease stage, 
including inflammatory cytokines, fatty acid transporter proteins, 
lipid droplet-associated proteins, and extracellular matrix proteins at 
various stages (30). Identifying these biomarkers can enhance the 

https://doi.org/10.3389/fmed.2025.1513598
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


H
ern

an
d

ez et al. 
10

.3
3

8
9

/fm
ed

.2
0

2
5.1513

59
8

Fro
n

tie
rs in

 M
e

d
icin

e
0

3
fro

n
tie

rsin
.o

rg

TABLE 1 Existing diagnostic approaches to MASLD.

Diagnostic method Description Sensitivity/specificity Cost Pros/Cons Ref

Ultrasound: The primary imaging 

method to identify hepatic steatosis, 

effective when more than 33% of 

hepatocytes are steatotic. However, it 

is less reliable for mild steatosis.

Steatosis

Stage1: 81%/92%

Stage 2: 89%/70%

Stage 3: 83%/63%

Fibrosis

Stage 1: 81%/77%

Stage 2: 75%/82%

Stage 3: 87%/89%

Stage 4: 94%/91%

$200–$1.5 k Pros

- Rapid

- Good diagnosis value

- Increased performance with later 

disease stage

Cons

- High abdominal adiposity may 

impact scan performance

(137)

FibroMeter Vibration Controlled 

Transient Elastography (VCTE):

A noninvasive diagnostic tool that 

combines liver stiffness 

measurements obtained through 

vibration-controlled transient 

elastography with serum biomarkers 

from the FibroMeter panel, offering 

an accurate assessment of liver 

fibrosis.

Fibrosis

Stage 2: 66.7%/86.4%

Stage 3: 76.2%/81.3%

Stage 4: 94.2%/70.4%

$200–$2000 Pros

-Rapid

-Noninvasive

- Combination of Biomarkers and TE

Cons

-Cost

-Availability

- variability or inaccuracies in 

individual cases, particularly in 

patients with co-existing conditions 

affecting liver stiffness or biomarkers

(138, 139)

Magnetic Resonance Elastography 

(MRE): MRE provides a more precise 

measurement of the amount of liver 

fat than magnetic resonance imaging 

(MRI). Notably, the performance of 

MRE is not dependent on the 

scanner’s magnetic field strength.

Steatosis

87.4%/74.3%

Fibrosis

90.9%/82.9%

$400 k+ Pros

- It can be economical to screen 

high-risk obese or diabetic 

populations.

Cons

- Cost

- Accessibility

(140, 141)

(Continued)
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TABLE 1 (Continued)

Diagnostic method Description Sensitivity/specificity Cost Pros/Cons Ref

Noninvasive Biochemical Scores

Metabolic dysfunction-associated 

fibrosis 5 score.MAF-5 Includes waist 

circumference, body mass index, 

diabetes, aspartate aminotransferase 

(AST), and platelet measures.

60.9% was predicted at low, 14.1% at 

intermediate, and 24.9% at high risk 

of fibrosis

Pros-validated, age-independent, 

anthropometric referral tool to 

identify individuals at high risk of 

liver fibrosis in primary care 

populations.

Cons- Is used to identify not diagnose 

individual at high risk of hepatic 

fibrosis.

(142, 143)

MASLD Liver Fat Score: This method 

uses metabolic syndrome parameters, 

fasting insulin, and liver enzymes to 

predict MASLD with high sensitivity 

and specificity.

N/A ~$150 Pros

- The score is based on easily 

accessible clinical/laboratory 

parameters, easy to perform

- Uses standard blood tests

- Helps detect asymptomatic 

individuals

Cons

- May be less accurate in those with 

other causes of liver disease (e.g., viral 

hepatitis)

- Not able to assess the severity of the 

disease

(144)

Fibrosis-4 Index (FIB-4): integrates 

platelet count, AST, ALT, and age to 

determine the risk of fibrosis. Higher-

risk patients may require further 

evaluation with transient 

elastography or enhanced liver 

fibrosis (ELF) tests.

N/A ~$150 Pros

- Similar to Liver Fat Test (cost/

blood)

- Stratifies patients by liver fibrosis 

risk (low, intermediate, high)

- High Negative Predictive Value 

rules out advanced fibrosis, reduces 

unnecessary additional testing

Cons

- Influenced by age

- Less accurate for patients with 

intermediate scores often necessitates 

additional ELF tests

(145)

(Continued)
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accuracy and speed of MASLD diagnosis, allowing physicians to 
develop patient-specific lifestyle and treatment plans (31).

Blood-based panels, such as NIS4®, have become important for 
identifying patients at risk of severe MASLD or MASH without the 
need for invasive procedures. Recent improvements, including the 
NIS2 + ™ panel, have shown a potential to further reduce unnecessary 
biopsies and screening costs in clinical practice and trials (32, 33). 
Neither test has yet received FDA approval.

Biomarkers also play a vital role in treating fibrosis. Fibroblast 
Growth Factor 21 (FGF21), a liver-secreted hormone regulating 
energy and lipid metabolism, shows promise as a therapeutic target. 
FGF21 analogs, such as efruxifermin and pegozafermin, are currently 
in clinical trials for treating fibrosis in MASLD (12). These biomarkers 
identify fibrosis, guide FGF21-based therapies, and monitor treatment 
responses, which can lead to more personalized and effective liver 
disease management.

Biomarkers provide insight into the molecular mechanisms of 
liver disease, helping clinicians assess key processes such as fat 
deposition, oxidative stress, inflammation, and fibrosis. Application 
in noninvasive diagnostics, genetic profiling, and blood-based panels 
enhance early detection and risk stratification. By predicting disease 
progression, particularly fibrosis, biomarkers allow for optimized 
treatment strategies and real-time monitoring of therapeutic responses 
to metabolic and antifibrotic agents. Biomarkers are also important 
for developing targeted therapies and serve as surrogate endpoints, 
reducing the need for liver biopsies and allowing for faster evaluation 
of treatment efficacy.

Current imaging technologies offer advantages and disadvantages 
(cost, accessibility, resolution of imaging, sensitivity, and specificity) to 
diagnose and manage MASLD. To address these gaps, we focus on 
methods to detect early-stage cellular events and changes in protein 
expression and identify key pathways involved in MASLD progression. 
Mass spectrometry-based proteomics offers promising opportunities 
for novel biomarker discovery and elucidating the molecular 
mechanisms underlying MASLD development (34, 35). Proteomic 
studies identify circulating protein signatures associated with MASLD 
progression. A comprehensive proteo-transcriptomic analysis of 4,730 
circulating proteins in patients with MASLD identified distinct 
signatures for active steatohepatitis and advanced fibrosis (36). 
Biomarkers are the future of MASLD diagnosis, treatment, and research.

2 Mass spectrometry-based 
proteomics for MASLD biomarker 
discovery

Biomarkers are quantifiable proteins, metabolites, and genetic 
markers that indicate physiological states, pathological processes, or 
responses to therapeutic interventions. These biomolecules are typically 
extracted from various biofluids such as blood, cerebrospinal fluid (CSF), 
urine, saliva, and tissue samples. The data from biomarker analysis 
provide crucial insights for epidemiologists and clinicians, enabling 
informed decision-making in disease detection, diagnosis, prognosis, 
and treatment prediction (37–39). Blood plasma, a rich source of diverse 
proteins and metabolites, is pivotal in numerous biological processes. It 
offers significant advantages over a liquid biopsy due to its accessibility 
and minimal invasiveness compared to other sampling methods. The 
field of biomarker discovery has been propelled by the increasing T
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feasibility of personalized medicine applications, allowing for real-time 
monitoring of disease states and therapeutic responses.

Blood and its derivative in plasma proteomics and metabolomics 
are obtained after centrifugation with anticoagulants (EDTA or 
heparin) and are prepared for analysis. Samples contain a complex 
mixture of proteins, lipids, metabolites, and other small molecules that 
can be analyzed and characterized using advanced mass spectrometry-
based techniques. Such analyses are crucial for identifying and 
validating biomarkers for various conditions, including metabolic 
disorders, cancers, and neurodegenerative diseases (40). The blood 
plasma proteome has a dynamic range of 10 orders of magnitude, 
reflecting the individual’s physiological state. Unlike traditional 
biochemical diagnostics, current proteomic approaches simultaneously 
identify and quantify thousands of proteins, providing a comprehensive 
snapshot of health status. Post-translational modifications of proteins, 
often indicative of disease processes, can be detected and quantified. 
Proteomics offers unparalleled depth and breadth of analysis in 
biomarker discovery. High-resolution mass spectrometry, coupled with 
advanced bioinformatics tools, enables the detection of low-abundance 
proteins and subtle changes in protein expression levels that may 
indicate early-stage diseases or treatment responses. This level of detail 
is precious in developing multi-protein biomarker panels, which often 
provide greater specificity and sensitivity than single-protein markers 
(41). Protein, peptides, cleaved fragments, and their proteoforms 
(spliced variants, isoforms, post-translationally modified) can appear 
in the blood circulation from active secretion or cellular leakage, 
providing a window into the current state of human health. The 
demand for more translatable biological targets and the use of mass 
spectrometry is driving the need for more MS-blood-based proteomic 
studies. Plasma is a highly desirable bio-fluid for studying MASLD and 
identifying biomarkers because of the higher protein concentration and 
ability to detect proteins, metal ions, metabolites, lipids, and proteins.

Integrating omics methods with next-generation laboratory 
instrumentation and computational approaches represents the latest 
advancement in biomarker discovery. Identifying and quantifying 
proteins and peptides in proteomics have led to novel discoveries in 
the characterization of disease and health. More than 10,000 human 
proteins can be identified and quantified using proteomics, including 
low-abundant transcription factors present in cell and cell culture 
supernatants (42, 43). Incorporating proteomics in multi-omics 
analyses enhances high-throughput capabilities, facilitating the 
discovery of important proteins that may act as biomarkers for certain 
diseases. Unlike genetic-based biomarkers, protein-based approaches 
offer direct, targeted, highly sensitive, and specific quantitative analysis 
for biomarker discovery. Using noninvasive serum and plasma to 
identify disease-associated biomarkers, proteomic laboratories 
provide rapid sample processing and results with high specificity 
compared to conventional diagnostic methods (44, 45). These 
approaches are well suited for identifying and quantifying peptides, 
protein expression, and regulation associated with MASLD.

The value of collecting large-scale proteomics data in population 
studies provides opportunities to investigate non-genetic associations, 
capture biomarkers of environmental exposure, stratify individuals 
according to their state of health or disease, and monitor the 
longitudinal progression of disease. The development of large 
biobanks and population cohorts allows us to identify molecular 
phenotyping that can be performed across hundreds of thousands of 
individuals. These opportunities raise questions regarding which 

technologies to use, expected outcomes, and whether it is cost-
effective to characterize the proteomes of entire populations.

2.1 Essential components for proteomics

Mass spectrometry is the gold standard for identifying and 
measuring proteins in proteomics, separating ions according to their 
mass-to-charge ratio (m/z), and enabling an evaluation of peptide 
masses. Tandem mass spectrometry (MS/MS) involves two stages of 
mass analyses with an intermediate fragmentation step in which 
nitrogen or helium gas fragments the ions into smaller masses for 
sequencing. Mass spectrometers are often coupled with High-Pressure 
Liquid Chromatography (HPLC), which separates peptides based on 
their interaction with a liquid mobile phase and a stationary phase. 
LC–MS/MS analysis offers an extremely selective and sensitive method 
for measuring peptides, as HPLC fractionation increases the number 
of peptide identifications (46). Spectra are collected in a 60-min run and 
stored as RAW files (uncompressed and unprocessed data). A single 
run can have over 12,000 spectra, requiring computational methods for 
database searching. These methods allow for identifying proteins by 
comparing the mass spectra to species-specific protein references (47, 
48). One of the most widely used databases for this purpose is the 
UniProt Knowledgebase (UniProtKB). Pathway analysis can be applied 
to these large sets of identified proteins (Figure  1). This approach 
organizes large lists of proteins into smaller sets of proteins that function 
in the same pathways and biological processes (49). In the context of 
MASLD, annotated databases and pathway analyses can be utilized to 
identify specific proteins and pathways underlying this disease.

2.2 Advantages of proteomics over 
traditional methods in biomarker discovery

Traditional diagnostic methods often target a limited number of 
predefined validated markers and can underrepresent individuals from 
specific populations, comorbidities, ages, and health statuses. Proteomics 
offers several advantages for biomarker discovery, including improved 
accuracy, greater detection limits, depth of coverage for surrogate 
peptides, and broader applicability. One of the major advantages is 
global protein profiling, which makes it possible to analyze thousands 
of proteins in a biological sample at once (50). Another significant 
advantage includes elucidating post-translational modifications such as 
phosphorylation, glycosylation, acetylation, and ubiquitination. These 
modifications play crucial roles in disease processes and are not typically 
captured by traditional genomic or transcriptomic methods (51). 
Modern proteomic approaches facilitate quantifying protein expression 
across the proteome of both normal and diseased samples, providing 
valuable insights into protein composition, localization structure, 
function, interactions, and expression profiling (52).

3 From discovery of novel biomarkers 
to validation

The development of protein biomarkers is divided into discovery, 
verification, and validation. New protein biomarker candidates are 
identified without bias by using an untargeted approach and quantifying 
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the global proteome, which provides a holistic and large pool of protein 
identifications/datasets that can be used to distinguish and classify 
biomarkers to differentiate disease from healthy individuals. The 
FDA-NIH Biomarker Working Group defines biomarkers as having the 
property that can be assessed to indicate normal biological processes, 
pathogenic processes, or responses to an intervention or exposure (53).

3.1 Validation of biomarkers

Biomarker validation involves testing in larger and more diverse 
cohorts to ensure they are statistically significant and clinically 
relevant. This phase involves clinical sample testing, in which 
biomarkers are validated using clinical samples from well-characterized 
patient cohorts, often including various stages of the disease, to assess 
their diagnostic and prognostic utility (54). Validation across multiple 
laboratories ensures that biomarkers are reproducible in various 
settings and populations, confirming that candidate biomarkers are 
vetted prior to clinical trials and eventual regulatory approval.

3.2 Novel biomarkers discovered through 
proteomics

3.2.1 Diagnostic biomarkers
Diagnostic biomarkers are critical for early detection of diseases 

and can improve patient outcomes. In addition to MASLD and other 

conditions, several proteomic studies have identified promising 
diagnostic biomarkers such as Insulin-like growth factor-binding 
protein complex acid labile subunit (ALS) and Galectin-3 Binding 
Protein (Gal-3BP). These proteins are significant markers for 
distinguishing early-stage from advanced liver fibrosis in MASLD 
patients (55). Their plasma concentrations correlate with the degree 
of fibrosis, offering a noninvasive way to monitor the course of the 
illness and facilitate early identification.

3.2.2 Prognostic biomarkers
Prognostic biomarkers provide clinicians with insight into how a 

disease is expected to progress, enabling them to forecast patient 
outcomes and adjust treatment regimens accordingly. Proteins such 
as IGFBP3/4 (Insulin-like Growth Factor Binding Proteins 3 and 4) 
and IGF-1 (Insulin-like Growth Factor 1) have been linked to the 
development of fibrosis in MASLD (56, 57). Their levels aid in long-
term disease tracking and can be  used to forecast the severity 
of fibrosis.

3.2.3 Therapeutic targets
Therapeutic targets identified through proteomics are proteins 

that drugs can target to treat diseases. A protein panel called 
ADAMTSL2 (A Disintegrin and Metalloproteinase with 
Thrombospondin Motifs Like 2) was developed to distinguish 
between different phases of liver fibrosis in Metabolic Dysfunction-
Associated Steatotic Liver Disease (58). This panel has 
demonstrated high accuracy in identifying advanced fibrosis 

FIGURE 1

Proteomic workflow is used for sample preparation, mass spectrometry analysis, and bioinformatics.
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stages, suggesting ADAMTSL2’s potential as a target 
for therapeutics.

4 Identification of MASLD biomarkers 
using proteomics

Specific examples of the advances in the use of proteomics and the 
identification of biomarkers encompass the role of biomarkers in 
MASLD research and management (31, 59–62), ranging from gene 
expression functional enrichment analysis to the role of inflammation 
in the development and pathogenesis of liver disease.

Proteomics databases are essential for comprehensive protein-
related information, facilitating storing, organizing, and retrieving 
data on protein sequences, structures, post-translational modifications, 
and associated functional annotations. Integrating advanced 
proteomics technologies with these databases has significantly 
enhanced our understanding and management of MASLD. A pivotal 
study by Niu et al. (10) employed high-resolution mass spectrometry 
to profile the plasma proteome of 48 patients with varying degrees of 
MASLD and cirrhosis (63). This analysis identified six differentially 
expressed proteins: LDOB, APOM, LGALS3BP, PIGR, VTN, and 
AFM. Notably, AFM and LGALS3B had been previously implicated 
in liver disease by independent research groups (37, 39). The study 
also revealed a global clinical and proteomic data correlation map 
strongly associated DPP4, ANPEP, TGFBI, PIGR, and APOE with 
MASLD and cirrhosis progression. DPP4, ANPEP, and TGFBI 
emerged as potential therapeutic targets due to their correlation with 
liver enzymes secreted into plasma during hepatic injury (63).

Leveraging the Plasma Proteome database, serum proteome 
profiling has uncovered specific protein signatures related to MASLD 
progression (64). These signatures include proteins involved in 
immune system regulation and inflammation (e.g., RBP4), coagulation 
(e.g., fibrinogen β chain and fibrinogen γ chain), and extracellular 
matrix structure and function (e.g., Lumican). Additionally, carrier 
proteins in the blood, such as apolipoprotein C1, have shown potential 
in differentiating various liver disease conditions, thereby improving 
and enhancing diagnosis and prognosis. Xing et  al. employed a 
sophisticated MS-based discovery-verification-validation proteomics 
workflow, combined with machine learning models, to identify a 
serum proteomic biomarker panel comprising HABP2, CD163, AFP, 
and PIVKA-II (65). This panel demonstrated the ability to distinguish 
early-stage hepatocellular carcinoma (HCC) from liver cirrhosis in 
healthy individuals, highlighting the potential of proteomic 
technologies in liquid biopsy applications for the early detection and 
management of liver diseases, including MASLD.

Utilizing the NCBI annotated database, liver tissue proteomics 
have revealed significant alterations in mitochondrial proteins, 
providing critical insights into hepatic disease pathogenesis (66). In 
an animal model of chronic ethanol exposure, 43 mitochondrial 
proteins exhibited differential expression, with 13 increasing and 
30 decreasing. This study underscored the extensive impact of 
ethanol on the mitochondrial proteome and highlighted specific 
metabolic pathways involved in liver pathology. The Human Liver 
Proteome Project (HLPP) database represents a valuable resource 
for understanding the complete set of proteins expressed in the 
human liver (67). By focusing on proteome mapping, functional 
annotation, and clinical relevance, the HLPP database provides 
researchers with detailed proteomic data and analytical tools to 

advance the understanding and treatment of liver diseases, 
including MASLD.

Integrating proteomics databases with advanced analytical 
techniques has revolutionized our approach to MASLD research. 
These resources enable a deeper understanding of the molecular 
mechanisms underlying liver diseases, support the development of 
targeted therapies, and improve the potential for personalized 
treatment strategies. As we  continue to harness the power of 
proteomics in MASLD research, we  move closer to reducing this 
prevalent liver condition’s significant health and economic burden.

In addition, protein-based biomarkers, such as cytokines like 
TNF-α and Interleukin 6 (IL-6), have the potential to detect MASLD, 
suggesting that they can help identify inflammation-related Metabolic 
Dysfunction-Associated Steatohepatitis (MASH) and more advanced 
stages of fibrosis (68–71). An investigation conducted in both clinical 
and experimental settings has demonstrated the involvement of 
matrix metalloproteinases (MMPs) and their inhibitors, tissue 
inhibitors of metalloproteinases (TIMPs), in hepatic fibrogenesis and 
fibrinolysis (72, 73). In a retrospective study involving 84 patients with 
cirrhosis and 14 healthy controls, TIMP-1 levels in arterial and hepatic 
vein plasma were determined by using ELISA (74). The findings 
demonstrated a substantial positive correlation between TIMP-1 levels 
and the disease severity in patients with cirrhosis, suggesting that 
TIMP-1 may be a useful noninvasive marker for anticipating problems 
associated with cirrhosis. These biomarkers are essential indicators of 
fibrosis and play a pivotal role in evaluating disease progression and 
the risk of advancing to cirrhosis. Metabolomic biomarkers are also 
noteworthy, focusing on lipid profiles and metabolic disturbances that 
characterize MASLD. Another intriguing class of biomarkers includes 
microRNAs (miRNAs), such as miR-122 and miR-34a, which control 
inflammation, fibrogenesis, and liver metabolism (75). The 
noninvasive diagnostic potential of miRNAs’ allows for easy detection 
in blood samples, and their levels correlate strongly with liver 
pathology. Utilizing proteomics for the diagnosis of MASLD has the 
potential to make disease testing a regular part of annual screening. 
By using serum, high-throughput technologies enable rapid sample 
analysis and turnaround.

Recently, Amyloid beta (A𝜷) and associated amyloid precursor 
protein (APP) were found to protect against liver fibrosis. APP 
knockdown upregulates classical hallmarks of fibrosis. APP regulates 
mitochondrial function, lipid metabolism, and cell–cell interactions 
in a healthy liver, protecting against liver fibrosis. Further evaluation 
of the role of these specific proteins will provide valuable insight into 
diagnosis and treatment (76–78).

5 Emerging technologies

5.1 Extracellular vesicles (EV-omics)

The primary methods for diagnosing MASLD are histology-
based. However, new diagnostic approaches are emerging and present 
a unique opportunity for monitoring disease progression in MASH 
stages, allowing for easily accessible noninvasive methods of 
identifying biomarkers (79–81). One such advancement involves 
using omics technologies to use extracellular vesicles (EVs) and 
exosomes as a noninvasive diagnostic approach to biomarker discovery.

EVs constitute a variety of membrane vesicles that are released 
from cells. They can be classified into apoptotic bodies, microvesicles 
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(MVs), and exosomes (82). Apoptotic bodies are the largest EVs, 
1,000–5,000 nm in size. They are released from apoptotic blebbing 
cells (external forms of the cells) that are undergoing cell death. MV’s 
range in size from 100 to 1,000 nm and are generated by external 
budding from the plasma membrane. Exosomes, the smallest of the 
EVs, have the smallest size of 30–100 nm and originate from the 
endosomal system (83). EVs are released into the extracellular space 
and deliver information to other cells. They also carry out essential 
cargoes used in cell communication (84). The cargo content comprises 
biologically important proteins, lipids, metabolites, and nucleic acids, 
making them critical targets in biological research (83, 85).

EVs can be explored in the pathological identification of rare 
diseases through cell communication’s cellular and molecular 
pathways, including homeostasis and other diseases such as cancer 
and neurodegenerative disorders (84, 86–88). EVs offer tremendous 
therapeutic opportunities in cancer, infectious diseases, and 
neurodegenerative disorders, including the potential to serve as 
important biologicals in drug delivery to targeted sites (89, 90). EVs 
also play direct roles as pathogenic elements, particularly in 
neurodegenerative disorders, cancer, and even microbial infections 
(91–94). The roles of EVs in homeostasis must be balanced since EVs 
secreted from cells can travel through the circulatory system to deliver 
information to neighboring cells or cells in different locations (95).

EVs can also carry metabolites, RNAs, DNA, and miRNA cargo 
that may serve as MASLD biomarkers. Studies have shown that 
circulating miR-135a-3p in exosomes may be potential noninvasive 
biomarkers for diagnosing MASLD (96). This miRNA is a more 
sensitive and specific biological marker for MASLD than ALT (96). 
EV-omics—a subset of proteomics—may provide insight into cell–cell 
communication in hepatocytes during MASLD progression (Figure 2), 

presenting an excellent opportunity for noninvasive biomarkers that 
can be isolated from urine (97), saliva (98), CSF (99), and plasma (100).

5.2 Exposomics

Industrial and manufacturing sectors (gas, chemical plastics, 
energy, emissions, heavy machinery) have contributed to large-scale 
pollution, impacting water, air, and soil. While many initiatives and 
mitigation strategies have helped reduce pollution, more research is 
needed to identify the various environmental and chemical toxicants 
that impact human health. An environmental toxicant can be viewed 
as any toxic agent or substance produced by humans or introduced 
into the environment by human activities. Toxicants come in diverse 
shapes and sizes and may emanate from natural and anthropogenic 
sources. Impact on the physical environment includes thermal/
climatic stress, altitude (hypoxia), natural disasters, radiation, 
pollution, and metal exposure. Particulate matter, polyaromatic 
hydrocarbons, chemical solvents, mycotoxins, phthalates, lead, 
organophosphates mercury, perfluorocarbons, polychlorinated 
biphenyls, cadmium, and arsenic are the most studied toxicants due 
to health concerns and disease associations.

Cells are subject to chemical, molecular, and physical stresses that 
can become toxic to metabolic processes, alter macromolecular 
interactions and signaling, affect pH, and more. These external stresses 
can become internal molecular stresses, producing reactive metabolic 
byproducts such as reactive oxidative species (ROS) and uninitiated 
cell death pathways. Cells and tissues’ intrinsic and adaptative ability 
to modulate these molecular processes in response to stresses is 
essential to maintaining homeostasis (101). Cell hemostasis regulation 

FIGURE 2

Extracellular vesicles from blood or adipose tissues of MASLD patients present the potential for biomarkers of MASLD.
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relies on the heat shock response, unfolded protein response, oxidative 
stress response, and DNA damage response. While these response 
pathways have been widely studied, emerging evidence on extracellular 
vesicles as a mode of disease transmission has garnered attention.

Human environmental exposures, often called the “exposome,” 
represent a broad spectrum of external and internal factors, including 
chemical, physical, biological, and social elements that can influence 
human health outcomes. These environmental factors can enter the 
body through various routes, such as inhalation, ingestion, and dermal 
absorption, exerting detrimental effects on liver health. The 
development of fatty liver disease has been linked to exposure to 
environmental contaminants, including air pollutants, heavy metals, 
pesticides, endocrine-disrupting agents, and environmental toxins 
(102, 103). These environmental exposures can cause inflammation, 
oxidative stress, and abnormal lipid metabolism in the liver, leading 
to hepatocyte fat buildup (104). The risk of fatty liver disease is further 
increased by lifestyle factors influenced by environmental factors, such 
as diet, physical activity, and socioeconomic status.

The exposome emphasizes the importance of considering external 
and internal environmental exposures and their interactions with 
genetic and epigenetic factors in shaping individual susceptibility to 
fatty liver disease. Understanding the complex interactions between 
environmental exposures and liver function is essential to prevent and 
treat MASLD effectively (104, 105). Particulate matter air pollution 
(PM2.5), derived mainly from fossil fuel combustion, is associated 
with MASLD. A recent cross-sectional study conducted on 
hospitalized patients in the United States Nationwide Inpatient Sample 
(NIS) database found a link between ambient PM2.5 exposure and an 
increased risk of MASLD (106), emphasizing the need for further 
investigation to examine the impact of eleven past long-term PM2.5 
exposure events on incident instances of MASLD.

Exposure to heavy metals such as mercury (107), lead (108), 
arsenic (109), and iron (110) is associated with a higher incidence of 
fatty liver disease and liver dysfunction, which has been implicated in 
the onset and progression of MASLD in various communities. 
Endocrine disruptors (such as organochlorine pesticides that alter 
lipid metabolism and cause oxidative stress in the liver) are linked to 
a higher risk of fatty liver disease and liver dysfunction (111). Genetic 
variants involved in detoxification pathways and lipid metabolism 
may influence a person’s vulnerability to environmental toxins and 
ability to metabolize and eliminate environmental exposures (112). In 
environmental exposures, lifestyle factors, including diet, exercise, and 
alcohol intake, can alter the risk of fatty liver disease. Socioeconomic 
differences worsen the impacts of environmental pollutants since 
those from underprivileged backgrounds are more likely to be exposed 
to pollution at higher levels and to be more vulnerable to its harmful 
effects on liver health. To reduce the incidence of fatty liver disease 
and improve liver health across various demographics, targeted 
therapies and public health initiatives must consider the intricate 
interactions between host variables and environmental exposures

5.3 Single cell proteomics

In sophisticated biological systems such as the liver, characterized 
by its complex lobular architecture and numerous cell types, each type 
is assumed to have a unique function, lineage, and molecular profile, 
and assays of average cell populations adequately represent the 
fundamental biological processes within individual cells. Genetically 

identical cells, however, can differ significantly in function and 
composition, offering novel insights into hepatocellular dynamics. 
These discrepancies can profoundly affect the cell population’s 
functionality, contributing to MASLD progression. Mass spectrometry 
(MS)-based single-cell proteomics (SCP) provides in-depth revelations 
into cellular heterogeneity and has made remarkable advancements in 
recent decades. Initially focused on larger cells, recent improvements 
in MS experimental workflow, proof-of-concept studies, and sample 
preparation techniques enable the analysis of various cell types (113, 
114). Modern SCP techniques can quantify approximately 1,000–
1,500 proteins per single cell and up to 2,500 proteins across multiple 
cells (115). SCP could be highly beneficial in studying MASLD by 
enabling detailed mapping of protein expression in individual liver 
cells, thus allowing scientists to gain a deeper understanding of 
subpopulations of liver cells and identify dysregulated proteins and 
pathways that contribute to MASLD progression. SCP provides 
insights into lipid metabolism at the single-cell level. Abnormal lipid 
biosynthesis and metabolism are central to MASLD progression, and 
SCP can offer precise characterization of lipid isomers, including those 
differentiated by C=C bond and sn-position isomerism (115–117). By 
profiling lipid heterogeneity in liver cells, SCP could identify metabolic 
dysfunctions linked to MASLD, potentially revealing new biomarkers 
or therapeutic targets.

Single-cell proteomics presents considerable challenges due to the 
limited protein quantities and wide dynamic range of protein 
abundances within individual cells. Unlike nucleic acids, proteins 
cannot be amplified, necessitating highly sensitive analytical methods. 
Moreover, the technical demands of single-cell sampling and 
manipulation are exacerbated by small sample volumes and complex 
chemical environments, requiring precise extraction of analytes to 
prevent loss, dilution, or alterations to the cell’s native chemical profile 
(115). Currently, two key approaches to sample preparation—label-
free and multiplexed methods—are undergoing active refinement 
(118). While challenges persist, such as the limited proteome depth 
achievable in each cell and the capacity to analyze only a few hundred 
cells per day, the potential of SCP remains immense (119). As these 
techniques evolve, SCP is poised to play a transformative role in 
shaping personalized medicine, advancing diagnostics, and driving 
therapeutic innovations (114, 118, 119). Label-free proteomics 
eliminates the need for chemical derivatization, a process that 
modifies proteins for detection, which can be complex and costly. 
Instead, it avoids using isotope-labeled reagents, making it more 
resource-efficient. In contrast, multiplexed single-cell proteomics 
employs tandem mass tags (TMTs) to label and analyze multiple 
samples in parallel, increasing throughput.

Another challenge to SCP, as in other omics areas, is standardizing 
the workflow and data processing to enable reproducible data (120, 
121). Grégoire et  al. (122) published a chapter detailing the R/
Bioconductor package, scp, which provides a consistent framework 
for SCP data analysis using QFeatures and single-cell experiment 
structures. The approach includes a detailed protocol covering quality 
control, data aggregation, normalization, and batch correction, 
validated with controlled data sets, and fully outlines how to use the 
SCP package effectively. In a diet-induced MASH mouse model—
known for mimicking the key features of human MASH, including 
steatosis, inflammation, and fibrosis—Ægidius et al. (123) integrated 
bulk RNA-seq, quantitative proteomics, and single-cell RNA-seq 
(scRNA-seq). The researchers developed a cell-type-specific map of 
liver pathology. They highlighted a disconnect between mRNA and 
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protein levels in many cases, underscoring the importance of a multi-
omics approach to fully capture the complexity of MASH. This liver 
single-cell atlas data is the closest clinical manifestation to human 
MASH. Due to liver inaccessibility, liver SCP studies are minimal. 
Weinberg et al. (124) stated, “Actual single-cell proteomics of human 
livers have not been done yet,” but stem cell and organoid technologies 
coupled with single-cell proteomics may help change that.

5.4 Proteogenomics

Proteogenomics is a multi-omics process that employs next-
generation sequencing and mass spectrometry-based proteomics to 
integrate genomic, transcriptomic, and proteomic data to uncover 
novel proteins, improve disease processes, and identify potential 
biomarkers or therapeutic targets (125–127). This methodology 
bridges the gap between genotypic information and phenotypic 
protein expression, which enhances our ability to interpret variations 
in the genome by identifying how these changes manifest at the 
protein level, thus providing a more comprehensive view of cellular 
function and disease mechanisms.

Depending on the focus of the study and the available data, 
workflows are modifiable when integrating proteomics with 
transcriptomics. Generally, all workflows will normalize proteomic 
data and then combine the quantitative proteomics data with the 
quantitative transcriptomic data. Then, various outputs, like 
differential expression comparisons, network analysis, and functional 
annotations, allow researchers to gain a clearer picture of how proteins 
are expressed and how genetic variations influence disease (127, 128), 
detail the use of genomic data in proteogenomic biomarker discovery 
via several steps: Initially, the genomic sequencing data is aligned with 
a reference transcriptome to produce BAM files. Variants identified 
from these aligned reads are recorded in Variant Call Format (VCF) 
files and then translated into protein sequences FASTA files. Then, 
mass spectrometry techniques sequence proteins, employing data-
dependent or independent acquisition methods. The resulting mass 
spectrometry data is matched against a custom-generated protein 
library based on genomic data. Potential biomarkers identified 
through this procedure are validated with targeted proteomics or 
antibody-based assays in extensive cohort studies. Proteogenomics 
requires sophisticated software tools for data integration, validation, 
and analysis because of the considerably sizeable datasets generated 
from DNA, RNA, and protein sequencing. This complexity presents a 
substantial challenge to the methodology. Conversely, this approach 
is precious in complex conditions such as MASLD, where genetic and 
molecular alterations play a critical role in disease progression and 
may lead to hepatocellular carcinoma (HCC) (129). The ability to 
identify specific protein variants in patients with MASLD offers 
essential insights into how these variants contribute to the 
disease’s advancement.

Research by Ægidius et al. (123) allows us to see how impactful 
proteogenomics is in their discovery of discrepancies between gene 
expression and protein levels for key molecules like Rbp4 and Erlin1, 
which are involved in lipid metabolism and inflammation. This 
underscores the significance of proteomic data in capturing post-
transcriptional regulation, protein turnover, and other factors that 
influence protein abundance, which are critical for understanding the 
disease. Furthermore, this study by Ægidius et al. (123) is an excellent 

example of how the combination of proteogenomics technology 
enables researchers to capture the multifactorial complexity of the 
stages of MASLD and identify specific pathways involved in MASH 
pathogenesis, including those related to lipid metabolism, 
inflammation, mitochondrial dysfunction, and extracellular matrix 
production. In addition, Peiseler et al. (130) also validates how recent 
advances in technologies like proteogenomics have enhanced the 
understanding of the role immune cells, such as macrophages, T cells, 
and dendritic cells, play in MASLD. Their review identifies key 
immune cells contributing to different stages of MASLD progression 
by interacting with damaged hepatocytes, promoting fibrosis, and 
even influencing cancer development in MASH-associated 
HCC (130).

6 Future challenges

We must acknowledge the ethical implications of omics research. 
The Common Rule focuses on the role of respect, justice, and 
beneficence for omics research and outlines the need for informed 
consent, data sharing, trust, equal benefit, equal access, societal 
variables, privacy, data security, and participant feedback (131). 
Safeguards for ethical practices include Institutional Internal Review 
Boards, which oversee the documentation of any study and have in 
place informed consent from all participants to ensure they fully 
understand the study and that their participation is voluntary. 
Additionally, all biological samples obtained must be de-identified 
before any epidemiological, biochemical, or molecular analyses. 
Individual institution Offices of Sponsored Research (OSP) and 
federal funding agencies require data security, data sharing, and 
confidentiality agreements policies to ensure the safety of all 
participants’ personal information is secure (132).

Another challenge has been reproducibility in protein biomarker 
discovery, which can significantly impact the validity and reliability of 
findings. These issues arise from various factors, from technical 
variability, such as sample preparation and handling, to 
instrumentation differences across laboratories. Biological variability 
also creates issues with finding similar candidate biomarkers across 
large sample sizes, creating methodological issues and perturbations 
when sample sizes are statistically inadequate. Bias may arise from the 
interpretation of the resultant data, making it challenging to evaluate 
the actual reproducibility of biomarker discoveries, and reproducible 
biomarker discovery requires proper statistical validation. Large 
cohorts/population proteomics are challenging as samples can exceed 
1,000 or more. Due to the decline of instrument performance 
sensitivity, proteomic data will contain missing peptide identifications 
or peak area values when obtained by data acquisition and processing 
pipeline methods. Instrument system performance of “housing 
keeping” peptides present in plasma or cell mixtures and the number 
of accurately quantified peptides can be used as a readout to observe 
peptides that fall below the detection limit to monitor sensitivity. 
Other challenges imposed by technical noise, inaccurate peak-picking 
algorithms, and incorrect computation of false discovery rates can also 
impact technical variation and will affect data reproducibility. Quality 
control experiments using standards can monitor fluctuations in 
signal-to-noise. As such, statistical normalization can be performed 
to remove technical variation for individual instruments. The 
coefficient of variation (CV) is a statistical tool used to assess the 
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variability of data in proteomics and used to evaluate the performance 
of a LC/MS method or computational software used for protein/
peptide quantitation. By measuring the standard deviation to the 
mean, it measures how close the multiple measurements from LC/MS 
experiments from different samples are to each other.

Proteomics has evolved and been used over the years in a variety 
of approaches to monitor or understand quantitative changes in protein 
expression that may occur due to disease conditions, the body’s 
response to exposure to drugs or toxins, gene-by-environment changes 
and the impacts of these changes in understanding the pathophysiology 
of different disease conditions and their relationship to the environment 
(133, 134). The advancement in quantitative and qualitative mass 
spectrometry-based proteomics has tremendously contributed to 
understanding multiple cellular phenotypes. Even though mass 
spectrometry-based proteomics holds great potential for facilitating the 
identification of protein biomarkers, in the last 10 years, few novel 
biomarkers have been brought into clinical use. Moreover, the utility 
of data complexity and interpretation represents a limitation. Finding 
a limited number of viable candidates from thousands of proteins 
identified by untargeted MS proteomics for further validation and 
verification using targeted assays is one of the rate-limiting phases in 
discovering protein biomarkers. Another issue has been reproducibility 
in protein biomarker discovery, which can significantly impact the 
validity and reliability of findings. These issues arise from various 
factors, from technical variability, such as sample preparation and 
handling, to instrumentation differences across laboratories. Biological 
variability also creates issues with finding similar candidate biomarkers 
across large sample sizes, creating methodological issues and 
perturbations when sample sizes are statistically inadequate. Bias may 
arise from the interpretation of the resultant data, including variations 
in ethnic background, exposure to social determinants of health (135, 
136), and health-related social needs, making it challenging to evaluate 
the actual reproducibility of biomarker discoveries and reproducible 
biomarker discovery requires proper statistical validation.

It is of utmost importance to utilize and advance technology 
research to better detect and differentiate the various stages of MASLD 
with reliable, affordable, minimally intensive, risk-free screening 
applications to diagnose and predict the risk of MASLD in daily 
clinical routine. To date, there are currently minimal treatment options 
for MASLD. Research on multi-omics is on track to identify targeted 
precision medicine technology for determining etiological risk, early 
identification, stratification, treatment, and research on MASLD.

7 Conclusion

Metabolic Dysfunction-Associated Steatotic Liver Disease 
(MASLD) remains a significant health concern, paralleling the global 
obesity epidemic. Integrating modern diagnostic imaging techniques 
and innovative proteomic methods is crucial for advancing our 
understanding and management of MASLD’s complex pathophysiology. 
Technology not only facilitates the discovery of novel biomarkers but 
also enables faster, less invasive, and more accurate diagnosis, disease 
severity assessment, and treatment efficacy evaluation. The application 
of proteomics, particularly mass spectrometry-based approaches, is 
instrumental in identifying circulating protein signatures associated 
with MASLD progression. This has opened avenues for developing 
noninvasive diagnostic tools like blood-based biomarker panels. 
Proteomics has the potential to uncover additional causes of MASLD 

by elucidating gene-by-environment interactions and identifying key 
proteins involved in disease progression. Future research must continue 
to leverage these technologies to enhance early detection, personalized 
treatment strategies, and monitor therapeutic responses in real-time. 
By emphasizing the role of modern diagnostic imaging and proteomics, 
we can accelerate the development of targeted therapies and improve 
clinical outcomes for MASLD patients.

Additionally, proteomics has expanded into subspecialties such as 
EV-omics, single cell, and proteogenomics, each with the potential to 
identify more novel biomarkers. Identifying and quantifying nucleic 
acids, proteins, and metabolites will continue to contribute valuable 
insights in exposomics, particularly for environmental toxicants and 
drug toxicity screening. Therefore, performing deeper level analysis of 
molecular networks and integrating statistical gene–environment 
interactions will be  crucial for finding effective treatments and 
understanding the causative drivers of MASLD.
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