
TYPE Review

PUBLISHED 17 April 2025

DOI 10.3389/fmed.2025.1514846

OPEN ACCESS

EDITED BY

Ulrich Matthias Zissler,

University of Applied Sciences

Rosenheim, Germany

REVIEWED BY

Ramcés Falfán-Valencia,

National Institute of Respiratory

Diseases-Mexico (INER), Mexico

Serap Duru,

Dişkapi Yildirim Training and Research

Hospital, Türkiye

*CORRESPONDENCE

Pascal Demoly

pascal.demoly@inserm.fr

Putthapoom Lumjiaktase

putthapoom@gmail.com

RECEIVED 21 October 2024

ACCEPTED 26 March 2025

PUBLISHED 17 April 2025

CITATION

Simmalee K, Kawamatawong T, Vitte J,

Demoly P and Lumjiaktase P (2025) Exploring

the pathogenesis and clinical implications of

asthma, chronic obstructive pulmonary

disease (COPD), and asthma-COPD overlap

(ACO): a narrative review.

Front. Med. 12:1514846.

doi: 10.3389/fmed.2025.1514846

COPYRIGHT

© 2025 Simmalee, Kawamatawong, Vitte,

Demoly and Lumjiaktase. This is an

open-access article distributed under the

terms of the Creative Commons Attribution

License (CC BY). The use, distribution or

reproduction in other forums is permitted,

provided the original author(s) and the

copyright owner(s) are credited and that the

original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

Exploring the pathogenesis and
clinical implications of asthma,
chronic obstructive pulmonary
disease (COPD), and
asthma-COPD overlap (ACO): a
narrative review

Kantapat Simmalee1, Theerasuk Kawamatawong2, Joana Vitte3,

Pascal Demoly4* and Putthapoom Lumjiaktase1*

1Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok,

Thailand, 2Division of Pulmonary and Critical Care Medicine, Department of Medicine, Faculty of

Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand, 3Immunology Laboratory,

University Hospital of Reims and INSERM UMR-S 1250 P3CELL, University of Reims

Champagne-Ardenne, Reims, France, 4Division of Allergy, University Hospital of Montpellier and IDESP,

University of Montpellier - Inserm, Inria, Montpellier, France

The complexity and diversity of the immune response in patients with asthma,

chronic obstructive pulmonary disease (COPD), and asthma-COPD overlap

present significant challenges for disease management. Relying on a limited

number of biomarkers and clinical data is insu�cient to fully reveal the

immunopathogenesis of these diseases. However, in vitro technologies such

as cell analysis, cytokine investigation, and nucleic acid sequencing have

provided new insights into the underlying mechanisms of these diseases,

leading to the discovery of several biomarkers—including cell degranulation,

cell function, secreted cytokines, and single nucleotide polymorphisms—that

have potential clinical implications. This paper reviews the immunopathogenesis

in asthma, chronic obstructive pulmonary disease, and asthma-COPD overlap

and examines the applications of recent in vitro models to detect candidate

biomarkers that could enhance diagnostic precision, predict severity, monitor

treatments, and develop new treatment strategies. A deeper understanding of

the immune response in these diseases, along with the integration of in vitro

models into clinical practice, could greatly improve the management of these

respiratory diseases, making approaches more personalized and e�cient.

KEYWORDS
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Introduction

Asthma and chronic obstructive pulmonary disease (COPD) are complex diseases

associated with high morbidity and mortality rates worldwide. According to the Global

Initiative for Asthma (GINA) 2023 (1), they serve as umbrella terms for heterogeneous

characteristics that overlap in some older patients, resulting in the previously identified

asthma-COPD overlap (ACO) syndrome. In 2019, the prevalence of ACO ranged from

1.4% to 2.6% in the general population; among individuals with asthma and COPD, it
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varied from 19.5% to 33.6% and from 19.3% to 39.9%, respectively

(2). The coexistence of these two diseases leads to a specific

phenotype influenced by various individual factors, including

medical conditions, immune responses, and genetic variation,

which contribute to worse clinical outcomes and complicate

identification and treatment compared to asthma or COPD

alone (3).

The majority of ACO cases often present airway obstruction

and respiratory symptoms due to inflammation from excessive

immune responses, which are linked to worse outcomes

(4, 5). Environmental exposures to microbes, allergens, and

Abbreviations: A2R, A2 adenosine receptor; ACO, asthma-COPD overlap;

AECs, airway epithelial cells; AHR, airway hyperresponsiveness; ALI, air–liquid

interface; AMs, alveolar macrophages; APRIL, a proliferation-inducing ligand;

ASM, airway smooth muscle; AT1, alveolar type 1 cells; AT2, alveolar type

2 cells; BAFF, B-cell activating factor; BAL, bronchoalveolar lavage; CBF,

ciliary beat frequency; cDC1, conventional dendritic cells type 1; cDC2,

conventional dendritic cells type 2; CG, cathepsin G; CGRP, calcitonin

gene-related peptide; COPD, chronic obstructive pulmonary disease; CFSE,

carboxyfluorescein diacetate succinimidyl ester; CXCL, C-X-C motif; DAMPs,

damage-associated molecular patterns; DCs, dendritic cells; DI, dyskinetic

index; ECM, extracellular matrix; ECP, eosinophil cation protein; EDN,

eosinophil-derived neurotoxin; EETs, eosinophil extracellular traps; ELISA,

enzyme-linked immunosorbent assay; EPO, eosinophil peroxidase; FeNO,

fractional exhaled nitric oxide; GABA, γ-aminobutyric acid; GATA-3, GATA-

binding protein 3; GINA, global initiative for asthma; GM-CSF, granulocyte-

macrophage colony-stimulating factor; GOLD, global initiative for chronic

obstructive lung disease; HMGB1, high mobility group box 1 protein;

HSP70, 70-kilodalton heat shock proteins; ICS, inhaled corticosteroid; IFN-

α, interferon α; IL, interleukin; ILC1, type 1 innate lymphoid cell; ILC2, type

2 innate lymphoid cell; ILC3, type 3 innate lymphoid cell; iNOS, inducible

nitric oxide synthase; LL-37, cathelicidin LL-37; LPS, lipopolysaccharide;

LTi, lymphoid tissue inducer; LTT, lymphocyte transformation test; M-CSF,

monocyte colony-stimulating factor; M1 macrophages, classically activated

macrophages; M2 macrophages, alternatively activated macrophages; MAT,

mast cell activation test; MBP, major basic protein; MCs, mast cells; MCT,

mast cells tryptase-positive; MCTC, mast cells tryptase- and chymase-

positive; MMP-9, matrix metalloprotease 9; moDCs, monocyte-derived

dendritic cells; MPO, myeloperoxidase; NE, neutrophil elastase; NETs,

neutrophil extracellular traps; NK cells, natural killer cells; OX40L, tumor

necrosis factor ligand superfamily member 4; PAMPs, pathogen-associated

molecular patterns; PD-L1, programmed death-ligand 1; pDCs, plasmacytoid

dendritic cells; PM2.5, particulate matter particles with a diameter of 2.5

µm or smaller; PNCEs, pulmonary neuroendocrine cells; PR3, proteinase

3; PRRs, pattern recognition receptors; ROR-γt, retinoic-acid–receptor-

related orphan nuclear receptor gamma t; ROS, reactive oxygen species;

RT-PCR, real-time polymerase chain reaction; S100A8, S100 calcium-binding

protein A8; sIgE, specific IgE; SNPs, single nucleotide polymorphisms;

STAT-3, signal transducer and activator of transcription 3; STAT-4, signal

transducer and activator of transcription 4; STAT-6, signal transducer and

activator of transcription 6; Tc, cytotoxic T-cells; TCRs, T cell receptors; TEM,

transmission electronmicroscopy; TGF-β, transforming growth factor beta β;

Th, helper T-cells; Th0, naïve helper T cell; Th1, T helper type 1; Th17, T helper

type 17; Th2, T helper type 2; TLRs, toll-like receptors; Tregs, regulatory T

cells; TSLP, thymic stromal lymphopoietin; VEGF, vascular endothelial growth

factor; YKL-40, chitinase-3-like protein 1.

air pollution—including cigarette smoke, electronic cigarettes,

and particulate matter with a diameter of 2.5µm or smaller

(PM2.5)—induce cooperation between innate and adaptive

immune responses, leading to persistent airway inflammation and

remodeling by recruiting immune cells and releasing cytokines

that differ in inflammatory characteristics (6, 7) (Table 1, Figure 1).

This article focuses on novel data regarding

immunopathogenesis, laboratory examination, and biomarkers in

ACO patients based on in vitro models. Although techniques such

as flow cytometry, enzyme-linked immunosorbent assay (ELISA),

cytology, histology, and molecular methods are well established

in clinical research for understanding ACO diversity, they also

shed light on their potential for future clinical applications (8–10).

A better understanding of ACO immunopathogenesis through

these models aims to establish more effective stratification criteria

and identify accurate biomarkers, ultimately improving diagnosis,

prediction, prognosis, monitoring, and the identification of novel

treatment targets.

The innate immune response in
asthma, COPD, and ACO

Airway epithelial cells (AECs)

AECs respond to environmental exposures by releasing

alarmins, including thymic stromal lymphopoietin (TSLP), IL-25,

and IL-33, which activate type 2 innate lymphoid cells (ILC2s),

eosinophils, and mast cells (MCs), driving inflammation and

immune cell recruitment (11). In asthma-chronic obstructive

pulmonary disease overlap, AECs increase the secretion of other

Damage-Associated Molecular Patterns (DAMPs), such as high

mobility group box 1 protein (HMGB1), 70-kilodalton heat shock

proteins (HSP70), cathelicidin LL-37 (LL-37), and calcium-binding

protein A8 (A8), leading to the recruitment of effector cells and

the initiation of inflammation (12). Additionally, epithelial cells

and other cell types, such as basal, club, ciliated, goblet, ionocytes,

endothelial, and fibroblast cells, are induced by IL-4, IL-13, and

TGF-β to secrete periostin. The overexpression of periostin results

in mucus hypersecretion, goblet cell hyperplasia, and increased

matrix metalloproteinase (MMP)-9 secretion, contributing to

eosinophil inflammation and permanent airway obstruction (13).

IL-4 and IL-13 also trigger AECs to produce eotaxin, which attracts

fibroblasts and eosinophils to the inflamed site (14). Moreover,

activated AECs, neutrophils, and macrophages can secrete YKL-40,

correlating with airway inflammation and remodeling (15).

Cilia on AECs are vital in respiratory disease. Motile cilia play

a critical role in lung homeostasis by beating the mucus layer,

which traps inhaled pathogens, toxins, and particles out of the

airway. Abnormalities in ciliary function, quantity, and structure

impair mucus clearance, increasing susceptibility to infections and

promoting chronic inflammation (16, 17). Primary cilia act as

cellular antennas, influencing the differentiation, migration, and

cell fate control of AECs, airway smooth muscle (ASM) cells, and

fibroblasts (18). Interestingly, although the quantity of primary

cilia does not differ in normal epithelium, it significantly increases

in COPD, specifically in the remodeling area (18). The increased

antennas may contribute to dysregulated tissue repair, leading to
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TABLE 1 Role and characteristics of inflammatory players in asthma, COPD, and ACO.

Immune response Disease characteristics Dysfunction’s e�ect on immunopathogenesis References

Asthma COPD ACO

Innate immune cells

Eosinophil ++++ + ++++ • Correlate with exacerbation frequency

• Airway hyperresponsive

• Increase type-2 cytokine production

• Tissue damage

• Mucus hypersecretion

• Airway remodeling

(10, 15, 163–166)

Neutrophil ++ ++++ ++++ • Tissue damage and remodeling

• Associate with emphysema

• Cytotoxic activity

(46, 164, 165)

Mast cell +++ +++ ++ • Correlation with the allergy phenotype

• Increase airway hyperresponsiveness and type-2 cytokines

• Induce airway epithelial barrier disruption

• Contribute to fibrosis and airway remodeling via fibroblast crosstalk

and epithelial migration

(9, 167–171)

ILC1 ++ +++ N/A • Increase neutrophil activation via Th1 cytokines (59, 67, 68, 172, 173)

ILC2 ++++ + N/A • Increase type 2 inflammation via Th2 cytokines (68, 172, 173)

ILC3 ++ ++ N/A • Increase neutrophil activation via Th17 cytokines (59, 67, 73, 172)

Macrophage +++ ++ ++++ • Tissue damage

• Fibroblast activation leading to airway remodeling

• Th1 and Th2 polarization

(9, 174)

Dendritic cell cDC1 ++ +++ N/A • Initiate T-cell activation via MHC molecule and

co-stimulating cytokines

(175–179)

cDC2 + ++ N/A

moDC N/A N/A N/A

pDC + ++ N/A

Adaptive immunity

Th1 ++ +++ N/A • Drive non-type 2 inflammation phenotype and cell recruitment via

pro-inflammatory cytokines and chemokines

(81, 83, 85, 180, 181)

Th2 +++ + N/A • Drive type-2 inflammation phenotype and cell recruitment via

pro-inflammatory cytokines and chemokines

(81, 83, 85, 172, 180)

Th17 ++ +++ N/A • Drive non-type 2 inflammation phenotype and cell recruitment via

pro-inflammatory cytokines and chemokines

(81, 83, 180–183)

Treg ++ + N/A • Reduce immune suppressive function, leading to

immune overactivation

(83, 180, 182, 183)

Tc + ++++ ++ • Increase cytotoxic activity, causing tissue damage and emphysema (9, 183–185)

B-cell ++ + N/A • Increase IgE secretion associated with airway hyperresponsiveness

• Autoantibody production

(185, 186)

Cytokines

IL-4 +++ + ++++ • Th2 polarization

• Airway hyper-responsiveness

• Tissue remodeling

• IgE and IgG1 switching

• Mast cell proliferation

(163, 187)

IL-5 +++ + ++ • Eosinophils proliferation, maturation, survival, and activation (10, 87, 187, 188)

IL-13 ++++ + ++ • Th2 polarization

• Airway hyper-responsiveness

• Tissue remodeling

• Goblet cell hyperplasia

• ASM hypertrophy and hyperplasia

(87)

IL-8 (CXCL-8) +++ ++++ ++++ • Neutrophil recruitment (87, 163)

IL-17 + ++++ ++ • Fibrocyte proliferation

• Neutrophil recruitment and activation

• ILC3 polarization

(87, 189)

(Continued)

Frontiers inMedicine 03 frontiersin.org

https://doi.org/10.3389/fmed.2025.1514846
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Simmalee et al. 10.3389/fmed.2025.1514846

TABLE 1 (Continued)

Immune response Disease characteristics Dysfunction’s e�ect on immunopathogenesis References

Asthma COPD ACO

IL-6 ++++ ++ +++ • Neutrophil activation (10, 87, 188)

TNF-α ++++ ++ +++ • Neutrophil activation

• Macrophage activation

(87, 163, 189)

IFN-γ + +++ ++ • Neutrophil activation (187)

TGF-β ++ ++++ +++ • Airway remodeling

• Treg polarization

• M2c differentiation

(10, 187)

Immune mediators

Periostin ++++ ++ +++ • Mucus hypersecretion

• goblet cell hyperplasia

• eosinophil recruitment

• Airway remodeling

(15, 87)

YKL-40 ++ ++++ +++ • Airway remodeling

• Airway inflammation

(10, 15, 166)

Nitric oxide ++++ ++ ++ • Type 2 inflammation

• Vasodilation

• Bronchodilator

(87, 190)

N/A, not applicable;+ to++++, from suggested to the proven role compared between asthma, COPD, and ACO.

abnormal differentiation and proliferation, ultimately resulting in

airway thickening.

In the alveoli, alveolar type 1 cells (AT1) facilitate gas exchange,

while alveolar type 2 cells (AT2) repair tissue damage through

self-renewal, differentiation into AT1, secretion of TGF-β, and

production of surfactant. Cigarette smoke and PM2.5 have been

shown to induce apoptosis in AECs and disrupt the differentiation

of AT2 into AT1, leading to pulmonary emphysema in COPD

murine models (19).

Dendritic cells (DCs)

DCs identify ligands through pattern recognition receptors

(PRRs), which trigger them to co-activate naïve helper T cells (Th0)

via antigen presentation and cytokine secretion. The cytokines

produced by DCs depend on the types of antigens and the

subpopulations of DCs, creating the microenvironment around the

site of inflammation (20). cDCs can be classified into conventional

DCs type 1 (cDC1), conventional DCs type 2 (cDC2), plasmacytoid

DCs (pDCs), and monocyte-derived DCs (moDCs) (21). cDC1s

and moDCs are the primary sources of IL-12, IFN-α, and IFN-

β, which activate T helper type 1 (Th1) polarization. Additionally,

they cross-present antigens to CD8+ cytotoxic T cells (Tc), leading

to tissue damage in the lungs (20, 21). In contrast, studies in

asthmatic mice have shown that cDC2s andmoDCs play significant

roles in T helper type 2 (Th2) polarization (22). cDC2s also

contribute to promoting T helper type 17 (Th17) polarization in

lung asthmatic mouse models (23). pDCs produce type-I IFN,

TNF-α, and IL-6, inducing Th1, Th17, and regulatory T cell (Treg)

polarization (24).

Dysfunction of DCs contributes to the progression of asthma,

COPD, and ACO. An imbalance in DC subpopulations correlates

with COPD severity, as indicated by the ratio of OX40L to

programmed death-ligand 1 (PD-L1) (25). Moreover, reduced DC

activation leads to a decrease in Th2 and Th17 signaling, as

demonstrated by a reduction in mucus production and cellular

recruitment (26).

Alveolar macrophages (AMs)

AMs capture and eliminate foreign antigens while also

repairing damaged tissue. Upon activation, they polarize into

two subtypes: classically activated macrophages (M1) and

alternatively activated macrophages (M2) (27). M1 is triggered by

lipopolysaccharide (LPS) and cytokines such as TNF-α, IFN-γ,

and IL-12. This subclass can eliminate bacteria, damaged cells, and

tumors, and it plays a role in Th1 activation through the secretion

of IL-1β, IL-6, IL-12, IL-18, IL-23, TNF-α, inducible nitric oxide

synthase (iNOS), reactive oxygen species (ROS), CXCL-1, CXCL-2,

CXCL-3, CXCL-9, and CXCL-10 (27–30). Conversely, M2 is

notable for its role in tissue repair and maintaining immune

homeostasis through the secretion of IL-10, TGF-β, and vascular

endothelial growth factor (VEGF) (29, 30). M2 can be divided into

four main subgroups: M2a, M2b, M2c, and M2d. M2a polarization,

influenced by IL-4 and IL-13, functions in tissue repair by

secreting TGF-β, insulin-like growth factor, and fibronectin. M2b

is induced by immune complexes, toll-like receptor (TLR) ligands,

or IL-1R ligands and regulates the immune response through

IL-10. M2c requires IL-10 and TGF-β to differentiate, producing

the anti-inflammatory cytokine IL-10 and the tissue remodeling

cytokine TGF-β. M2d, induced by IL-6, TLR ligands, and the

A2 adenosine receptor (A2R), produces IL-10, TGF-β, monocyte

colony-stimulating factor (M-CSF), and VEGF (31–33).

At a steady state of lung tissue, the major population of

AMs exhibits a hybrid of M1 and M2 surface markers, allowing

them to polarize swiftly (34). However, dysregulation in M1/M2
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FIGURE 1

Immunopathogenesis of airway inflammation in ACO. Figure created with www.BioRender.com. Environmental exposures initiate ACO

immunopathogenesis by increasing immune cell infiltration and cytokine secretion, which leads to airway inflammation. In the early stages, various

cytokine chain reactions activate e�ector cells, resulting in tissue damage, bronchoconstriction, and mucus hypersecretion. The inflammatory

signals at the damaged sites attract and activate fibroblasts, which move more slowly than immune cells. The prolonged period of chronic

inflammation and repeated cycles of tissue injury and abnormal repair processes induce airway remodeling by increasing the extracellular matrix

(ECM), airway smooth muscle (ASM) hyperplasia/hypertrophy, and goblet cell hyperplasia, ultimately causing permanent obstruction. DC, Dendritic

cell; TCR, T-cell receptor; TSLP, Thymic stromal lymphopoietin; EET, Extracellular matrix; GABA, Gamma-aminobutyric acid; CGRP, Calcitonin

gene-related peptide; Th1, T-helper cell type 1; Th2, T-helper cell type 2; Th17, T-helper cell type 17; Treg, regulatory T-cell; Tc, Cytotoxic T-cell;

ILC1, Innate lymphoid cell type 1; ILC2, Innate lymphoid cell type 2; ILC3, Innate lymphoid cell type 3; Nφ, Neutrophil; MC, Mast cell; M1, Alveolar

macrophage type 1; M2, Alveolar macrophage type 2 ECM, extracellular matrix; ASM, airway smooth muscle.
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polarization is implicated in asthma, COPD, and ACO. Studies of

small airway tissue and bronchoalveolar lavage (BAL) samples from

smokers and COPD populations indicate that M1 predominates

in the airway wall, while M2 phenotypes and their associated

cytokines are elevated in the luminal space compared to normal

controls. This suggests that the overexpression of M2 switching in

the lumen produces excessive tissue repair following M1-mediated

tissue damage, contributing to lung fibrosis and permanent

obstruction (35).

Eosinophils

Eosinophils respond to IL-3, IL-5, and granulocyte-

macrophage colony-stimulating factor (GM-CSF), all of which are

crucial for their proliferation, maturation, survival, and activation.

They are also activated by TSLP and IL-33. This activation leads

to inflammation, tissue injury, and airway remodeling through

their adhesion, degranulation, cytokine secretion, and chemotaxis

involving CCL-1, CCL-5, CCL-7, and CCL-8 (36–39). Eosinophil

granules contain proteins, including major basic protein (MBP),

eosinophil cation protein (ECP), eosinophil peroxidase (EPO),

and eosinophil-derived neurotoxin (EDN), which affect the

immunopathogenesis of ACO through their cytotoxic functions

and induce inflammation (38, 40, 41). Moreover, recent reports

indicate that cadherin L, derived from eosinophils, also promotes

emphysema in COPD with eosinophilia (42).

Eosinophil-derived mediators, such as TGF-β1, cysteinyl

leukotrienes, IL-4, and IL-13, drive the proliferation of ASM

and fibroblasts, leading to long-term structural changes (38).

Additionally, eosinophils interact with the neuroimmune system

by forming eosinophil extracellular traps (EETs), which activate

pulmonary neuroendocrine cells (PNCEs) to secrete calcitonin

gene-related peptide (CGRP) and γ-aminobutyric acid (GABA),

promoting cell infiltration and cytokine release, thereby increasing

inflammation and mucus production (4). These non-selective

mechanisms of eosinophil granule toxicity cause tissue damage and

hyperresponsiveness, resulting in an increased exacerbation rate of

ACO (40, 41, 43).

Neutrophils

Neutrophils are stimulated by extracellular matrix (ECM)

proteins, cytokines, and microorganisms at inflammatory sites.

Optimal activation requires a two-step process involving priming

and activating stimuli. Several factors, such as TNF-α, GM-CSF,

IFN-γ, IL-6, IL-17, CXCL-1, and CXCL-8, have been identified

as priming agents that facilitate full activation alongside DAMPs

and pathogen-associated molecular patterns (PAMPs) (44, 45).

Activated neutrophils release serine proteases, including neutrophil

elastase (NE), cathepsin G (CG), proteinase 3 (PR3), reactive

oxygen species (ROS), myeloperoxidase (MPO), and neutrophil

extracellular traps (NETs). These proteases, along with ROS

formation and NETosis, degrade elastin, collagen, fibronectin,

and proteoglycans, contributing to epithelial cell destruction and

structural changes (46). Moreover, neutrophils can initiate tissue

repair through heat shock signaling, controlling the movement of

the matrix from healthy areas into injured tissue (47).

Recent research shows that ECM proteins influence neutrophil

functions, migration, ROS production, MPO secretion, and NET

formation. Type III collagen in lung tissue reduces neutrophil

migration while enhancing ROS production, leading to tissue

damage and prolonged neutrophil presence in the lung tissue,

contributing to long-term inflammation and airway remodeling.

This may relate to the increased production of type I and type III

collagen in the airway during the early stages of COPD (48). ECM

also determines the velocity and direction of neutrophil migration,

guiding them to the injury site and causing them to remain in the

tissue (49). These neutrophil functions may explain the severity of

ACO patients due to increased neutrophil attraction and activation

at the inflamed site.

Mast cells (MCs)

MC activation occurs due to various stimuli, including IL-3,

IL-9, IL-33, IgE, and DAMPs (50). Once activated, they produce

histamine, tryptase, chymase, leukotrienes C4, and prostaglandins

D2, IL-4, IL-5, IL-13, VEGF-A, VEGF-C, and CXCL-1. These

molecules are associated with inflammation and airway remodeling

(50–52). Interestingly, MC-released mediators can crosstalk with

neurons, inducing them to release the neuropeptide substance P,

thereby triggering MC degranulation (51).

MCs have two main subpopulations defined by their content

granules of tryptase and chymase: MCT (tryptase-positive) and

MCTC (both tryptase and chymase-positive). In asthma and COPD,

MCTC populations are increased, affecting bronchial epithelial cells

by altering their migration, velocity, proliferation, andmorphology,

thereby disrupting the epithelial barrier through the production

of tryptase and chymase (53). The granules of MCs play a

significant role in airway hyperresponsiveness, inflammation, and

airway thickening. Histamine induces ASM contraction, while

leukotrienes and prostaglandins mediate bronchoconstriction and

remodeling (54, 55).

Innate lymphoid cells (ILCs)

ILCs are innate immune cells that differentiate into five subsets:

ILC1, ILC2, ILC3, NK cells, and lymphoid tissue inducer (LTi)

cells. They express cytokines similar to Th1, Th2, and Th17 but are

distinguished fromT cells by their lack of specific antigen receptors,

especially T cell receptors (TCRs) (56). Although the mechanisms

of ILCs in ACO are still being explored, their cytokines can

induce several cells to function, such as neutrophils, eosinophils,

MCs, AMs, T cells, and B cells, leading to airway inflammation

and remodeling in asthma and COPD. ILC1 and NK cells share

the expression of IFN-γ and TNF-α via T-bet driven by IL-12

(52, 57). The cytokines released by ILC1s, such as IFN-γ and

TNF-α, increase neutrophilic inflammation (58, 59). NK cells

contribute to tissue damage by releasing perforin and granzyme

A and B, which correlates with the risk of COPD exacerbation

(60). ILC2s release IL-4, IL-5, IL-9, and IL-13 through GATA-3
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activation when exposed to TSLP, IL-25, and IL-33 (56, 61). ILC2

and type 2 cytokines are increased in the peripheral blood of

COPD patients (62). The increased eosinophil count correlates

with ILC2 levels in asthmatic patients (63). Moreover, ILC2 also

plays a role in epithelial barrier destruction, inducing inflammation

in murine asthma lung tissue (64). ILC3 and LTi secrete IL-

17 and IL-22 through ROR-γt activation when stimulated with

IL-2 and IL-23, contributing to neutrophilic inflammation and

recruitment (52, 65, 66). A positive correlation has been observed

between the ILC3 population, neutrophils, and AM1 in severe

asthma (67).

These ILC subtypes are not permanent and can switch to

other subtypes (68). Research has found that ILCs increasingly

transition into the ILC1 subclass, with the elevated ILC1 population

associated with smoking status and disease severity in COPD

(59). Interestingly, ILC2s can polarize into the ILC1 subtype in

response to infections or exposure to toxic agents in COPD (68).

This explains why individuals with the same phenotype exhibit

different characteristics.

In asthma, the elevated number of ILC2s and the

overexpression of type 2 cytokines correlate with greater

disease severity and progression (63, 68–71). In contrast, the

levels of ILC1s and ILC3s cytokines are elevated in ACO and

COPD patients (72). Moreover, an increased ILC3 population and

neutrophil inflammation are observed in the neutrophil asthma

and COPD groups (66, 73). These changes are affected by the

overexpression of specific cytokines, which can excessively drive

ILC plasticity into subgroups under different conditions.

Roles of adaptive immunity in asthma,
COPD, and ACO

T-cells
Helper T-cells (Th) can polarize into subsets such as Th1, Th2,

Th17, and Treg. Th1 cells, activated by IL-12 through STAT-4,

express IFN-γ, TNF-α, and IL-2, inducing neutrophil inflammation

(74). Th2 cells express IL-4, IL-5, IL-9, and IL-13 through the

activation of GATA-3 upon exposure to IL-4. Th2 cytokines play an

important role in disease pathophysiology by regulating eosinophil

proliferation, maturation, survival, and activation through IL-5. IL-

4 and IL-13 induce airway hyper-responsiveness (AHR), attracting

eosinophils and neutrophils, resulting in bronchial contraction,

increased bronchial ECM, and the secretion of TGF-β1 from

fibrocytes (45, 75, 76). Th17 differentiation, driven by IL-6, IL-

21, IL-23, and TGF-β, results in the secretion of IL-17A, IL-

21, and IL-22 through STAT-3 activation. This process induces

fibrocytes to release TNF-α, CXCL-1, and CXCL-8, contributing

to neutrophil inflammation (45, 77). Treg cells, activated by IL-

2, IL-10, and TGF-β, prevent excessive tissue damage by releasing

important cytokines, such as IL-10, IL-35, and TGF-β, to inhibit T-

cell polarization and promote Treg differentiation (77, 78). Reduced

IL-10 levels are found in patients with poor lung function (79).

Tc cells produce IFN-γ, TNF-α, perforin, and granzyme B after

receiving antigens on MHC class I and co-stimulation with IL-12,

IL-15, and IL-18, inducing epithelial cell apoptosis and contributing

to emphysema (80).

In respiratory diseases, T-cell imbalance affects the

pathogenesis of asthma and COPD (81–85). COPD patients

exhibit elevated Th1 and IFN-γ levels, which are associated with

decreased lung function (85). Another study involving asthma

patients shows that a high level of Th17 correlates with COPD

and asthma severity by promoting neutrophil infiltration, thus

contributing to airway remodeling (83, 86). Moreover, COPD

patients with high Th1 and low Th17 experience increased severity

and frequency of exacerbations compared to those with high

levels. These patients have inadequate Th1 and Th17 responses to

combat infections (82). This may explain why some patients with

a Th1 phenotype have frequent exacerbations due to infections.

In addition, asthmatic patients demonstrate an imbalance with an

elevated Th2/Th1 ratio, highlighting the Th2 role in eosinophil

inflammation and airway remodeling (84, 87, 88).

Moreover, the absence of regulatory mechanisms for Treg

maintains inflammation in the long run. COPD patients with

rapid declines in lung function exhibit low levels of Treg (89).

The decrease in the function of Treg leads to dysregulation in the

immune response, highlighting the need for future studies on Treg

function and personalized approaches for asthma, COPD, andACO

(87, 90).

B-cells
B cells produce antibodies against antigens, activated via

surface antigen receptors and signals from Th cells and CD40.

Once activated, B cells proliferate and retain high-affinity B-cell

receptors as memory B cells residing in tissue. In lung tissue,

resident B cells are stimulated by local antigens and release

immunoglobulins such as IgE, which are sensitized on mast cells

for degranulation (91). Moreover, B cells may contribute to airway

inflammation through IgA secretion after receiving signals from

epithelial cells, including IL-6, B-cell activating factor (BAFF), and

a proliferation-inducing ligand (APRIL) (92, 93). An increase in

IgA+ memory B cells correlates with decreased lung function

in severe asthma (94). Despite their role in disease progression,

recent data highlight their regulatory function in inflammation and

airway remodeling processes, suggesting potential therapeutic uses

in managing diseases (95, 96).

Novel tools for assessing
immunopathogenesis in asthma,
COPD, and ACO

Current guidelines from GINA and the Global Initiative for

Chronic Obstructive Lung Disease (GOLD) primarily rely on

clinical data for managing asthma, COPD, and ACO, including

spirometry and a few biomarkers such as blood and sputum

eosinophils, IgE, and the fractional exhaled nitric oxide test

(FeNO). These limited details prove insufficient for effective

disease management and highlight the immune diversity present

in asthma, COPD, and ACO (97). Recent in vitro tools provide

comprehensive information that enhances disease management

through a better understanding of immunopathophysiology,

enabling clinicians to implement more precise and personalized
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treatment strategies based on potential biomarkers for diagnosis,

monitoring, prognosis, and treatment.

Epithelial function study

Air–liquid interface (ALI) cell culture
The ALI model mimics the lung environment in vitro,

enabling cells to differentiate and form a functional epithelial

layer. This model allows researchers to directly investigate the

effects of drugs and substances on epithelial cells without dilution

from culture media. Moreover, the ALI model provides insights

into the hydration status of the mucus layer under confocal

microscopy (98).

High-speed digital video microscopy
High-speed digital video microscopy analyzes the functions of

motile cilia by recording video and playing it back in slow motion

to detect abnormalities in cilia beating. This technique allows us to

quantify cilia beat frequency (CBF) and evaluate the abnormality

of the cilia beat pattern as a percentage of dyskinetic cilia, referred

to as the dyskinetic index (DI). Additionally, the population of

immotile cilia is measured and reported as a percentage, known as

the immotile index (16).

Transmitted electron microscopy (TEM)
TEM can investigate abnormalities in the structure of cilia

and epithelial cells, including defects in ciliary axonemes such as

microtubule and dynein arm defects. It can assess disruptions in

epithelial integrity by evaluating cellular extrusion and cytoplasmic

blebbing and visualize damage to the mitochondria, which serve as

the energy source for cilia to function normally (16).

Enzyme-linked immunosorbent assay
(ELISA)

ELISA is a technique used to monitor inflammation in

respiratory diseases by quantifying substances such as proteins and

cytokines. For example, sputum periostin indicates fixed airflow

obstruction and correlates with elevated levels of sputum IL-13

and eosinophils (13, 99). ELISA can also detect soluble cytokine

receptors, such as sIL-2R levels, which are linked to disease severity

in the COPD group (100). This method also measures the levels

of EETs and NETs (4). Additionally, the ELISA method can detect

specific IgE (sIgE), which is essential for allergy evaluation (101).

Flow cytometry

Flow cytometry is a technology used to analyze and classify

cells based on their expressions, such as DNA/RNA content,

CD markers, transcription factors, cytokines, and cell receptors.

This provides more information about cell state, cell subtype, cell

function, and cytokine production (4, 9).

Flow cytometry effectively quantifies the total number of

specific cell types by highlighting their distinguishing features (34)

(Figures 2A, B). It also reveals the percentages of surface receptors

present on immune cells (Figures 2C, D). Markers such as IL-4R,

IL-5R, CXCR1, and IL-17R are essential in severe obstructive lung

disease, serving as targets for biological therapy that can potentially

influence patients’ dose response (102).

Furthermore, flow cytometry detects biomarkers using

multiplex bead-based indirect immunofluorescence assays,

determining biomarker levels based on fluorescent intensity

on cytokine-specific beads (Figure 2E) (103). It also tracks cell

proliferation, such as in the lymphocyte transformation test (LTT),

which uses carboxyfluorescein diacetate succinimidyl ester (CFSE)

dye to monitor lymphocyte generation. Flow cytometry also

provides cell function analysis, such as the MCs activation test

(MAT), which can improve the diagnosis of IgE-mediated allergic

phenotypes and analyze EETs and NETs formation in specific cell

populations (4, 104).

Immune cell function tests

Adhesion assay
An adhesion assay evaluates how effectively stimulated cells,

such as eosinophils and neutrophils, attach to the airway structure

using their surface receptors. The results are reported as the

percentage of adherent cells detected through their cell functions

or total cell viability from all added cells. The increase in eosinophil

and neutrophil adhesion correlates with higher eosinophil and

neutrophil counts and infiltration into inflamed lung structures

in obstructive lung diseases, which leads to airway remodeling in

persistent inflammation (38).

Degranulation assay
Currently, several methods for investigating degranulation

activity are available, such as flow cytometry and ELISA.

Flow cytometry techniques detect molecule production during

degranulation, noting surface markers (e.g., CD63, CD107a, and

CD203c) and intracellular changes (e.g., histamine and calcium

concentration) (105). Additionally, the ELISA method can be used

to directly detect degranulation-specific proteins, such as ECP,

MPO, and tryptase (105, 106).

Chemotaxis assay
A chemotaxis assay analyzes cell direction, migration, and

velocity in response to a chemoattractant. The dysfunction

of cell migration leads to severe chronic inflammation and

increases airway remodeling in obstructive lung disease (107). An

outstanding feature in recent years is microfluidic-based migration

assays, which can simulate the 3D microenvironments of human

lung tissue. Unlike the 2D system that only enables cell adhesion

and migration on surfaces, the 3D design mimics lung tissue

conditions by allowing cells to interact with an ECM-like matrix.

Cell migration is recorded through live-cell videos and images to

measure migration percentage, total distance, direction, speed, and

velocity (49).
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FIGURE 2

Flow cytometry data demonstrating clinical utility in asthma, COPD, and ACO. (A) Identification of eosinophil and neutrophil populations based on

surface protein expression. (B) Classification of T-cell subsets based on both surface and intracellular protein expression. (C) Analysis of eosinophil

receptor expression; higher fluorescent intensity indicates the percentage of positive cells (D). In the analysis of neutrophil receptor expression,

increased fluorescence intensity signifies a higher percentage of receptor-positive cells. (E) Cytokine analysis using bead-based assays; beads A and

B are distinguished by size. Each detector bead has a unique fluorescence intensity (Bead-APC), and cytokine concentrations are quantified based on

the fluorescence intensity of the secondary antibody. Eos, Eosinophils; Neu, Neutrophils.

Molecular analysis

Molecular technologies, such as nucleic acid sequencing

and real-time polymerase chain reaction (RT-PCR), shed

light on how single nucleotide polymorphisms (SNPs) play

a role in immune system dysregulation in various diseases.

SNPs are variations in a single nucleotide within human

DNA that can lead to differences in individual phenotypes.

Numerous studies have demonstrated the significance of SNPs

in assessing disease risk and severity, as well as in informing

treatments for asthma, COPD, and ACO, which are critical

for future clinical practice (108). For example, gene variations

associated with the IL-4/IL-13 pathway are linked to asthma

susceptibility. Chinese patients with four SNPs, including IL4

(rs2243250C>T), IL13 (rs1800925C>T), IL4R (rs1805010G>A),

and STAT6 (rs3224011T>C), show an association with a

high-risk genotype for asthma vulnerability by elevating the

expression levels of IL4, IL13, and STAT6 (108). Variations in

TNF (rs1800629G>A) are associated with an increased risk of

COPD in Asian populations (109). The haplotype of VEGFA

(rs833068G>A, rs833070T>C, rs3024994C>T, rs3024997G>A,

and rs3025000C>T), designated as GCCAT, significantly increases

COPD risk in the Mongolian population, with an odds ratio

(OR) of 3.409 (110). Furthermore, research on type-2 phenotype

asthma and COPD among the Japanese population indicates that

IL4R (rs8832A > G), associated with IL-4Rα levels and frequent

exacerbations, may predict the effectiveness of IL-4Rα antagonist

drugs (111).
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TABLE 2 Utility of example biomarkers in asthma, COPD, and ACO.

Clinical
application

Biomarkers/Targets Phenotypes Role/potential use

Diagnosis IL-8 (CXCL-8) Non-type 2 Show diagnostic performance in the ACO group with the area under the curve (AUC)

of 0.68 (164).

NAGL Non-type 2 Identifies ACO from asthma with an AUC of 0.75 (166).

TNF rs1800629G>A Non-type 2 Higher risk genotype for COPD susceptibility in Asian populations. The A allele is

associated with a 2.45-fold increased risk of COPD compared to the G allele in a

meta-analysis (109, 191).

Periostin Type 2 Surrogate marker for type-2 high phenotypes (15, 99). Show diagnostic performance

in asthma with an AUC of 0.87 (192).

IL13 rs1800925C>T Type 2 Higher risk genotype for asthma susceptibility from higher expression levels of IL4,

IL13, and STAT6 (108).

IL4R rs1805010G>A

IL4 rs2243250C>T

STAT6 rs3224011T>C

YKL-40 Type 2 Identifies ACO from COPD with an AUC of 0.71 (166).

VEGFA rs833068G>A Type

2/Non-type 2

The haplotype of GCCAT significantly increases COPD risk with an odds ratio (OR)

of 3.409 in the Mongolian population (110).

VEGFA rs833070T>C

VEGFA rs3024994C>T

VEGFA rs3024997G>A

VEGFA rs3025000C>T

VEGF-A Type

2/Non-type 2

Show diagnostic performance in the ACO group with an AUC of 0.65 (164).

Prognosis ILC1 and ILC3 Non-type 2 Prognosis severity linked to cigarette smoke (59, 67).

TGF-β:IL-35 Non-type 2 Prognosis marker for fibrosis development (78).

IL4R rs8832A>G Type 2 Correlated with frequent exacerbations (111).

Eosinophil adhesion Type 2 Marker for exacerbation and airway remodeling (38).

Periostin Type 2 Marker for airway remodeling prediction (15).

IL-10 Type

2/Non-type 2

Potential predictor for severity of obstructive lung disease (79).

Monitoring NET Non-type 2 Potential biomarker for monitoring ICS treatment in obstructive lung disease. Patients

who have regular ICS show lower levels than those who do not have regular ICS (5).

Periostin Type 2 Useful for monitoring anti-IL-13 and anti-IgE treatments (15, 99).

Therapeutic IL4R rs8832A>G Type 2 Predict the efficiency of IL-4Rα antagonist drugs (111).

HSF Non-type 2 Target for decreasing ECM excess from matrix transfer during lung tissue injury (47).

IL-35 Non-type 2 Reduces fibrosis expression by preventing TGF-β binding and Th17 differentiation

(78).

Neutrophil integrins Non-type 2 Novel therapy for non-type-2 inflammation phenotype (49).

Periostin Type 2 Target for reducing mucus secretion and eosinophilic inflammation (15).

Siglec-8 Type 2 Target marker for enhancing apoptosis of eosinophil via ADCC activity and inhibiting

mast cell functions (193).

Eosinophil adhesion Type 2 Target for reducing survivability and pro-proliferative effects on the lung structure

(38).

IL-3 Type 2 Alternative target for controlling eosinophil activation in anti-IL5 non-responders

(39).

IL-33 Type 2 Target for decreasing eosinophil functions and allergic processes (37).

Mast cells Type 2 Mast-cell-depleting monoclonal antibodies decrease disease exacerbation (51).

PD-1 Type 2 Target for decreasing ILC2 activation and functions (61).

IL-9 Type

2/Non-type 2

Target for decreasing in Th2 and Th17 cytokine expression, eosinophil infiltration,

goblet cell hyperplasia, and the proliferation of ILC2, Th2, Th17, and mast cells (76).
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FIGURE 3

In vitro models bridging immunopathogenesis insights to clinical practice. Figure created with www.BioRender.com. In vitro models translate

complex immune pathophysiology into clinical practice for asthma, COPD, and ACO. These models improve diagnostic accuracy, endotype

identification, therapeutic target discovery, treatment-response prediction, intensive monitoring, and precise prognostic outcomes.

Clinical implications of asthma, COPD,
and ACO immunopathogenesis
findings

To date, the clinical information obtained from routine

medical practice remains insufficient for effectively managing

and improving the clinical outcomes of asthma, COPD, and

ACO patients. However, the majority of clinical treatment

recommendations and practice guidelines depend on the

phenotypes rather than the endotypes of asthma, COPD, and

ACO (99).

Laboratory investigations, including biomarkers that represent

the immunopathogenesis of asthma, COPD, and ACO, are

sophisticated tools used to reveal the underlying individual

characteristics in clinical practice. These phenotypic approaches

and biomarkers, such as eosinophil count, sIgE, and FeNO, are

widely integrated into routine clinical practice (112). The purpose

of these biomarkers is to diagnose and classify obstructive airway

diseases, such as type-2 inflammatory patterns that include allergic

and eosinophilic phenotypes among type-2 high asthmatic patients

(113). Moreover, they help predict the outcomes or prognosis of the

diseases. Elevated levels of type-2 biomarkers, despite standard care

in severe asthma, are associated with poor clinical outcomes (114).

More importantly, biomarkers are also utilized to monitor the

magnitude of underlying systemic and local disease activity (115).

Ultimately, their clinical applicability lies in predicting treatment

response with disease-specific treatment modalities (116, 117). The

immune response is a critical determinant influencing disease

outcomes. Given the current insights into immunopathogenesis,

there is a growing recognition of the vital role that in vitro

models play in enhancing clinical practice. Therefore, in vitro

tools are emerging to fill the gap in our understanding of these

complexities and clarify clinical management by identifying and

targeting individual characteristics (118) (Table 2, Figure 3).

For asthma, eosinophils and type-2 inflammatory cytokines

play a vital role in disease pathogenesis. Persistently high type-

2 biomarkers are associated with worse asthma outcomes and

predict the response to treatment with type-2 biologics such

as omalizumab, mepolizumab, benralizumab, and dupilumab

(119–121). Conventional systemic biomarkers, including blood

eosinophilia, serum periostin, and serum sIgE, have been proven

to be predictive markers for the response to omalizumab in

landmark studies (122–124). The level of blood eosinophilia

has been shown to respond to IL-5 receptor antagonists, such

as benralizumab, in a dose-dependent fashion. A significant

reduction in asthma exacerbations was noted with increased blood

eosinophilia (125, 126).

Exhaled biomarkers such as FeNO are becoming increasingly

promising as markers for investigating the upregulation of the IL-

4/IL-13 pathway in airway epithelial cells (115, 127). An increase in

FeNO, along with higher blood eosinophilia, serves predictive roles

in response to IL-4 receptor antagonists or dupilumab for reducing

exacerbations (128–130). These findings emphasize the predictive

significance of biomarkers related to the immunopathogenesis of

the type-2 asthma phenotype.

In contrast to type-2 high asthma, characterized by eosinophilic

and allergic inflammation, type-2 low asthma includes not

only neutrophilic asthma but also mixed granulocytic and

pauci-granulocytic asthma (131, 132). Currently, there is no
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FIGURE 4

The role of novel tools in future clinical practice. Figure created with www.BioRender.com. Only conventional tools, such as FeNO, blood and

sputum eosinophil counts, spirometry, and IgE detection, are insu�cient to provide a comprehensive understanding of the patient’s actual profile.

Therefore, combining novel and conventional tools provides more detailed patient profiles, enabling clinicians to enhance diagnostic accuracy,

select the most e�ective treatments, monitor patient status closely, and predict adverse outcomes or treatment responses. TEM, transmitted electron

microscopy; real-time PCR, real-time polymerase chain reaction.

consensus or clear definition of type-2 low asthma in clinical

practice (133). As a result, no neutrophilic biomarkers are

available for clinical use (134). Clinical trials have shown

that neutrophilic-targeted biologic agents for severe asthma,

such as anti-IL-17 and anti-TNF-α antagonists, are ineffective

(135, 136). Despite specific antagonists targeting various asthma

phenotypes based on inflammatory profiles, an unmet need

persists (131). To date, the anti-TSLP monoclonal antibody

tezepelumab has shown clinical efficacy in both type-2 high

and type-2 low asthma by modulating the upstream cytokine

pathways involved in asthma pathogenesis (137–140). However,

critical factors for clinical application include cost-effectiveness,

availability, accessibility of these treatments, and patient

selection (141, 142).
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COPD is characterized by corticosteroid insensitivity (143).

Both neutrophilic and eosinophilic inflammation underlies the

disease pathogenesis (144). The increased blood eosinophilia in

COPD is associated with a higher frequency of exacerbations.

Therefore, COPD patients with eosinophilia and frequent

exacerbations, despite maximizing bronchodilator therapy, are

indicators for ICS-containing regimens according to treatment

recommendations (145). Nevertheless, the predictive roles of

blood eosinophilia for ICS in patients with COPD are widely

accepted (146, 147). The role of type-2 inflammation, particularly

in COPD, concerning elevated blood eosinophilia has been

debated. Recent clinical trials have demonstrated clinical benefits

in treating type-2 inflammation with biologics, including IL-

4/IL-13, IL-5, and IL-5R modulation. Despite these findings,

the clinical trial results for mepolizumab and benralizumab

have shown inconsistent outcomes regarding the reduction

of exacerbations in COPD patients with blood eosinophilia;

however, dupilumab can reduce exacerbations and improve lung

function (148–150). Additionally, anti-inflammatory treatments

for COPD, including low-dose azithromycin, have been shown

to reduce COPD exacerbations (151, 152). However, the precise

immunomodulating mechanisms underlying these effects have not

been fully elucidated.

Finally, ACO, the distinct clinical entities of pure asthma

and COPD have been proposed for two decades (153). The

immunopathogenesis of coexisting asthma and COPD has not been

fully clarified (154). Since the definitive diagnosis of ACO depends

on the presence of both clinical features of asthma and COPD

in patients with airway diseases, it remains non-standardized.

Consequently, clinical biomarkers for ACO have been insufficient

(155–158). More importantly, the primary treatment consists of

ICS-containing regimens, which rely on managing asthma and

COPD with eosinophilic inflammation as a cornerstone. To date,

there is no specific targeted treatment for ACO, and there is a lack

of promising biomarkers to predict clinical responsiveness to ACO

treatments (159, 160).

The novel molecular and cellular biomarkers that are promising

for determining the nature of the disease represent unmet needs

and are urgently required for clinical application. The majority

of biomarkers used in clinical practice depend on ease of use

and convenience in clinical contexts. However, the mechanistic

correlation with the pathogenesis of diseases, the correlation with

disease severity, and the predictive capability regarding clinical

outcomes are lacking (112). More importantly, the majority of

clinical trials for targeted therapies for asthma and COPD rely

on conventional biomarkers, such as blood eosinophils, serum

total IgE, and FeNO (161). Therefore, the off-target approach

significantly impacts the clinical efficacy and effectiveness of

these treatments. The lack of molecular and target specificity

for immunopathogenesis mechanism underlying biologic agents,

which modulate both type-2 high and type-2 low phenotypes,

remains an unmet clinical need (154).

The present article review focuses on the immunopathogenesis

of asthma, COPD, and ACO, emphasizing the role of circulating

cytokine assays, cytokine receptor expression on the surface

of inflammatory cells, and functional responses in laboratories.

Determining whether these factors become targets of type-2 and

non-type-2 biological treatment requires further clinical studies.

Both the modulation of circulating cytokines and cytokine receptor

expression can be measured and applied in future preclinical and

clinical studies. Their roles in assessing the efficacy and effectiveness

of these targeted treatments for asthma, COPD, and ACO show

promise as novel biomarkers (154, 162).

Despite the use of conventional biomarkers in the clinical

field to investigate their roles in airway diseases, they do not

encompass all patient characteristics (162) (Figure 4). Developing

ideal and novel biomarkers is pivotal to improving the outcomes

of airway disease management in the future. The goal of

these biomarkers is to comprehensively capture individual traits,

particularly concerning the immunopathogenesis of obstructive

diseases (154). Furthermore, these novel biomarkers may serve as

surrogates to guide the development of more treatable targets.

Consequently, the integration of biomarkers into the

real-world management of airway diseases, including ACO,

informs approaches to patient care and ultimately enhances

clinical outcomes. Novel biomarkers should be easily accessible,

cost-effective, and minimally invasive, offering more detailed

information about an individual’s traits for accurate diagnosis,

forecasting treatment outcomes, adjusting doses, prognosticating

further outcomes, and tailoring personalized treatment (154, 162)

(Figures 3, 4).

Conclusion

In conclusion, using in vitro tools highlights that understanding

the underlying immunopathogenesis of disease can improve

management, paving the way for personalized patient care based

on immune characteristics. Further research is essential to better

understand the complexity of ACO and identify potential markers

for its management in clinical practice.
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