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Computed tomography pulmonary angiography (CTPA) is an essential diagnostic 
tool for identifying pulmonary embolism (PE). The integration of AI has significantly 
advanced CTPA-based PE detection, enhancing diagnostic accuracy and efficiency. 
This review investigates the growing role of AI in the diagnosis of pulmonary 
embolism using CTPA imaging. The review examines the capabilities of AI algorithms, 
particularly deep learning models, in analyzing CTPA images for PE detection. 
It assesses their sensitivity and specificity compared to human radiologists. AI 
systems, using large datasets and complex neural networks, demonstrate remarkable 
proficiency in identifying subtle signs of PE, aiding clinicians in timely and accurate 
diagnosis. In addition, AI-powered CTPA analysis shows promise in risk stratification, 
prognosis prediction, and treatment optimization for PE patients. Automated 
image interpretation and quantitative analysis facilitate rapid triage of suspected 
cases, enabling prompt intervention and reducing diagnostic delays. Despite these 
advancements, several limitations remain, including algorithm bias, interpretability 
issues, and the necessity for rigorous validation, which hinder widespread adoption in 
clinical practice. Furthermore, integrating AI into existing healthcare systems requires 
careful consideration of regulatory, ethical, and legal implications. In conclusion, 
AI-driven CTPA-based PE detection presents unprecedented opportunities to 
enhance diagnostic precision and efficiency. However, addressing the associated 
limitations is critical for safe and effective implementation in routine clinical practice. 
Successful utilization of AI in revolutionizing PE care necessitates close collaboration 
among researchers, medical professionals, and regulatory organizations.
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1 Introduction

Pulmonary embolism is a potentially fatal illness that occurs when a blood clot (embolus) 
travels through the bloodstream and lodges in the lungs’ arteries. This obstruction can impede 
blood flow to the lungs, leading to serious complications such as respiratory failure, pulmonary 
infarction, or even death if not promptly diagnosed and treated. Pulmonary embolism (PE) 
frequently occurs due to deep vein thrombosis (DVT), which involves the formation of blood 
clots in the deep veins of the legs or pelvis. These clots subsequently break and move to the 
lungs (1). In clinical practice, PE presents a significant challenge due to its nonspecific 
symptoms, which can mimic other conditions such as heart attack or pneumonia. Common 
symptoms include shortness of breath, sudden chest pain, rapid heartbeat, and coughing 
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blood. However, not all patients experience typical symptoms, making 
diagnosis even more challenging (2). As a result, healthcare providers 
rely on clinical assessment, laboratory tests (such as D-dimer), and 
imaging studies to confirm the diagnosis. Given the potential severity 
of PE and the need for rapid intervention, timely diagnosis is critical 
(3). The standard course of treatment usually consists of administering 
anticoagulant medication to prevent the formation of more blood 
clots and facilitate the body’s natural process of dissolving existing 
clots. In severe cases, more intrusive measures may be required, such 
as thrombolytic treatment, surgical embolectomy, catheter directed 
thrombolysis, thrombus aspiration, mechanical thrombectomy, and 
extracorporeal membrane oxygenation (4–6). Therefore, in medical 
practice, accurately identifying the indications and manifestations of 
PE and timely diagnosis and suitable treatment may substantially 
improve patient outcomes and decrease the probability of 
complications (7).

Computed tomography pulmonary angiography (CTPA) is an 
advanced imaging method employed for diagnosing PE by visually 
representing the blood arteries in the lungs. It involves the injection 
of a contrast dye into a vein, followed by rapid imaging using a 
computed tomography scanner. The contrast dye highlights the blood 
vessels, allowing radiologists to identify any blockages caused by blood 
clots (8). It can accurately detect the location and extent of blood clots 
within the pulmonary arteries, assisting medical professionals in 
making prompt and well-informed treatment decisions (9). Moreover, 
CTPA is non-invasive and relatively quick, making it a preferred 
imaging method in emergencies where prompt diagnosis is essential. 
Despite its advantages, CTPA does have some limitations, including 
its reliance on ionizing radiation and the use of contrast dye, which 
may pose risks for some patients, such as those with kidney disease or 
allergies (10). Additionally, overuse of CTPA can lead to unnecessary 
radiation exposure and healthcare costs. For these reasons, healthcare 
providers must weigh the benefits and risks of CTPA on a case-by-case 
basis and consider alternative imaging methods when appropriate.

Artificial intelligence (AI) is transforming the domain of medical 
imaging and diagnostics, providing novel prospects to enhance precision, 
efficacy, and patient welfare. Over the past few years, significant progress 
has been made in developing and training AI algorithms to efficiently 
and accurately assess medical images, including MRIs, CT scans, and 
X-rays (11, 12). AI systems can recognize abnormalities, find patterns, 

and aid radiologists in making more precise diagnoses (13). In the 
context of PE, AI can enhance the interpretation of imaging studies, such 
as CTPA, by assisting radiologists in identifying subtle signs of PE that 
may be overlooked or misinterpreted (14). AI systems can more quickly 
examine vast amounts of imaging data than human radiologists. This 
allows for expedited diagnosis and the prompt beginning of treatment. 
Also, AI can integrate data from multiple sources, including imaging 
studies, patient medical records, and laboratory tests, to provide a 
comprehensive picture of the patient’s health status. Table 1 presents the 
main AI methods used in CTPA-based PE detection.

By leveraging this wealth of information, AI systems can assist 
healthcare providers in making personalized treatment 
recommendations tailored to each patient’s unique needs and 
characteristics (15, 16). Despite its potential advantages, the 
integration of AI into clinical practice presents several challenges. 
These include the necessity for comprehensive validation studies to 
establish the reliability and safety of AI algorithms, as well as concerns 
related to data privacy, regulatory approval, and reimbursement. It is 
imperative for healthcare providers to adopt AI technologies while 
ensuring their effective incorporation into existing clinical workflows.

This review article aims to comprehensively examine the current 
landscape of CTPA-based pulmonary embolism detection, focusing 
specifically on the thriving role of AI in this domain. Through a 
critical analysis, we  elucidate the capabilities and limitations of 
AI-driven approaches in detecting pulmonary embolisms from CTPA 
scans, exploring key advancements, challenges, and potential future 
directions. This review will provide valuable insights for clinicians, 
researchers, and technologists involved in developing and 
implementing AI technologies in pulmonary embolism diagnosis by 
summarizing the existing studies and knowledge in the field.

2 CTPA in PE detection

2.1 Principles and procedure of CTPA

A non-invasive imaging method called CTPA is mostly used to 
diagnose PE, a potentially fatal condition caused by blockage of one 
or more pulmonary arteries in the lungs. The procedure involves using 
a CT scanner to generate detailed cross-sectional images of the 

TABLE 1 Overview of different AI techniques used in CTPA-based pulmonary embolism detection.

AI Technique Description Advantages Limitations Reference

Deep learning
Uses deep neural networks for 

feature extraction and classification
High accuracy, adaptable to data

Requires large datasets, computationally 

expensive
(13)

Convolutional neural 

networks (CNNs)

Specialized deep learning models 

for image analysis

Effective in image recognition 

tasks
Need for labeled training data (30)

Support vector machines 

(SVM)

Supervised learning algorithm for 

classification and regression

Effective with high-dimensional 

data
Limited scalability to large datasets (77)

Random forest
Ensemble learning approach 

combining multiple decision trees

Robust to overfitting, handles 

non-linear data
May overfit with noisy data (78)

Gradient boosting 

machines

Sequentially adds weak learners to 

minimize loss
High predictive accuracy Sensitive to noisy data (79)

Genetic algorithms
Optimization techniques inspired 

by natural selection
Effective in global optimization Computationally intensive (80)

https://doi.org/10.3389/fmed.2025.1514931
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Li et al. 10.3389/fmed.2025.1514931

Frontiers in Medicine 03 frontiersin.org

pulmonary arteries. The principle behind CTPA lies in the intravenous 
injection of contrast material, typically iodine-based, which highlights 
the blood vessels within the lungs, allowing for clear visualization of 
any potential blockages or abnormalities (17). The CT scanner then 
captures images as the contrast material flows through the pulmonary 
vasculature. To perform a CTPA, the patient is positioned on the CT 
scanner table, usually lying flat on their back. An intravenous line is 
inserted, typically in the arm, through which the contrast material is 
injected (18). While quickly taking X-ray photographs, the scanner 
table travels through the CT machine. Usually, the entire process takes 
a few minutes. Once the images are obtained, specialized software is 
used to reconstruct them into detailed 3D images that can be analyzed 
by a radiologist for the presence of pulmonary embolism or other 
lung conditions.

2.2 Advantages and challenges of CTPA in 
diagnosing PE

CTPA offers several advantages in diagnosing pulmonary 
embolism compared to other imaging modalities (19). Firstly, it 
provides high-resolution images that allow for accurate visualization 
of even small emboli within the pulmonary arteries. This enables 
prompt and precise diagnosis, which is of primary relevance in 
managing PE, associated with significant morbidity and mortality 
(20). Additionally, CTPA is a non-invasive procedure, which means it 
does not require the insertion of catheters into the blood vessels, 
unlike conventional pulmonary angiography. This lowers the 
possibility of issues and makes it a safer choice, especially for 
individuals who should not have intrusive operations done.

Nevertheless, CTPA also presents specific challenges. A significant 
concern is the risk of over-diagnosing PE, which can lead to 
unnecessary anticoagulant treatment and increased healthcare costs. 
This issue arises from CTPA’s capacity to identify small or incidental 
emboli that may not have clinical significance. Distinguishing between 
clinically relevant and incidental emboli requires careful interpretation 
of the imaging findings by experienced radiologists (21, 22). 
Furthermore, CTPA involves exposure to ionizing radiation, which 
carries a small but cumulative risk of cancer, particularly in younger 
patients or those undergoing repeated imaging studies. Efforts to 
minimize radiation exposure, such as using lower-dose protocols and 
optimizing scan parameters, are essential to overcome this risk.

2.3 Current standard protocols for 
interpreting CTPA scans

Interpretation of CTPA scans involves a systematic evaluation 
of the pulmonary vasculature to identify the presence and extent 
of pulmonary embolism. Radiologists typically follow standardized 
protocols to ensure consistent and accurate interpretation of 
imaging findings. Key steps in interpreting CTPA scans include 
assessing the pulmonary arteries for filling defects, which indicate 
the presence of emboli, and evaluating the size and location of any 
detected emboli (23). The location of emboli, such as segmental or 
central arteries, within the pulmonary vasculature can reveal 
important details regarding the severity and prognosis of PE. In 
addition to diagnosing pulmonary embolism, CTPA scans may 

also reveal other lung abnormalities, such as pneumonia, lung 
nodules, or pleural effusions, which may have clinical significance 
and require further evaluation or management (24). Radiologists 
use various imaging features and scoring systems, such as the 
Qanadli or Miller scoring systems, to quantify the severity of 
pulmonary embolism and assess the risk of adverse outcomes. This 
information helps guide treatment decisions, such as initiating 
anticoagulant therapy or considering thrombolytic therapy in 
severe cases (23).

2.4 AI in CTPA-based in PE detection: the 
road so far

Despite the significant advances in the field, so far only two 
systematic reviews have provided comprehensive insights into the 
application of AI for PE detection through CTPA. Soffer et al. (25) 
conducted a meta-analysis examining deep learning applications for 
acute PE detection, analyzing seven studies that collectively evaluated 
36,847 CTPA examinations. Their analysis revealed promising results, 
with pooled sensitivity and specificity of 0.88 and 0.86, respectively, 
demonstrating the potential effectiveness of deep learning algorithms 
in PE diagnosis. The studies included in their review predominantly 
utilized convolutional neural networks (CNNs) for direct embolism 
detection and classification.

In contrast, Abdulaal et  al. (26) identified only five studies 
specifically addressing chronic PE and chronic thromboembolic 
pulmonary hypertension (CTEPH). Their review revealed diverse 
approaches to chronic PE detection, with studies focusing on various 
aspects such as lung parenchymal changes, PE classification, and 
hypoperfusion quantification. The reviewed studies showed variable 
performance metrics, though direct comparisons were challenging due 
to methodological differences and inconsistent reporting standards.

The disparity in research volume between acute and chronic PE 
detection is notable. While Soffer et al.’s review included studies with 
substantial datasets and more standardized approaches, Abdulaal 
et  al.’s findings highlighted the limited research in chronic PE 
detection, suggesting a significant opportunity for expansion in this 
area. Both reviews identified similar limitations in their respective 
fields, including the predominance of retrospective studies and 
variable reporting quality across publications.

The systematic reviews also revealed interesting differences in 
methodological approaches. Studies reviewed by Soffer et al. primarily 
focused on direct embolism detection and classification, while those 
analyzed by Abdulaal et al. demonstrated more varied approaches, 
including the analysis of secondary features such as parenchymal 
changes and perfusion patterns. This difference reflects the distinct 
challenges in detecting chronic PE, which often presents with more 
subtle and varied radiological findings compared to acute cases.

Both systematic reviews emphasized critical needs in their 
respective fields. Soffer et al. highlighted the importance of prospective 
validation and standardized reporting, while Abdulaal et  al. 
specifically noted the need for more consistent dataset reporting and 
improved model validation approaches. The systematic reviews 
collectively suggest that while acute PE detection algorithms have 
shown promising results and are gradually being implemented in 
clinical settings, the field of chronic PE detection remains in earlier 
stages of development.
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The findings from these systematic reviews indicate a field in 
dynamic development, with varying levels of maturity between acute 
and chronic PE detection. As Abdulaal et  al. note, the limited 
investigation of AI-based approaches for chronic PE represents an 
area of potential expansion for the field of AI in medical image 
interpretation. Meanwhile, Soffer et  al.’s work suggests that deep 
learning models for acute PE detection are approaching clinical 
implementation, though further validation and standardization efforts 
are still needed.

Table 2 provides a side-by-side comparison of the key findings 
and characteristics from both systematic reviews, highlighting the 
current state of AI applications in both acute and chronic 
PE detection.

Worth of note, the field of AI applications in pulmonary embolism 
detection reveals a striking scarcity of comprehensive reviews, as 
evidenced by the identification of only two systematic reviews (25, 26). 
This limited number of summary studies is particularly striking given 
the rapid advancement and growing implementation of AI 
technologies in medical imaging. The fact that these reviews are 
temporally separated and focus on different aspects of PE detection - 
acute and chronic presentations, respectively, - further emphasizes the 
need for an updated, comprehensive review that bridges these 
perspectives. Moreover, the most recent systematic review (26) 
specifically addresses chronic PE, leaving a three-year gap in the 
systematic analysis of acute PE detection advances since Soffer et al.’s 
work in 2021. This evident gap in the literature underscores the 
timeliness and significance of the present review, which aims to 
provide an up-to-date synthesis of the field’s progress, incorporating 
recent technological advances and emerging clinical applications that 
have yet to be systematically evaluated.

3 Role of AI in PE detection

3.1 Overview of AI technologies applied to 
medical imaging

Medical imaging plays a major role in identifying, planning 
treatment, and tracking many health disorders. Due to the progress 
in AI, specifically in deep learning algorithms, there has been a 
substantial increase in the use of AI technology for medical imaging. 
AI algorithms have proven remarkably adept at deciphering intricate 
medical images, enabling radiologists to identify patients more 
quickly and accurately (27). These AI technologies encompass 
various approaches, including convolutional neural networks 
(CNNs), generative adversarial networks (GANs), and recurrent 
neural networks (RNNs). In particular, CNNs have been used 
extensively for applications including feature extraction, classification, 
and image segmentation (28). RNNs are useful for tasks involving 
time-series imaging data because they are excellent at processing 
sequential data. AI algorithms have been used in several medical 
imaging methods, such as positron emission tomography (PET), 
ultrasound, CT, X-ray, and MRI. These technologies have shown 
promising results in detecting abnormalities, identifying patterns, 
and predicting patient outcomes based on imaging data (29, 30). 
Furthermore, AI-driven medical imaging solutions continuously 
evolve, incorporating advancements such as federated learning to 
maintain data privacy and transfer learning to leverage pre-trained 
models for specific medical imaging tasks (31). AI has the potential 
to completely transform medical imaging procedures as this field of 
study develops, leading to improved patient outcomes, tailored 
treatment plans, and more accurate diagnoses.

TABLE 2 Comparison of the key findings and characteristics from both systematic reviews, highlighting the current state of AI applications in both 
acute and chronic PE detection.

Characteristic Soffer et al. (25) Abdulaal et al. (26)

Focus Acute PE Detection Chronic PE/CTEPH Detection

Number of studies 7 studies 5 studies

Total sample size 36,847 CTPA studies Variable across studies

Performance metrics
 • Sensitivity: 0.88 (95% CI: 0.803–0.927)

 • Specificity: 0.86 (95% CI: 0.756–0.924)
 • AUC: 0.84–0.94 (varies by study)

AI methods Predominantly CNNs Deep learning approaches (CNNs)

Main applications

 • PE classification (present/absent)

 • Embolism detection

 • Segmentation

 • Lung parenchymal changes

 • PE classification

 • Hypoperfusion quantification

 • 2D maximum intensity projection analysis

Study types All retrospective Predominantly retrospective

Key limitations

 • High risk of bias

 • Limited prospective validation

 • Need for external testing

 • Limited number of studies

 • Inconsistent reporting

 • Variable methodologies

Main findings

 • Consistent performance across studies

 • Good diagnostic accuracy

 • Ready for clinical validation

 • Emerging field

 • Promising initial results

 • Need for more research

Future directions

 • Need for prospective studies

 • External validation

 • Clinical implementation studies

 • Standardization of reporting

 • Larger datasets

 • Multi-center validation
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3.2 Application of AI in CTPA interpretation 
for PE detection

CTPA is a widely used imaging method for diagnosing PE and its 
interpretation typically depends on the knowledge of radiologists, a 
process that can be time-consuming and subject to variation. The use 
of AI technology has been on the rise in the interpretation of CTPA 
images for the identification of PE, providing numerous benefits (30). 
Deep learning algorithms, particularly CNNs, have demonstrated 
high accuracy in identifying and localizing pulmonary emboli on 
CTPA images. These AI systems can quickly analyze large volumes of 
image data, aiding radiologists in efficiently identifying and 
prioritizing cases requiring immediate attention (32).

In addition, AI-driven CTPA interpretation systems can help 
reduce interpretation errors and improve diagnostic accuracy by 
providing quantitative measurements and automated annotations of 
pulmonary emboli. By incorporating AI into the workflow, healthcare 
providers can expedite the diagnostic process, which improves patient 
outcomes and expedites the start of therapy (33). However, challenges 
such as robust validation, integration into existing clinical workflows, 
and addressing issues of interpretability and transparency remain 
important considerations in the widespread adoption of AI-assisted 
CTPA interpretation for pulmonary embolism detection.

Figure  1. outlines the workflow from patient presentation to 
diagnosis confirmation and patient management, including the role 
of AI in analyzing CTPA images. The workflow begins with initial 
patient presentation and proceeds through several critical stages: (1) 
Clinical Phase: Following patient presentation, CTPA imaging is 
performed as the primary diagnostic tool. (2) Technical Phase: The 
process continues with image acquisition, where CTPA images are 
obtained and processed for AI analysis. (3) AI Implementation: The 
acquired images undergo automated AI analysis for PE detection. (4) 
Decision Point: The workflow branches based on AI findings - if PE is 
detected, healthcare providers are immediately alerted for further 
evaluation; if no PE is detected, the patient remains under monitoring. 
(5) Clinical Management: For positive cases, the diagnosis undergoes 
clinical confirmation followed by appropriate patient management 
protocols. For negative cases, the pathway includes follow-up imaging 
as needed, which feeds back into the AI analysis system, creating a 
continuous monitoring loop. The workflow concludes with either 
patient management for confirmed cases or continued monitoring for 
negative cases. Arrows indicate the directional flow of the process, 
with specific pathways marked for positive (“Yes”) and negative (“No”) 
AI findings. This integrated approach demonstrates the seamless 
incorporation of AI technology into the clinical decision-making 
process for PE detection.

3.3 Comparative analysis of AI-assisted 
diagnosis vs. traditional methods

The potential of AI-assisted diagnosis to enhance patient 
outcomes, diagnostic efficiency, and accuracy relative to traditional 
methods has gathered significant interest in its integration into 
medical practice. AI systems leverage machine learning algorithms to 
analyze medical data (including imaging studies, laboratory tests, and 
clinical notes) to assist healthcare providers in making informed 
decisions (34). One significant advantage of AI-assisted diagnosis is 

its ability to process vast amounts of data quickly and accurately, 
enabling the detection of subtle patterns and abnormalities that 
human practitioners may overlook. Additionally, AI algorithms can 

FIGURE 1

AI integration workflow in CTPA-based PE detection. Schematic 
representation of the systematic workflow for developing and 
validating an artificial intelligence (AI) system for pulmonary embolism 
(PE) detection on CT pulmonary angiography (CTPA). The process 
initiates with data acquisition and proceeds through three main 
phases: (1) Data Management: CTPA imaging data is systematically 
divided into training, validation, and test sets to ensure robust model 
development and unbiased evaluation. (2) Model Development: The AI 
model undergoes training using the training dataset, with validation 
data guiding parameter optimization. (3) Performance Assessment: 
The model’s diagnostic capability is evaluated through comprehensive 
metrics including sensitivity (ability to detect true PE cases), specificity 
(accuracy in identifying non-PE cases), positive and negative predictive 
values (PPV and NPV; reliability of positive and negative predictions), 
and area under the ROC curve (AUC-ROC; overall discriminative 
performance). The workflow incorporates a critical decision point 
(diamond) where performance metrics are compared against 
predetermined clinical thresholds. Models meeting these thresholds 
proceed to clinical deployment with continuous performance 
monitoring, while those requiring improvement undergo additional 
optimization cycles. Green circles denote workflow initiation and 
completion points, white rectangles represent process steps, yellow 
diamond indicates clinical decision point, light blue represents metrics 
calculation, and steel blue boxes show specific performance metrics. 
Arrows indicate process direction, with explicit “Yes/No” pathways at 
the clinical threshold assessment stage.
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learn from large datasets and continuously improve their performance 
over time, leading to more reliable diagnoses (35). Furthermore, AI 
systems can provide decision support by generating differential 
diagnoses, recommending appropriate tests and treatments, and 
predicting patient outcomes based on clinical data. This can aid 

healthcare providers in developing personalized treatment plans 
tailored to individual patients’ needs.

Figure  2 illustrates the patient journey with AI integration in 
pulmonary embolism detection, outlining the workflow from initial 
symptom presentation through diagnosis and management. This 

FIGURE 2

Patient journey with AI integration in PE detection. Workflow diagram illustrating the patient pathway from initial symptom presentation through 
diagnosis and management, incorporating AI-assisted PE detection. The process encompasses four key phases: clinical evaluation (risk stratification 
and initial testing), AI-integrated CTPA analysis, clinical management based on AI findings, and structured follow-up care. Pink node indicates entry 
point (symptom onset), blue node represents AI analysis, yellow node shows decision point, and green node indicates treatment planning. Arrows 
indicate process flow, with feedback loops for continuous monitoring.
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comprehensive workflow diagram illustrates the patient’s journey 
through the PE diagnostic and management process with integrated 
AI support. The journey begins with symptom onset (pink node) and 
progresses through four main phases:

Clinical evaluation: Initial assessment includes physical 
examination and risk stratification, leading to either direct CTPA 
imaging for high/intermediate risk patients or D-dimer testing for 
low-risk patients.

AI integration: The acquired CTPA images undergo automated AI 
analysis (blue node), which processes the images to detect 
potential PE.

Clinical management: Based on AI findings (yellow decision 
node), the workflow branches into either immediate provider alerts 
for detected PE cases or standard review for negative cases, both 
leading to a comprehensive treatment plan (green node).

Follow-up care: The journey concludes with scheduled follow-up 
appointments and ongoing monitoring, with a feedback loop to initial 
assessment if new symptoms develop.

The workflow emphasizes the seamless integration of AI 
technology within the traditional clinical pathway, maintaining 
human oversight while leveraging automated detection capabilities. 
Colored nodes highlight critical decision points and process stages, 
while subgraphs organize the workflow into distinct clinical phases.

Nevertheless, it is important to recognize the constraints and 
difficulties associated with AI-supported diagnosis. These include 
concerns regarding algorithm bias, data quality and representativeness, 
interpretability of AI-generated recommendations, and potential 
impact on the physician-patient relationship. A comparative analysis 
between AI-assisted diagnosis and traditional methods should 
consider diagnostic accuracy, speed, cost-effectiveness, and impact on 
clinical workflow and patient care. While AI technologies promise to 
transform healthcare delivery, their successful integration into clinical 
practice requires careful validation, regulatory approval, and ongoing 
evaluation to ensure optimal performance and patient safety.

4 Performance and accuracy of AI in 
PE detection

The landscape of AI-based PE detection has evolved significantly 
over the last years, with several key studies demonstrating the 
potential of deep learning approaches in clinical settings. The 
sensitivity, specificity, and diagnostic accuracy are essential metrics for 
evaluating the performance of AI models in detecting PE from CTPA 
scans. Specificity evaluates the model’s capability to identify patients 
without PE, whereas sensitivity pertains to the model’s ability to 
classify patients with PE accurately (81). Diagnostic accuracy 
combines sensitivity and specificity to provide an overall measure of 
the model’s performance. Studies assessing AI models for PE detection 
have reported varying sensitivity and specificity rates, often ranging 
from 80% to over 95%. Higher sensitivity ensures fewer false negatives, 
reducing the chances of missing actual cases of PE, while higher 
specificity reduces false positives, avoiding unnecessffary treatment or 
further testing. Achieving a balance between sensitivity and specificity 
is of primary relevance for maximizing the diagnostic accuracy of AI 
models in PE detection (36).

Figure  3 illustrates the AI performance metrics workflow in 
pulmonary embolism detection, outlining the systematic evaluation 

process of an AI system. This flowchart begins with the collection of 
PE imaging data and progresses through data division, model training, 
prediction generation, and performance assessment using key metrics 
such as sensitivity, specificity, PPV, NPV, and AUC-ROC.

4.1 Early validation studies

The initial wave of validation studies in AI-based PE detection 
established a strong foundation for future developments in this field. 
The pioneer word by Uddin et al. (37) conducted a comprehensive 
comparative analysis of different deep learning architectures. Their 
study evaluated three distinct approaches: a standard CNN, a residual 
network (ResNet), and a dense convolutional network (DenseNet). 
Using a dataset of 2,500 CTPA examinations, they found that the 
DenseNet architecture achieved the highest performance with an area 
under the curve (AUC) of 0.94, significantly outperforming traditional 
computer-aided detection systems.

Building upon these findings, Xie et al. (38) advanced the field by 
implementing a sophisticated convolutional neural network (CNN) 
architecture, trained on an even more extensive dataset of 3,000 CTPA 
scans. The algorithm achieved remarkable results with a sensitivity of 
92.7% and specificity of 95.5%, comparable to expert radiologist 
performance. Notably, their system demonstrated particular strength 
in detecting peripheral PE cases, which are often challenging for 
human readers.

The scope of validation studies expanded significantly with Huang 
et al. (39)’s contribution, which conducted one of the first large-scale 
evaluations of deep learning for PE detection. Their study, utilizing 
1,499 CTPA examinations, yielded promising results with a sensitivity 
of 82.4% and specificity of 81.8%. While these figures demonstrated 
the feasibility of automated PE detection, the study also provided 
valuable insights into the challenges of detecting small peripheral 
emboli, helping to shape future research directions.

In another significant study, Li et al. (40) developed and validated 
a deep learning algorithm using 3,635 CTPA examinations and was 
one of the first multi-center study in the field. Their system achieved 
an impressive area under the curve (AUC) of 0.95, with sensitivity and 
specificity of 92.7 and 95.5%, respectively. This work particularly 
demonstrated the importance of diverse training data in developing 
robust AI solutions.

4.2 Recent advances

Recent large-scale validation studies have demonstrated 
significant advances in AI performance for PE detection on CTPA, 
consistently show high diagnostic accuracy across different clinical 
settings, scanner manufacturers, and imaging protocols, with 
sensitivities ranging from 75–97% and specificities from 90–99.9%. 
For example, Kahraman et  al. (41), evaluated an nnU-Net-based 
algorithm on 700 CTPA examinations, achieving 96.1% sensitivity and 
94.6% specificity in internal validation, with maintained performance 
(98.4% sensitivity, 89.9% specificity) in external validation across 
770 cases.

The robustness of AI performance has been demonstrated in 
challenging clinical scenarios. Topff et al. (42) and Zaazoue et al. (43) 
specifically assessed AI performance in COVID-19 patients, analyzing 
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FIGURE 3

AI performance metrics workflow in PE detection. The flowchart demonstrates the systematic evaluation process of an AI system for PE detection. 
Starting with PE imaging data collection (white boxes), the workflow shows data division into training, validation, and test sets. The AI model undergoes 
training specifically for PE detection, followed by prediction generation. Performance assessment includes five key metrics (steel blue boxes): 
sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and area under the ROC curve (AUC-ROC). A clinical decision 
point (yellow diamond) determines whether the model meets established thresholds for clinical deployment. If standards are met, the model proceeds 
to clinical implementation with ongoing monitoring (right path); if not, it returns for further tuning (left path). Green circles indicate start and end 
points, while light blue boxes represent metrics calculation steps. Arrows indicate process flow, with specific “Yes/No” decision paths at the clinical 
threshold assessment point.
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over 2,600 combined CTPA examinations. Their studies showed 
maintained high accuracy (sensitivity: 91.6–93.2%, specificity: 99.6–
99.7%) despite varying degrees of COVID-19 parenchymal 
involvement. These findings were particularly significant given the 
increased complexity of PE detection in the context of COVID-19-
related lung changes.

Recent studies have also expanded beyond simple detection 
capabilities. Djahnine et al. (44) demonstrated the feasibility of 
automated severity quantification using the Qanadli score and 
RV/LV ratio measurements (R2 = 0.717 and 0.723 respectively). 
This advancement in automated severity assessment represents a 
significant step toward comprehensive AI assistance in PE 
management. Similarly, Baeza et  al. (45) explored novel 
applications in Q-SPECT/CT analysis without ventilation 
imaging, achieving 75.1% sensitivity and 98.2% specificity, 
opening new possibilities for PE detection in alternative 
imaging modalities.

Importantly, several studies have demonstrated AI’s potential to 
reduce radiologist miss rates. Ayobi et al. (46) showed that AI could 
detect 76% of PE cases initially missed in clinical reports, potentially 
reducing radiologist miss rates from 15.6 to 3.8%. However, 
researchers consistently emphasize AI’s role as complementary to 
radiologists rather than a replacement, with studies showing improved 
radiologist confidence and diagnostic accuracy when using AI as an 
assistive tool, which is discussed section 4.3. In addition, multi-center 
studies have provided strong evidence for AI’s generalizability, as 
discussed in section 4.4.

4.3 Comparison with human radiologists 
and traditional image interpretation 
methods

The performance and accuracy of AI algorithms in detecting PE 
from CTPA scans have been extensively compared with human 
radiologists and traditional image interpretation methods (47). 
Multiple studies have shown that AI algorithms may achieve similar 
or even better results than human radiologists in terms of sensitivity, 
specificity, and diagnostic accuracy. For example, a study by Liu et al. 
(33) demonstrated that a deep-learning algorithm outperformed 
radiologists in detecting PE from CTPA scans with higher sensitivity 
and specificity (48). Additionally, AI algorithms have shown the 
potential to reduce interpretation time and improve workflow 
efficiency compared to traditional methods. However, challenges such 
as interpretability, generalizability, and integration into clinical 
practice remain significant difficulty for widespread adoption (49).

Another significant contribution to this field comes from the 
recent study by Langius-Wiffen et al. (50), who conducted a large-
scale retrospective study analyzing 3,316 CTPA scans using an 
FDA-approved and CE-marked AI algorithm. Their findings 
demonstrated that the AI algorithm achieved significantly higher 
diagnostic accuracy compared to radiologists, with sensitivity of 
96.8% versus 91.6% and specificity of 99.9% versus 99.7%. Notably, the 
AI system missed only 23 PE cases compared to 60 missed by 
radiologists, while producing just 2 false positives compared to 9 
by radiologists.

These results align with earlier findings by Liu et al. (33), who 
demonstrated that deep-learning algorithms could outperform 

radiologists in detecting PE from CTPA scans with higher sensitivity 
and specificity (48). However, Langius-Wiffen et al. (51) emphasize 
that standalone use of AI algorithms is currently not warranted. Their 
study highlights that reading CTPAs requires analysis beyond just PE 
detection, as radiologists must identify other relevant pathologies. 
Current algorithms focused solely on PE detection may miss other 
clinically relevant findings, such as thrombus in the right atrial 
appendage, signs of significant pulmonary hypertension, right-
ventricular pressure overload, and various additional findings of 
infectious, oncological, or cardiovascular etiology. On this aspect, Ben 
Cheikh et al. (34) conducted a significant multicenter study evaluating 
an FDA-approved and CE-marked AI algorithm for PE detection on 
CTPA across 1,202 patients. The AI demonstrated higher sensitivity 
(92.6% vs. 90.0%) and negative predictive value (98.6% vs. 98.1%) 
compared to radiologists, though lower specificity (95.8% vs. 99.1%) 
and positive predictive value (80.4% vs. 95.0%). The AI detected 19 
PEs missed by radiologists (approximately 1 PE per 63 CTPAs) and 
proved particularly valuable for poor-quality examinations. While AI 
implementation increased radiologists’ diagnostic confidence, with 
72.2% reporting positive impact on their practice, it also slightly 
increased interpretation time by about 1 min per case. The authors 
concluded that AI serves best as a complementary tool to augment 
radiologist performance rather than a replacement, particularly acting 
as a “safety net” in emergency radiology practice.

The path forward lie in implementing AI as an assistive tool rather 
than a replacement for radiologist expertise. Further research and 
validation, particularly through clinical utility studies, are needed to 
establish AI’s reliability and clinical utility in PE detection compared 
to human radiologists and traditional image interpretation methods. 
This approach would leverage the strengths of both AI and human 
expertise, potentially leading to improved patient outcomes through 
enhanced diagnostic accuracy and efficiency.

4.4 Large-scale multi-center studies

Recent advances in AI applications for PE detection have 
demonstrated significant progress through several landmark multi-
center studies. These studies have collectively advanced our 
understanding of both the technical capabilities and practical 
implementation challenges of AI in clinical settings.

The MP-Net study represents a significant advancement in 
privacy-preserving frameworks for medical image segmentation (52). 
Using 7,279 CTPA studies from five different clinical sites, it was 
achieved remarkable performance metrics with a dice score of 91.8% 
and sensitivity of 98.0%. This study particularly addressed one of the 
fundamental challenges in multi-center collaboration: data privacy. 
The innovative network architecture enables secure data sharing 
between centers while maintaining patient confidentiality, establishing 
a potential blueprint for future collaborative efforts.

Grenier et al. (53) validated their algorithm across 228 U.S. clinical 
sites, maintaining consistent performance (91.4% sensitivity, 91.5% 
specificity) regardless of scanner type or technical parameters. Ben 
Cheikh et  al. (34) further supported these findings through their 
multi-center study of 1,202 patients, where AI detected 19 additional 
PEs missed in clinical practice.

Condrea et al. (54) introduced a novel architectural approach to 
PE detection. Working with the RSNA PE CT multi-center dataset, 
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this study achieved an F1 score of 91.0% through its innovative 
two-phase detection approach. The incorporation of anatomical 
awareness into the detection pipeline represents a significant step 
toward more sophisticated and clinically relevant AI systems.

A broader perspective on pulmonary vasculature analysis 
emerged from Chu et al. (55), which examined 11,784 participants 
across six Chinese medical centers. Artery–vein segmentation is a 
relevant diagnostic indication for pulmonary and cardiovascular 
diseases such as pulmonary embolisms and pulmonary arterial 
hypertension. This comprehensive investigation revealed previously 
undocumented associations between pulmonary vascular anatomy 
and demographic characteristics. This study not only demonstrated 
the feasibility of contrast-agent-free segmentation but also revealed 
important demographic associations with vessel anatomy. The scale 
and comprehensive nature of this study provide valuable insights into 
population-level variations in pulmonary vasculature.

Condrea et al. (54) approached the challenge from a different 
angle, developing a weakly supervised learning framework for PE 
segmentation. Using the RSPECT dataset, the researchers achieved an 
F1 score of 71.6%, demonstrating the potential of generating detailed 
pixel-level annotations from more readily available image-level labels. 
This approach could significantly reduce the annotation burden in 
future studies while maintaining clinical utility.

In contrast to these large-scale studies, Kim et al. (56) focused on 
a specific clinical application: predicting PE and reducing unnecessary 
CTPA scans in gastrointestinal cancer patients. Despite its smaller 
scale of 585 patients from two hospitals, the study achieved notable 
AUROC values of 0.736 and 0.669 for internal and external validation, 
respectively. This research highlights the importance of targeted 
applications in specific patient populations.

These studies collectively reveal several emerging trends in the 
field. First, there is a clear movement toward larger, more diverse 
datasets that better represent real-world patient populations. Second, 
privacy-preserving methods are becoming increasingly central to 
multi-center collaboration, with new architectures specifically 
designed to address these concerns. Third, there is growing emphasis 
on clinical integration and practical utility, with many studies focusing 
on reducing unnecessary imaging while maintaining 
diagnostic accuracy.

Looking forward, the field is moving toward more sophisticated, 
clinically integrated solutions that can be used across multiple centers 
while maintaining patient privacy and data security. Future 
developments will likely focus on standardization of protocols and 
reporting, enhancement of privacy-preserving methods, and seamless 
integration into clinical workflows. The success of these large-scale 
multi-center studies suggests that AI-based PE detection is maturing 
into a clinically viable tool, though continued validation and 
refinement will be essential for widespread adoption.

5 Advantages and benefits of AI in PE 
detection

5.1 Enhanced diagnostic efficiency and 
processing speed

AI demonstrates significant advantages in PE detection 
through its computational efficiency and rapid processing 

capabilities. While conventional PE diagnosis relies on manual 
interpretation of radiological images and clinical data by 
specialists, AI algorithms leverage parallel processing to analyze 
vast datasets simultaneously. Contemporary deep learning 
architectures, particularly CNNs and Vision Transformers, 
demonstrate remarkable efficiency in processing CTPA images, 
achieving analysis speeds of hundreds of images per minute 
(57–59).

The acceleration of diagnostic processes directly correlates with 
reduced time-to-treatment intervals, potentially improving clinical 
outcomes through earlier intervention. Studies indicate that 
AI-assisted PE detection can reduce interpretation times by 30–40% 
compared to traditional methods (39). These systems excel in rapid 
identification of both central and peripheral emboli, with particular 
effectiveness in detecting subsegmental PE, which traditionally 
presents diagnostic challenges (60). Furthermore, modern AI 
algorithms incorporate automated preprocessing techniques, 
including image normalization and artifact reduction, enhancing the 
quality and reliability of rapid analysis.

5.2 Reduction in diagnostic errors and false 
negatives

The implementation of AI systems in PE detection presents a 
quantifiable reduction in diagnostic errors and missed cases. Despite 
high expertise levels, human interpretation of radiological images 
remains inherently subjective and vulnerable to cognitive biases. 
New studies indicates that radiologist accuracy in PE detection 
varies between 67 and 84% depending on experience and image 
quality (61, 62). Furthermore, diagnostic accuracy can 
be compromised by factors such as radiologist fatigue and high case 
volumes, with error rates increasing by up to 12% during extended 
reading sessions (60).

AI algorithms demonstrate consistent performance in detecting 
subtle radiological abnormalities, maintaining uniform sensitivity 
across large datasets. Through iterative learning processes and 
continuous algorithm refinement, these systems achieve sensitivity 
rates exceeding 90% and specificity rates of 85–95% (25). Modern 
deep learning models incorporate attention mechanisms and feature 
extraction techniques that enable:

 • Detection of subtle filling defects in peripheral vessels.
 • Accurate quantification of clot burden.
 • Identification of associated cardiovascular complications.
 • Assessment of right ventricular strain patterns.

The standardization in diagnostic approach contributes to 
enhanced patient safety and more reliable treatment 
planning protocols.

5.3 Optimization of clinical workflow and 
decision support

Modern AI-enabled workflow systems have revolutionized the 
diagnostic process through sophisticated automated triage and 
prioritization mechanisms. These systems implement real-time case 
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prioritization based on PE probability, while simultaneously managing 
intelligent worklists and generating automatic notifications for critical 
findings. The continuous integration with hospital information systems 
further enhances the overall efficiency of the diagnostic workflow.

The advanced decision support capabilities of contemporary AI 
systems extend beyond basic image analysis. These systems perform 
comprehensive quantitative analyses of clot burden using standardized 
metrics and automated calculations of right ventricle/left ventricle 
(RV/LV) ratios (63). Furthermore, they facilitate sophisticated risk 
stratification based on imaging biomarkers and integrate clinical 
parameters with imaging findings, providing radiologists with a 
holistic view of each case (64–66). This integration of multiple data 
points enables more informed clinical decision-making and supports 
the development of personalized treatment strategies.

Quality assurance represents another critical aspect of 
AI-enhanced workflows. Through continuous performance 
monitoring and automated quality control of image acquisition, these 
systems maintain consistent diagnostic standards. The implementation 
of standardized reporting templates, coupled with comprehensive 
audit trail functionality, ensures accountability and facilitates ongoing 
quality improvement initiatives (67).

The dynamic nature of AI systems in PE detection is particularly 
evident in their capacity for continuous learning and improvement. 
Regular model updates incorporate new data and feedback from 
radiologists, allowing the systems to adapt to local practice patterns 
and emerging clinical guidelines (68). This adaptive capability ensures 
that the AI systems remain current with evolving medical knowledge 
and practice standards. The implementation of these advanced AI 
systems has demonstrated remarkable improvements in operational 
efficiency, with research indicating substantial reductions in 
radiologist reading time and preliminary report generation time (69).

The synergistic relationship between AI systems and clinical 
expertise has transformed the traditional diagnostic pathway (70). 
Enhanced communication between clinical teams, coupled with 
streamlined workflows, has led to more efficient healthcare delivery 
and improved patient outcomes. This optimization of clinical 
workflows through AI integration represents a significant 
advancement in radiological practice, establishing new standards for 
diagnostic efficiency and accuracy in PE detection. The continuous 
evolution of these systems, driven by ongoing technological advances 
and clinical feedback, suggests that further improvements in workflow 
optimization and decision support capabilities will continue to 
emerge, further enhancing the role of AI in PE detection and 
management (22, 71).

Figure 4 illustrates the comprehensive workflow of AI-enhanced 
PE detection and management, demonstrating the integration of AI 
with clinical practice. The workflow comprises four interconnected 
phases that ensure efficient diagnosis while maintaining quality 
standards and enabling continuous system improvement.

The Input Phase (blue) initiates with CTPA image acquisition, 
followed by automated quality assessment. This phase incorporates a 
quality control feedback loop, ensuring that only images meeting 
predetermined quality standards proceed to AI analysis. Substandard 
images are flagged for repeat acquisition, maintaining high diagnostic 
standards from the outset.

The AI Processing Phase (purple) represents the core analytical 
components of the system. Here, the AI simultaneously performs 
multiple analyses: automated PE detection, quantitative measurements 

including right ventricle/left ventricle (RV/LV) ratio calculation, and 
clot burden assessment. These parallel processes contribute to an 
automated risk stratification system that determines case priority, 
enabling efficient resource allocation and rapid identification of high-
risk cases.

The Clinical Integration phase (green) demonstrates the crucial 
interaction between AI and clinical expertise. Cases are automatically 
prioritized in the radiologist’s worklist based on AI findings and risk 
assessment. This phase emphasizes the supervisory role of radiologists, 
who can either confirm or modify AI findings. Confirmed cases 
proceed to standardized report generation and clinical decision 
support, while modified cases generate valuable feedback for 
system improvement.

The Quality Assurance phase (red) completes the cycle 
through continuous performance monitoring and system 
refinement. This phase is critical for maintaining diagnostic 
accuracy and ensuring ongoing system improvement. The 
feedback loop from radiologist modifications contributes to 
model updates, while maintaining compliance with clinical 
standards and generating comprehensive audit trails for 
quality control.

The bidirectional arrows between phases highlight the dynamic 
nature of the workflow, where information flows not only forward 
through the diagnostic process but also backward through feedback 
mechanisms. This design ensures that the system continuously learns 
and adapts to local practice patterns while maintaining high 
diagnostic standards.

This workflow represents a significant advancement over 
traditional diagnostic pathways by optimizing resource utilization, 
standardizing diagnostic approaches, and maintaining quality control 
through continuous feedback and improvement cycles. The integration 
of AI technology with clinical expertise creates a synergistic system 
that enhances both efficiency and accuracy in PE detection 
and management.

The workflow diagram provides a clear visualization of how 
modern AI systems can be effectively integrated into clinical practice 
while maintaining the essential role of clinical expertise 
and oversight.

6 Limitations and challenges of AI in 
PE detection

6.1 The SFR 2022 AI data challenge

The SFR 2022 AI data challenge represents a significant milestone 
in understanding the complexities of implementing AI for PE 
detection and assessment (72). While the initiative successfully 
brought together multiple institutions and demonstrated promising 
results, it also revealed several interconnected challenges that merit 
careful consideration for future developments in this field.

6.1.1 Data complexity and annotation challenges
A fundamental limitation emerged from the study’s data structure 

and annotation process. Although the challenge accumulated 1,268 
CT examinations from 16 French centers (a substantial achievement 
in multicenter collaboration) this dataset reveals inherent limitations 
in current AI development approaches. The absence of detailed 
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image-level annotations, particularly crucial for complex 
measurements like Qanadli’s score, highlights a critical gap between 
clinical practice and AI training requirements. This limitation 
becomes particularly significant when considering that Qanadli’s 

score calculation demands precise understanding of pulmonary 
arterial anatomy and embolism location, information that was only 
provided as a final numerical score rather than detailed 
anatomical annotations.

FIGURE 4

AI-enhanced workflow for pulmonary embolism detection and management. The workflow is divided into four major phases (indicated by colored 
sections): Input Phase (blue), AI Processing Phase (purple), Clinical Integration (green), and Quality Assurance (red). Arrows indicate the direction of 
workflow progression. Boxes represent individual processes or actions. Parallel processes are shown at the same horizontal level. Feedback loops 
demonstrate the continuous improvement aspects of the system.
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6.1.2 Methodological constraints and clinical 
reality

The challenge’s structure, while well-organized, exposed several 
methodological constraints that reflect broader issues in AI 
development for medical imaging. The separation of the three tasks—
PE detection, RV/LV ratio measurement, and Qanadli’s score 
calculation—into independent evaluations, though practical for the 
competition, may not align with clinical reality where these parameters 
are inherently interconnected. The winning team’s overall score of 
0.784 demonstrates both the promise and limitations of current AI 
approaches, suggesting that while automated analysis is feasible, 
achieving clinical-grade accuracy across all tasks remains challenging.

6.1.3 Generalizability and external validity
A more subtle but crucial limitation emerges from the study’s 

geographical and institutional constraints. Despite its multicenter 
nature, the dataset was exclusively sourced from French institutions, 
potentially limiting the AI models’ generalizability to different 
healthcare systems, patient populations, and clinical protocols. This 
limitation is particularly relevant given that PE presentation and 
imaging characteristics may vary across different populations and 
healthcare settings. The challenge’s approach of allowing teams to use 
external datasets for training partially addresses this issue but also 
introduces questions about standardization and validation of these 
supplementary data sources.

6.1.4 Technical implementation and workflow 
integration

The challenge revealed significant technical hurdles in 
implementing AI solutions for PE assessment. The competition’s 
design, which provided data in three batches, highlighted the 
importance of robust and adaptable AI systems. However, it also 
exposed the difficulties in creating solutions that can seamlessly 
integrate into various clinical workflows while maintaining consistent 
performance across different CT protocols and equipment. The 
minimal preprocessing approach adopted by the challenge organizers, 
while providing flexibility to competitors, emphasizes the need for 
robust standardization methods in real-world applications.

6.1.5 Clinical validation and safety considerations
Perhaps the most critical limitation relates to clinical validation 

and safety considerations. The evaluation metrics chosen—AUC for 
detection and R2 for regression tasks—while statistically sound, may 
not fully capture the clinical implications of AI performance. The 
challenge’s structure did not fully address how these systems would 
perform under real-world conditions, particularly in emergency 
settings where time constraints and clinical pressure are significant 
factors. Furthermore, the critical issue of false negatives in PE 
detection, which carries significant patient safety implications, 
requires more comprehensive evaluation frameworks than those 
typically used in research settings.

6.2 Additional challenges and limitations

In addition to the limitations identified in the SFR 2022 AI 
challenge study, several critical challenges need to be addressed for 
successful implementation of AI-based PE detection systems. These 

challenges span multiple domains and require careful consideration 
for future development.

6.2.1 AI models for PE detection
Training AI models for PE detection faces several data limitations 

and challenges. Firstly, acquiring high-quality labeled data for training 
AI algorithms can be difficult. Annotated medical imaging data, such 
as CTPA scans, require expert radiologists to accurately label PE 
instances, which can be time-consuming and costly. Additionally, the 
availability of diverse and representative datasets encompassing various 
patient demographics, comorbidities, and imaging artifacts is decisive 
to ensure the robustness and generalizability of AI models (73). 
Nevertheless, acquiring such extensive datasets might present 
difficulties due to privacy considerations, limitations on data access, 
and the fragmented distribution of healthcare data among many 
institutions and systems. Furthermore, data imbalance, where negative 
cases significantly outnumber positive cases of PE, can lead to biased 
model performance and reduced sensitivity in detecting rare or subtle 
PE instances (82). Addressing these data limitations and challenges 
requires collaborative efforts among healthcare providers, researchers, 
and policymakers to establish standardized data-sharing protocols, 
enhance data quality and annotation processes, and promote 
transparency and accountability in AI model development 
and evaluation.

6.2.2 Interpretation of complex CTPA findings 
beyond simple emboli detection

While AI algorithms have shown promising results in detecting PE 
on CTPA scans, interpreting complex findings beyond simple emboli 
detection presents significant challenges. CTPA images often contain 
anatomical structures, physiological variations, and imaging artifacts that 
can confound AI algorithms’ interpretation and lead to false positives or 
negatives (39). Furthermore, distinguishing between acute and chronic 
PE, identifying alternative diagnoses mimicking PE, and assessing the 
clinical significance of detected emboli require nuanced clinical judgment 
and domain expertise that may not be fully captured by AI systems alone 
(33). In addition, integrating contextual information from patients’ 
clinical histories, laboratory tests, and other diagnostic modalities is 
essential for accurate diagnosis and appropriate patient management. 
Still, this complexity presents additional challenges for AI algorithms in 
terms of effective processing and integration. To address these issues, it 
is essential to develop AI models that use techniques for integrating 
diverse data types, implement mechanisms for contextual understanding, 
and offer interactive tools to assist radiologists and clinicians in accurately 
and efficiently interpreting complex CTPA findings.

6.2.3 Real-time performance and resource 
requirements

The implementation of AI systems for PE detection presents 
complex challenges in computational infrastructure and performance 
optimization. Healthcare institutions must carefully consider the 
substantial computational resources required for real-time analysis 
of medical imaging data. Modern AI systems demand high-
performance GPU configurations capable of processing multiple CT 
scans simultaneously while maintaining rapid response times 
essential for emergency care scenarios.

The computational infrastructure must be  designed to handle 
varying workloads efficiently, particularly during peak usage periods 
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when multiple departments may require simultaneous access. This 
necessitates sophisticated load balancing mechanisms and resource 
allocation strategies. Storage systems must accommodate not only the 
large volumes of imaging data but also maintain rapid access capabilities 
through efficient cache management and data retrieval protocols.

Network infrastructure plays a crucial role in system 
performance, as the movement of large imaging datasets between 
storage, processing units, and viewing stations requires substantial 
bandwidth. Organizations must carefully balance the trade-offs 
between cloud-based and on-premises solutions, considering factors 
such as data security, access speed, and scalability requirements. The 
system architecture must incorporate redundancy measures and 
failover capabilities to ensure continuous availability, particularly 
critical in emergency medicine contexts.

6.2.4 Standardization and interoperability
Standardization and interoperability represent fundamental 

challenges in the widespread adoption of AI systems for PE detection. 
The healthcare environment typically involves multiple vendors, 
various imaging equipment manufacturers, and diverse IT systems, all 
of which must work seamlessly together. Implementation of 
standardized DICOM formatting for AI results becomes crucial, 
ensuring that findings can be consistently interpreted across different 
platforms and institutions.

Integration protocols must adhere to established healthcare 
standards such as HL7/FHIR, enabling smooth communication 
between AI systems and existing healthcare infrastructure. This 
standardization extends beyond mere technical compatibility to 
encompass structured reporting templates and common annotation 
formats, ensuring consistency in how AI findings are documented and 
communicated across different healthcare settings (74).

Version control and update management present additional 
challenges in maintaining system consistency. Healthcare institutions 
must establish robust protocols for managing software updates, 
ensuring backward compatibility, and maintaining detailed 
documentation of system changes. This becomes particularly 
complex in multi-vendor environments where different components 
may update at different intervals.

6.2.5 Quality assurance and system monitoring
Quality assurance in AI-based PE detection systems requires 

comprehensive monitoring frameworks that track both technical 
performance and clinical impact. Continuous monitoring of system 
performance must go beyond simple accuracy metrics to include 
detailed analysis of false positive and negative rates, processing time 
variations, and system availability statistics. This monitoring should 
be automated where possible, with clear protocols for identifying and 
addressing performance degradation.

Error management systems must be  sophisticated enough to 
detect both obvious failures and subtle degradation in performance. 
Root cause analysis procedures should be established to investigate 
significant errors, with clear protocols for implementing corrective 
actions. The quality assurance framework should also include regular 
assessment of clinical outcomes, evaluating how AI system 
performance correlates with patient outcomes and treatment decisions.

System maintenance becomes a critical component of quality 
assurance, requiring regular optimization routines and health checks. 
Security updates must be  carefully managed to maintain system 

integrity while ensuring minimal disruption to clinical workflows. 
Database maintenance procedures should be implemented to manage 
the growing volume of imaging data while maintaining rapid 
access capabilities.

6.2.6 Educational and training requirements
The successful implementation of AI systems for PE detection 

necessitates comprehensive educational programs that address both 
technical and clinical aspects of the technology. Initial training 
programs must provide healthcare professionals with a fundamental 
understanding of AI concepts, including its capabilities and 
limitations. This knowledge base helps ensure appropriate use of the 
technology and maintains clinical judgment in decision-
making processes.

Ongoing education becomes essential as systems evolve and 
capabilities expand. Regular updates to training materials should 
reflect system improvements and address any newly identified 
limitations or considerations. Clinical staff must understand not only 
how to operate the system but also how to interpret results in the 
context of their clinical expertise.

Professional development programs should include practical 
scenarios and case studies that demonstrate both typical and edge 
cases. These programs should emphasize the complementary 
nature of AI systems, reinforcing that they are tools to enhance, 
rather than replace, clinical judgment. Special attention should 
be given to training in error recognition and appropriate escalation 
procedures when system results appear inconsistent with 
clinical findings.

The educational framework must also address the broader 
implications of AI implementation, including changes to workflow 
patterns, documentation requirements, and communication protocols. 
This comprehensive approach ensures that all stakeholders understand 
their roles in maintaining system effectiveness and patient safety. 
Regular assessment of training effectiveness helps identify areas 
requiring additional focus or modification, ensuring that educational 
programs evolve with technological advances and changing 
clinical needs.

Advancements in AI interpretability, particularly through the 
development of explainable AI, help alleviate clinician skepticism 
surrounding AI adoption in healthcare. Providing clear and 
understandable explanations for AI-generated recommendations 
and predictions enables clinicians to grasp the rationale behind the 
system’s outputs. This transparency fosters trust and confidence in 
the technology, as healthcare professionals can better assess the 
reliability and relevance of AI insights in their clinical decision-
making processes. Furthermore, incorporating explainability into 
training programs equips clinicians with the tools to critically 
evaluate AI suggestions, ensuring they can integrate AI findings 
with their own clinical expertise. Bridging the gap between complex 
AI algorithms and clinical practice, explainable AI enhances the 
perceived value of AI systems and reinforces the notion that these 
technologies are designed to support, rather than supplant, 
clinical judgment.

6.2.7 Regulatory and ethical considerations in AI 
adoption for medical diagnosis

Adopting AI for medical diagnosis, particularly in the detection 
of pulmonary embolism (PE), raises several regulatory and ethical 
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considerations that must be meticulously addressed to ensure patient 
safety, data privacy, and healthcare equity. Regulatory agencies, such 
as the Food and Drug Administration (FDA), play a crucial role in 
overseeing the safety and effectiveness of AI-based medical devices. 
This oversight necessitates rigorous validation studies to ensure that 
AI systems are thoroughly tested for accuracy and reliability, along 
with transparent reporting of algorithm performance metrics. 
Continuous monitoring of real-world outcomes is also essential to 
assess ongoing efficacy (33).

Compliance with medical device regulations, data protection 
laws (e.g., HIPAA), and ethical principles (e.g., beneficence, 
autonomy, justice) requires comprehensive risk assessment and the 
establishment of robust governance frameworks. Engaging 
stakeholders, including healthcare institutions, industry partners, 
and regulatory bodies, in the decision-making process is vital to 
fostering a collaborative environment that prioritizes patient safety 
and ethical standards (30).

A significant ethical concern in AI adoption is the potential for 
bias, particularly against populations that are underrepresented in 
training datasets. Such biases can lead to inequitable clinical 
outcomes, as AI systems may perform poorly for certain demographic 
groups, resulting in misdiagnoses or inadequate treatment 
recommendations. This not only jeopardizes patient safety but can 
also erode trust among patients from these populations, further 
exacerbating existing health disparities. To mitigate these biases, it is 
critical to actively seek diverse populations for inclusion in training 
datasets, ensuring that AI algorithms can generalize effectively across 
different demographic groups. Regular audits of AI systems should 
be  implemented to identify and address biases in algorithm 
performance. Additionally, engaging with community representatives 
and advocacy groups can provide valuable insights into the needs 
and concerns of underrepresented populations, ensuring their voices 
are included in the development and evaluation processes of 
AI technologies.

Collaborative initiatives among policymakers, researchers, 
industry leaders, and patient advocates are essential for developing 
regulatory guidelines, creating ethical frameworks, and establishing 
best practices that encourage responsible AI adoption in medical 
diagnosis. On addressing these regulatory and ethical considerations, 
particularly concerning AI bias, stakeholders can promote the safe and 
effective integration of AI technologies in medical diagnostics, 
ultimately enhancing patient care and outcomes.

7 Future directions and research 
opportunities

7.1 Emerging trends and developments in 
AI for PE detection

As technology progresses, AI plays an increasingly major role in 
detecting PE. Emerging trends indicate a shift toward using deep 
learning algorithms, particularly CNNs, for more accurate and 
efficient diagnosis. These CNNs can analyze vast amounts of medical 
imaging data, such as CTPA scans, to identify subtle signs of PE that 
may be  overlooked by human observers (25). Natural language 
processing (NLP) advancements enable AI systems to extract relevant 
information from clinical notes and reports, facilitating faster and 

more accurate diagnosis (25, 34). Integrating AI with wearable devices 
and remote monitoring technologies holds promise for real-time 
detection and early intervention in patients at risk of PE, thus 
improving outcomes and reducing mortality rates.

7.2 Potential integration of AI with other 
diagnostic methods for comprehensive 
evaluation

Integrating AI with other diagnostic modalities presents an 
exciting opportunity for comprehensive assessment in PE detection. 
Integrating AI algorithms with imaging modalities like ultrasound 
and MRI can offer a comprehensive perspective on the patient’s state, 
improving diagnostic precision and minimizing the chances of 
incorrect diagnosis (75, 76). Similarly, incorporating clinical data into 
AI models, including laboratory tests and patient history, can improve 
their predictive capabilities. Clinicians may acquire a more 
comprehensive understanding of PE pathology by using a multi-
modal approach, which can result in more informed treatment 
decisions and better patient outcomes. Furthermore, decentralized PE 
diagnosis may be possible through the integration of AI with point-
of-care testing tools and mobile health applications, especially in areas 
with low resources and restricted access to specialized 
medical facilities.

7.3 Areas for future research and 
refinement of AI algorithms in PE detection

Despite significant advancements highlighted in this review, 
several areas remain for future research and refinement of AI 
algorithms in PE detection. One important area is the development of 
interpretable AI models, which boost confidence and make it easier 
to incorporate AI into clinical practice by providing physicians 
insights into the decision-making process. The robustness and 
generalizability of AI algorithms across diverse patient populations 
and imaging platforms also need to be further investigated to ensure 
reliable performance in real-world settings. Furthermore, continued 
efforts are required to enhance the sensitivity and specificity of AI 
models, particularly in detecting small or subsegmental emboli that 
may be clinically significant but challenging to identify. AI’s ethical 
and regulatory implications in PE detection also deserve attention, 
including data privacy, transparency, and accountability, warrant 
careful consideration to ensure responsible deployment and adoption. 
Collaborative research efforts among clinicians, data scientists, and 
regulatory authorities are essential to address these challenges and 
harness the full potential of AI in transforming PE diagnosis 
and management.

8 Conclusion

Integrating AI into CTPA for pulmonary embolism detection 
represents a promising frontier in medical imaging. AI algorithms 
demonstrate impressive potential in enhancing accuracy, efficiency, 
and accessibility in diagnosing pulmonary embolism. However, while 
AI offers significant advantages, its implementation must be free of 
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limitations such as data quality, interpretability, and ethical 
considerations. Collaborative efforts among clinicians, radiologists, 
data scientists, and regulatory bodies are imperative to ensure AI 
technologies’ responsible and effective deployment in CTPA-based 
pulmonary embolism detection. By addressing these challenges, AI 
has the potential to revolutionize the diagnosis of pulmonary 
embolism, thereby enhancing patient outcomes and advancing the 
delivery of healthcare.
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