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Gastroesophageal reflux disease (GERD) is a common gastrointestinal disorder 
that significantly affects populations in both developing and developed countries. 
Due to both intrinsic pathology and extrinsic risk factors, the incidence of GERD 
has risen substantially in recent decades. This disorder results from an imbalance 
between the esophagus’s defensive mechanisms and the harmful effects of the 
refluxate. The pepsin, an enzyme secreted exclusively by the stomach, plays a 
critical role in the pathogenesis of GERD due to its invasiveness effects in acidic 
environments. By thoroughly understanding the pathogenesis of pepsin-induced 
GERD, we could better address its diagnostic and therapeutic potential in clinical 
practice. Although current diagnostic tools are widely used, they have several 
limitations. As a result, researchers have increasingly focused on the salivary pepsin 
test, a novel diagnostic method that utilizes the specific pathological mechanisms 
of pepsin. To overcome the drawbacks of the currently used salivary pepsin test, 
fluorescence response detection has been integrated with other technologies. 
Beyond its diagnostic significance, pepsin in saliva may also serve as a target 
for GERD management in innovative clinical trials. In this review, we summarize 
the latest advancements in the diagnosis and management of GERD to improve 
patient outcomes.
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1 Introduction

As GERD is one of the most common gastrointestinal disorders, affecting approximately 
15–25% of adults in developed countries and 10% in developing countries. It is primarily 
characterized by heartburn and regurgitation, though other symptoms such as dysphagia, 
persistent cough, and asthma may also occur (1–3). Beyond reducing quality of life, GERD is 
associated with an increased risk of complications, including esophagitis, esophageal strictures, 
esophageal ulcers, esophageal stenosis, and more severe conditions like Barrett’s esophagus 
and esophageal cancer (1).

Normally, there is a balance between the harmful effects of gastric refluxate on the 
esophageal lining and the esophagus’s defensive anti-reflux mechanisms. A breakdown in this 
balance, either by weakening the defense mechanisms or increasing erosive forces, can lead to 
pathogenetic alterations of GERD, encompassing esophageal exposure, resistance of the 
esophageal mucosal epithelium, and visceral sensitivity (4). Consequently, individuals with 
primary pathological factors such as malfunctioning anti-reflux barriers and impaired 
esophageal clearance and buffering would have more chance to be predisposed to GERD.
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Though there exists various proven diagnostic methods for 
GERD, including specific questionnaires, anti-secretory inhibitors, 
endoscopy, and esophageal functional tests, they present notable 
limitations. Such as invasiveness, high cost, and low sensitivity and 
specificity. Recently, researchers are particularly drawn to pepsin, a 
protein implicated in the erosive degradation of the esophageal 
mucosa (5). As an acidic enzyme secreted solely by the stomach, the 
presence of pepsin in saliva is abnormal and can be  used as a 
diagnostic marker for GERD. In addition to its diagnostic role, pepsin 
is also considered a therapeutic target and plays a significant role in 
GERD management (6).

The management of GERD can be categorized into two primary 
mechanisms: one aims to reduce reflux by suppressing gastric acid 
secretion, while the other focuses on strengthening the defensive 
function of the esophageal mucosal barrier to protect it from the 
erosive effects of gastric acid. Based on these strategies, GERD 
management typically involves two approaches: irreversibly inhibits 
pepsin activation and prevents the reactivation of pepsin in low pH 
environments after endocytosis uptake in late endosomes and trans-
reticular Golgi apparatus (TRG) or use receptor antagonists on 
patients to block receptor-mediated pepsin uptake (7–9).

In this review, we  summarize the pathological and potential 
molecular mechanism of pepsin-induced GERD, and gather the target 
molecules which play an important role in the progression of GERD 
and its subsequent tissue damage. The common diagnostic methods 
were elaborated and evaluated by summarizing the published basic 
research articles, clinical analysis articles and treatment guidelines 
issued by authoritative institutions. At the same time, we introduced 
the high specificity and sensitivity diagnostic method that combined 
fluorescence probe and new materials to be popularized in clinical 
practice, which we believe will be the wind vane for accurate diagnosis 
in the future. In addition, we focus on the current common clinical 
treatment methods and new compounds found in the latest research, 
which provide a more comprehensive direction and new thinking for 
further research on GERD in the future.

2 Pepsin-related pathological 
mechanism of GERD

The development and progression of GERD primarily depend on 
two factors: the invasive and destructive actions of pepsin and gastric 
acid, and the resistance and sensitivity of the epithelial barrier, which 
maintain the integrity of the esophageal mucosa. Pepsin exerts its 
effects by influencing various cellular signaling pathways, with its 
activity and sensitivity varying according to changes in pH and the 
environment. A compromised esophageal epithelial barrier, combined 
with increased sensitivity, increases the susceptibility of the mucosa to 
erosion. Together, these factors form the core pathogenic mechanisms 
of GERD.

2.1 Properties of pepsin

Pepsin is an aspartic protease derived from its precursor, 
pepsinogen, in acidic environments (10). In human gastric juice, the 
active sites of pepsin bind to substrates, initiating the process of 
proteolysis (10, 11). Through proteolysis, pepsin breaks down 

ingested proteins into small peptide fragments. Pepsin exhibits its 
highest activity at a pH of 2.0 and becomes inactive at a pH of 6.5, 
though it remains stable at a pH of 8.0. As a result, it can be reactivated 
when the pH drops again (12). Beyond its proteolytic function, 
pepsin plays a critical role as a major component of acidic 
refluxate (13).

These properties make pepsin an ideal biomarker for detecting 
reflux in clinical samples. However, its presence in saliva is often 
transient due to the episodic nature of reflux and the intermittent 
effects of swallowing, which can vary depending on food intake.

2.2 Pathological mechanisms of 
pepsin-induced GERD

The esophageal wall is composed of four layers: the mucosal layer, 
the submucosal layer, the muscular layer, and the adventitia. The 
mucosal layer, closest to the lumen, is responsible for neutralizing 
incoming acids and protecting the squamous epithelium of the 
esophagus from contact with refluxate (14). Under normal conditions, 
pepsin remains in the stomach, its sole site of production.

When the esophageal epithelium is exposed to acids, bile salts, 
and pepsin, it stimulates the secretion of proinflammatory cytokines 
such as interleukin-1, 6, 8, 10, and tumor necrosis factor-α. This 
contributes to the proliferation of T cells and neutrophils, resulting in 
chronic inflammation, oxidative stress, and proliferative activity (15). 
Tissue damage can occur from the inflammatory responses triggered 
by reactivated pepsin during a new reflux episode when pH falls below 
6.0 (16). Additionally, these inflammatory processes generate oxidative 
stress and accumulate free oxygen radicals, which may ultimately 
damage mitochondria and lead to cell death (8). Moreover, toxic 
refluxate, such as pepsin, can also enter cells through the basolateral 
membrane, causing intracellular acidification and further cell 
damage (17).

Patients with GERD often exhibit impaired integrity of the 
esophageal mucosa, making them more sensitive to the harmful 
effects of pepsin and gastric acid. In recent years, the focus of research 
on this mechanism has gradually shifted from the apparent symptoms 
to the intrinsic molecular mechanism. The research progress of this 
mechanism focuses on the cellular pathway of chronic inflammatory 
response and the cytokines involved. According to several studies, the 
participation of matrix metalloproteinases (MMPs) in this 
pathogenesis are highlighted, especially MMP-1, 2, 3, 7, 9, 14 (18–20). 
For instance, exposure to gastric acid increases ROS and 
phosphorylates ERK1/2, ultimately leading to the phosphorylation of 
c-Jun. This signaling pathway is associated with increased expression 
of MMP-7 and the degradation of E-cadherin (20). By degrading 
E-cadherin, acid-activated pepsin disrupts epithelial integrity (18, 21). 
At the same time, reflux pepsin can also induce the expression and 
excessive proliferation of MMP as sheddase of E-cadherin (22). 
Additionally, the acidic gastric juice could also contribute to the 
elevated expression of MMP-9, further causing the degradation of 
occludin, a significant protein that constructs endothelial tight 
junctions (23). Inspired by this and supporting evidence from PubMed 
and Embase databases, we can conclude that the degradation of tight 
junctions (e.g., Claudin-1, 2 and 4, ZO-1, filaggrin, and occludin) 
induced by pepsin and gastric acid is another significant GERD 
pathology (24).
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Studies have shown that the acute stress caused by acid and pepsin 
exposure can widen the epithelial tight junctions of the esophageal 
mucosa, increasing its permeability (25). More critically, through the 
study of animals esophageal epithelial tissue, Ergun et al. found that 
epithelial cells are more sensitive to chronic inflammation caused by 
harmful substances than acute inflammation. This provides a more 
accurate focus for clinical pathologic mechanism investigation (26–
28). This allows acid and pepsin to penetrate the epithelial cells, 
leading to tissue necrosis (25). Dilated intercellular spaces (DIS), a 
common ultrastructural lesion in the basal layer, may result from 
inhibited sodium transport. This condition is attributed to the erosive 
effects of acid, bile, or pepsin. DIS promotes luminal ion flow, 
activating epithelial and neural receptors, which can ultimately lead 
to GERD (29). Consequently, this increases the risk of Barrett’s 
esophagitis and may lead to esophageal adenocarcinoma (21).

After passing through the esophagus, pepsin generated by reflux 
can bind to the respiratory tract mucosa and remain temporarily 
inactive after being neutralized by saliva and bicarbonate. As the most 
significant component of refluxate, pepsin can be found in the upper 
digestive tract, where it acts as a pathological agent contributing to the 
primary symptoms of GERD (13). Based on the aforementioned 
pathological mechanisms of pepsin, increased paracellular 
permeability in the esophageal epithelium may plausibly explain the 
heartburn symptoms in patients (29). At the same time, the stimulated 
esophageal epithelium produces an inflammatory response dominated 

by T lymphocytes, which also increases the sensitivity of the nerve 
endings located in the mucosa (23). The penetration of pepsin through 
the lamina propria to the visceral nerve endings can also contribute to 
these heartburn symptoms (17) (Figure 1).

3 Diagnosis of GERD

3.1 Background of pepsin detection

GERD is associated with various factors that lead to the reflux of 
acidic components into the esophagus, causing symptoms and 
complications (30). Clinical evaluations of symptoms form the 
foundation for diagnosing GERD, but diagnostic tests can either 
support or contradict the initial clinical assessment depending on the 
specific criteria used in each test. Therefore, understanding the 
strengths and limitations of each diagnostic tool and gathering 
multiple pieces of evidence is essential (31). The ACG clinical 
guidelines and various consensus documents provide conclusive 
diagnostic criteria for GERD, as well as recommendations on ruling 
out the condition.

At the moment, GERD can be diagnosed with specially designed 
questionnaires, proton pump inhibitors (PPIs) for anti-secretory 
therapy, endoscopy, and reflux monitoring tools (32–34). However, 
both the Reflux Disease Questionnaire (RDQ) and the GERD 

FIGURE 1

Pepsin related pathological mechanisms leading to GERD. Pepsin invades the esophageal wall and laryngopharynx through a series of pathological 
mechanisms. It activated ROS in the appropriate pH environment which can cause cell and tissue damage, ROS can also regulates the ERK-cJUN-MMP 
pathway to affect intercellular space by cleavage E-cadherin. The mucus bicarbonate barrier protects against the invasion of gastric acid and pepsin. 
After stimulation, esophageal epithelial cells activate a chronic inflammatory response, changing the activity and state of the cells and releasing 
regulation factors.
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Questionnaire (GERDQ) have demonstrated only moderate accuracy 
(approximately 65–70%) and were specifically designed to identify 
symptomatic GERD. As a result, questionnaires alone are insufficient 
for a precise diagnosis (35). Additionally, while endoscopy has high 
specificity in diagnosing GERD, its sensitivity is quite low. Data shows 
that over 70% of GERD patients have normal esophageal mucosa on 
endoscopy, and one study even reported a normal mucosal rate of up 
to 90% in patients treated with PPI therapy (33, 36). As for pathological 
testing, reflux esophageal biopsies have limited specificity, and there 
is often disagreement among pathologists (32–34). Currently, 
esophageal function tests, such as 24-h MII-pH monitoring, are 
considered the most reliable diagnostic methods (37). However, these 
measurements cannot distinguish rumination or supragastric belching 
from the reflux episodes, and have a low sensitivity for counting reflux 
episodes accurately (32). Additionally, dietary restrictions and reduced 
physical activity during reflux monitoring may lead to false-negative 
results. Moreover, this test is expensive and invasive (38) (Figure 2).

3.2 Clinical salivary pepsin test

Traditional symptom-based diagnostic tests for GERD not only 
have limited sensitivity and specificity but are also costly and invasive. 
Therefore, there is a pressing need for the development of a clinically 

applicable, non-invasive, convenient, sensitive, and accurate diagnostic 
tool. Recent evidence has identified salivary pepsin as a promising 
biomarker for GERD, as this enzyme is recognized as a major 
contributor to the condition (5, 39). The diagnostic value of Peptest 
stems from the fact that pepsin is synthesized exclusively in the 
stomach, making its presence in the esophagus or other proximal 
structures a clear indicator of reflux (39). However, since salivary 
pepsin concentrations rapidly decrease after a reflux episode, samples 
should be collected as soon as possible to avoid enzyme degradation. 
Another method to improve the accuracy of results is to collect 
multiple salivary samples throughout the day (40).

A prospective study conducted in China evaluated the diagnostic 
utility of salivary pepsin and found that GERD patients had 
significantly higher pepsin concentrations in their saliva compared to 
a control group. Additionally, post-meal samples collected during 
symptomatic episodes in GERD patients showed higher pepsin levels 
and a greater rate of positive results compared to general postprandial 
samples. Using a cut-off value of 76 ng/mL, Peptest demonstrated a 
sensitivity of 73.0% and a specificity of 88.3%. The study also suggested 
that pepsin, as a significant marker of reflux, is strongly correlated 
with lower esophageal sphincter (LES) motility in GERD patients (39).

In another study validating the diagnostic utility of the salivary 
pepsin test in China, the overall sensitivity and specificity for both 
genders were found to be  85 and 60%, respectively. The patients 

FIGURE 2

Introduction of diagnostic method with traditional test and pepsin detection in saliva. The traditional diagnosis consists of RDQ and GERDQ, 
endoscopy, 24H-pH monitoring, esophageal manometry and pathological biopsy. They all have some disadvantages including invasiveness, instability 
of results, and high cost. Detection of pepsin in saliva is expected to become widely used measurement by avoiding these problems while has high 
specificity and sensitivity.
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involved in the study had been pre-diagnosed using questionnaires 
and invasive endoscopic examinations. Beyond its high accuracy, this 
novel non-invasive test offers the advantage of providing rapid 
diagnostic results for GERD (41). In urgent situations, Peptest can also 
be used to differentiate GERD-related chest pain from acute coronary 
syndrome (ACS), which shares similar symptoms. In such cases, 
Peptest demonstrated a positive predictive rate of 90% and a negative 
predictive rate of 62%, helping to avoid unnecessary cardiological 
evaluations (42).

Additionally, it has been shown that the salivary pepsin test can 
help distinguish between extra-esophageal symptoms and respiratory 
disorders, as well as between typical GERD symptoms and reflux 
hypersensitivity. This reduces the risk of misdiagnosis and delayed 
treatment, thereby improving patient prognosis (38, 43).

More recently, a prospective study examining the relationship 
between salivary pepsin levels and endoscopically confirmed EE 
demonstrated that Peptest has excellent sensitivity and a high negative 
predictive value in diagnosing EE, a pathological condition associated 
with GERD (44).

3.3 Latest fluorescence detection of 
salivary in lab

While the studies mentioned above demonstrate the potential of 
salivary pepsin tests with significant sensitivity and specificity for 
GERD diagnosis, their therapeutic application remains a topic of 
debate. The variability in salivary pepsin concentrations among 
individuals makes the test less suitable for consistent clinical use (45). 
Therefore, it is crucial to promptly collect salivary samples with a 
predetermined threshold of salivary pepsin concentration to achieve 
a more accurate diagnosis of GERD (46).

Improving the accuracy of pepsin detection thresholds in saliva is 
necessary due to the complexity of the salivary environment, which 
contains a variety of interfering proteins and compounds. Fluorescence 
detection has gained widespread use because of its exceptional 
efficiency, convenience, speed, specificity, and strong resistance to 
interference. Several studies have shown that using fluorescence 
detection to measure salivary pepsin concentrations can be a fast and 
precise method for screening GERD (47–49).

3.3.1 Strong electrostatic interactions
Strong electrostatic interaction-based fluorescence detection is a 

method that relies on the interaction between pepsin and SYBR Green 
(SG) fluorophores (50). Pepsin has a low isoelectric point and carries 
a negative charge, making it prone to binding with positively charged 
SG fluorophores at neutral pH. Upon adsorption, the rotation of SG 
molecules is restricted, leading to a significant increase in fluorescence 
intensity. Based on this principle, researchers have developed a 
fluorescence capture device, integrated with Python programming, 
that enables the precise detection of pepsin in less than three minutes. 
This assay is highly specific, simple, and cost-effective, with a detection 
limit of 0.2 μg/mL (47).

3.3.2 Colorimetric dipstick assay
The pepsin-sensitive peptide (PSP) consists of two amino acids that 

are specifically cleaved by pepsin, along with eight amino acids that 

remain uncleaved (48). Fluorescein isothiocyanate (FITC) and biotin 
are used as reporter genes for dipstick colorimetric detection, with 
modifications made to the N-and C-terminals. The efficiency of pepsin 
degradation of PSP is assessed by analyzing the fluorescence of 
FITC. When PSP reacts with pepsin in the test tube, both remain 
colorless on the test line. Consequently, there is an inverse relationship 
between the pepsin concentration and the ratio of the color intensity of 
the test line to the control line (IT-line/IC-line). After conducting 
multiple experiments, researchers determined that cutting reactions on 
test paper at 42°C for 30 min provides optimal pepsin detection. 
Additionally, a propylene filter is used to pre-treat saliva in point-of-care 
testing (POCT). The dipstick method has demonstrated superior 
sensitivity compared to ELISA, which serves as a reference standard (48).

3.3.3 Bovine serum albumin and squaraine dye 
assembly fluorescent probe

Squaraine dye (SQ) is a fluorescent dye that exhibits strong 
absorption and fluorescence emission in the near-infrared range, and 
it has a distinct aggregation-caused quenching (ACQ) effect. Bovine 
serum albumin (BSA) interacts with SQ through hydrophobic and 
hydrogen bonding, forming BSA-SQ assemblies that generate 
hypofluorescence in a Gly-HCl solution (51). Pepsin hydrolyzes BSA, 
increasing the exposure of SQ in the system, which results in a 
reduction of the fluorescence emitted by the probe. The detection of 
the “switch on/off ” change in fluorescence signal enables fluorescence-
based analysis of pepsin. The optimal concentration of BSA for this 
assay is 15 μM, with the reaction conducted at a pH of 2.6 for 25 min, 
producing the most sensitive response. This probe exhibits exceptional 
sensitivity, selectivity, and a wide detection range, making it ideal for 
quantitative analysis of pepsin (52).

3.3.4 Supramolecular tandem assay
The supramolecular tandem assay (STA) can be  used as an 

indicator displacement assay (IDA) with a host-guest reporter pair for 
signaling, allowing it to monitor enzymatic activity (53). Recent 
reports describe the use of a calixarene-based STA strategy for 
determining pepsin concentration. In this method, lucigenin (LCG) 
and p-sulfonatocalix[4]arene (SC4A) are chosen as the supramolecular 
reporter pair, while insulin is used as the enzymatic substrate, as it is 
susceptible to hydrolysis by pepsin at pH 2.0. The SC4A-insulin 
complex interacts with LCG, triggering a fluorescence reaction. When 
insulin is degraded by pepsin, the fluorescence signal is inhibited (54).

Compared to conventional diagnostic procedures for GERD, the 
STA strategy offers several advantages, including convenience, 
non-invasiveness, comfort, and low cost. Additionally, pretreatment 
steps are unnecessary, and its point-of-care testing (POCT) potential 
increases commercialization prospects. However, the assay’s sensitivity 
limits its ability to detect low concentrations of pepsin in saliva.

3.3.5 Magnetic molecularly imprinted 
nanoparticle assay (MINA)

Fluorescent pepsin-specific molecularly imprinted polymer 
nanoparticles (nanoMIPs) are used in this assay. Magnetic pepsin 
nanoparticles (MPNs) are immobilized on magnetic microtiter 
plate inserts via fluorescent pepsin-specific nanoMIPs (55). After 
the imprinting process, the nanoparticles are modified with the 
commercially available fluorophore AlexaFluor® 647 NHS ester to 
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improve the sensitivity of the MINA. The competition between free 
and immobilized pepsin leads to fewer nanoMIPs binding to the 
magnetic insert, resulting in an increase in fluorescence intensity. 
This approach reduces both the time and cost of the assay while 
avoiding the use of antibodies, thereby eliminating the need for 
animal-derived reagents (56).

3.3.6 Lysozyme-stabilized au nanoclusters
Fluorescent metal nanoclusters offer several advantages, such as 

their small size, good biocompatibility, and excellent photostability, 
making them ideal for biological applications as fluorescent markers 
(57). Lysozyme reacts with AuCl4-at 37°C and pH 3.0 for 3 h, forming 
the AuNC@Lyz complex, which induces a fluorescent response. The 
specific enzymatic interaction between the luminescent nanoclusters 
(AuNCs@Lyz) and pepsin results in the degradation of lysozyme and 
a decrease in fluorescence intensity. This method enables the detection 
of pepsin with both high sensitivity and selectivity. It exhibits a linear 
pepsin detection range from 1 mg/mL to 100 mg/mL and has a 
detection limit of 0.256 mg/mL (58).

3.3.7 Electrochemical immunosensor
In recent decades, nanomaterials have emerged as promising 

substrates for developing innovative electrochemical biosensors due 
to their small size and efficient catalytic properties (59). Using a soft 
template synthesis method with β-naphthalenesulfonic acid (NSA), 
researchers fabricated polypyrrole nanocorals (PPNCs) on a screen-
printed carbon electrode (SPCE). Gold nanoparticles (GNPs) were 
then electrochemically deposited onto the PPNCs/SPCE composite, 
followed by immobilization of pepsin on the GNPs. At each stage of 
the immunosensor process, the interaction between the antibody and 
antigen was monitored using cyclic voltammetry (CV). Results 
showed that the electrochemical immunosensor displayed high 
sensitivity in detecting pepsin (60).

3.3.8 Carbon dots-protein interactions biosensor
According to a new study, scientists have discovered a highly 

specific and sensitive pepsin biosensor for detecting pepsin in 
saliva. As a new type of spherical carbon material with a size less 
than 10 nm, carbon point (CD) is simple to prepare, low cost, easy 
to modify, good hydrophilicity, and good fluorescence stability, and 
has been widely used in production as a new material in recent 
years (61–63). This method is based on the coupling principle of 
green-emitting ionic liquid-based carbon dots and whey proteins, 
which interact to form an aggregation structure of G-IL-CDs as a 
high-performance fluorescent probe (49). When the concentration 
of pepsin increased, the structure was destroyed and the 
fluorescence concentration was changed. The concentration of 
pepsin can be quickly, cheaply and non-invasively assessed by the 
detected fluorescence intensity (49).

4 Management of GERD

4.1 Proton pump inhibitor (PPI)

Proton pump inhibitors (PPI) are the first-line treatment for 
GERD and effectively reduce gastric acid secretion and the acidity of 
the stomach contents (46). Additionally, they inhibit the conversion 

of pepsinogen into pepsin, protecting the esophagus from damage 
similar to mucosal lesions caused by pepsin (64). However, drug use 
is accompanied by tolerability issues, including discontinuation for 
any reason, (ineffectiveness, adverse effects, and noncompliance). 
Numerous studies have shown that PPI use can lead to a range of side 
effects and long-term complications (65–67). CYP2C19 
polymorphisms can affect the metabolism rate of PPI, and patients 
with CYP2C19 mutations have poor response to PPI (68). In addition, 
PPI only reduces reflux acidity but not frequency and increases the 
concentration of pepsin and bile (46). Long-term use of PPI with high 
compliance may increase the risk of esophageal adenocarcinoma (69). 
Meanwhile, the alternation of pepsin concentration caused by PPI can 
produce pathological consequences. Experiments have found that 
patients exposed to acid suppression are more likely to present 
inflammatory cytokine secretion, barrier disruption and neutrophil 
migration in gastric juice compared with patients not taking PPI (70). 
To improve efficacy, new drugs such as potassium-competitive acid 
blockers (P-CABs) have been developed as alternatives to PPI.

4.2 Mucosal protective agents

Mucosal protectants have been regarded as another important 
means for the treatment of GERD and LPR in recent years, and their 
main effect is to control the occurrence of inflammation in the 
epithelial tissue and maintain the integrity of the mucosa.

As the most commonly used and studied mucosal protective 
agent in clinic, Alginates are polysaccharide polymers that form a 
viscous, low-density gel upon contact with gastric acid (71). To 
displace the postprandial acid pocket and inactivate pepsin at the 
gastroesophageal junction, alginates create “rafts” on the surface of 
the stomach contents, preventing pepsin from reaching the 
esophageal wall and thus reducing GERD incidence. At the same 
time, alginates adhere to the esophageal mucosa, shielding it from 
barrier disruption and cell detachment caused by prolonged 
exposure to high concentrations of pepsin and acid (72). 
Additionally, alginates have antioxidant and anti-inflammatory 
properties that help neutralize ROS and cytokines (18). They also 
protect epithelial integrity by inhibiting the expression of MMP 
produced by pepsin. GERD patients treated with alginates had 
fewer acid pockets compared to those treated with traditional 
antacids. Approximately 71% of these patients showed acid pockets 
positioned below the diaphragm, which is negatively correlated 
with acid reflux (72). At the same time, meta-analysis results of 
randomized controlled trials have shown that alginate preparation 
in GERD patients has better efficacy than PPIs or controls, and 
some known adverse reactions of PPI are avoided. It is necessary to 
continue to explore the feasibility of its replacement for PPI in 
future clinical trials (73).

In addition, we also summarized other macromolecular polymers 
used in GERD therapy in recent years. For example, clinical studies 
have found that bio-polymer of cashew gum and polysaccharide of 
Gracilaria caudata have the function of mucosal protective activity in 
human esophageal biopsy (74, 75). As a new material with anti-
microbial, anti-inflammatory, pro-healing pharmacological 
properties, Angico Gum (Anadenanthera colubrina) biopolymer was 
found to be  both anti-inflammatory and protect the integrity of 
esophageal mucosa in mouse models (76, 77).
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4.3 Protease inhibitors

Nagaham et al. previously reported the effectiveness of pepstatin 
A in reducing inflammation and fibrosis, as well as its role as a pepsin 
inhibitor in preventing esophageal ulcers in experimental models of 
esophagitis (6). Building on this, scientists have observed that the 
administration of aspartic protease inhibitors, particularly darunavir 
and fosamprenavir, in animal models of laryngeal reflux disease (LPR) 
has shown remarkable protective effects on the mucosal barrier and 
has inhibited laryngeal inflammation (78). Amprenavir, a derivative 
of fosamprenavir, functions as an HIV protease inhibitor and exhibits 
a protective effect against pepsin-induced esophageal epithelial 
barrier disruption and cancer-related changes by inhibiting pepsin at 
lower doses (79). This process helps preserve the integrity of the 
laryngeal epithelium and prevents pepsin-induced damage to cell 
adhesion molecules at pH 4 (79, 80). Additionally, amprenavir 
partially rescued pepsin-mediated E-cadherin cleavage and 
suppressed pepsin-induced upregulation of MMPs (79). Phase 
I clinical trials have tested fosamprenavir via dry powder inhalation 
(DPI) to reduce the risk of severe side effects associated with high 
doses and to improve treatment efficacy. This method allows for 
localized administration of modest doses in powder form. However, 
the optimal diameter of the inhaled powder particles has yet to 
be determined (81).

The clinical potential of pepsin inhibitors is limited by their poor 
solubility, particularly in water. Selecting appropriate solvents to 
increase the solubility of pepsin inhibitors without reducing their 
effectiveness is a significant challenge for researchers. Additionally, 
structural data suggest that inhibitor binding to pepsin is primarily 
stabilized by van der Waals interactions, making the design of effective 
inhibitors more difficult. As a result, further exploration of other 
aspartic protease inhibitors is needed to improve therapeutic 
outcomes. Studies that provide comprehensive pre-and post-treatment 
data, along with collaborative efforts, are essential to predict 
clinical success.

4.4 Prospective future

Though the above-mentioned studies on salivary pepsin test with 
high sensitivity and specificity have a promising future in diagnosing 
GERD, the clinical utility of peptests is still under debate need to 
be progressed. To eliminate biases, the collection of salivary samples 
at post-symptomatic time with a determined threshold of salivary 
pepsin concentration should be urgently utilized for a better diagnosis 
of the GERD (45). Additionally, larger-scaled studies should 
be conducted in order to alleviate the occasionality of studies within 
small groups. More importantly, the collaboration of data from both 
pre-and post-treatment are highly needed to predict reliable clinical 
outcomes and verify the peptests’ diagnostic efficiency (39). At the 
same time, the market is in urgent need of highly sensitive and specific 
measurement tools to improve the diagnostic efficiency of 
GERD. Although a variety of new fluorescent probes made of 
biomaterials have been discovered, there is still a long way to go before 
clinical application. In addition, oral soft tissue disorders and the 
detection of some specific oral microorganisms in dental erosions 
(DE) and periodontal diseases (PD) is also found to be useful for 

differential diagnosis of GERD (82, 83). Moreover, there are studies 
that reveals higher BMI is relevant to higher incidence of GERD, 
which can be  a supplementary information for accurate GERD 
diagnosis (84). Unfortunately, there are few studies on the association 
research, so we cannot draw objectively complete verified conclusions.

Except beyond the newly developed treatments, preserving the 
barrier function and maintaining the integrity of the esophageal 
epithelium are critical factors in defending against GERD. Studies 
have shown that mice possess stem cells in the basal layer of the 
esophagus that can differentiate into superbasal cells, aiding in the 
repair of the esophageal epithelium after injury (85). In future 
therapeutic approaches, it may be possible to stimulate the migration 
of squamous epithelium toward columnar epithelium to enhance 
resistance to gastric acid. Additionally, stem cell transplantation to 
reconstruct damaged areas of the esophagus is a promising treatment 
option. Pepsin, when acidified, can degrade key cell surface proteins, 
including those involved in cell–cell junctions. Therefore, another 
potential area of research is targeting adhesion molecules such as 
E-cadherin to promote their expression in the esophageal epithelium. 
This strategy could help counteract the acidifying effects of pepsin and 
preserve the structural and functional integrity of epithelial cells. The 
preventive effect of a 30% ethanol extract from the rhizome of 
Curcuma longa (CLR) on acute reflux esophagitis (ARE) caused by 
GERD has been attributed to its ability to enhance antioxidant factors, 
thereby reducing inflammation (86). Gel-type mucosal protective 
agents based on macromolecular materials will be  a promising 
therapeutic method.

According to the latest Lyon Consensus 2.0, endoscopy, wireless 
pH monitoring, catheter-based 24 h pH or pH impedance monitoring, 
and high-resolution esophageal manometry performed during the 
absence of anti-acid secretion therapy are considered to be highly 
effective methods for the diagnosis of GERD. The consensus also 
suggests that long-term wireless pH monitoring is the preferred 
diagnostic tool, and endoscopy performed 2 to 4 weeks after cessation 
of PPI testing can maximize diagnostic accuracy (32). Though salivary 
pepsin test cannot completely replace the above-mentioned diagnostic 
tests, it can be an effective supplementary tool for the diagnosis of 
GERD. According to the collected and summarized relevant 
information, despite its limitations, the salivary pepsin test is less 
invasive and more cost-effective compared to traditional methods. 
Future studies should focus on addressing its shortcomings and 
validating its clinical utility. Moreover, with the advancements in 
precision medicine and improving healthcare standards, there is an 
increasing demand for rapid, non-invasive, and side-effect-free 
management options for GERD. The use of targeted pepsin in both 
the diagnosis and treatment of GERD holds substantial clinical value 
and potential.
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