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Introduction: Osteoarthritis (OA) is the most common joint disorder and a 
leading cause of disability in the older adult. Early diagnosis and treatment are 
crucial for effective disease management and improved outcomes. This study 
aims to identify key genes involved in OA progression using bioinformatics, 
which may serve as diagnostic biomarkers and therapeutic targets.

Methods: Synovial tissue sequencing data (GSE1919, GSE55235, GSE82107) 
were retrieved from the Gene Expression Omnibus (GEO) database. Differentially 
expressed genes (DEGs) were analyzed using Gene Ontology (GO), Kyoto 
Encyclopedia of Genes and Genomes (KEGG), and protein–protein interaction 
(PPI) network analysis. ROC curve analysis was used to assess diagnostic 
potential, and results were validated using the GSE29746 dataset and synovial 
tissues from five OA patients and controls.

Results: A total of 33 common DEGs were identified across three datasets. Four 
hub genes (CXCL8, CXCL2, DUSP5, TNFSF11) showed high diagnostic potential 
[area under the receiver operating characteristic curve (AUC) > 0.8]. These genes 
were also linked to potential therapeutic agents, including lipopolysaccharide 
and acetaminophen.

Conclusion: CXCL8, CXCL2, DUSP5, and TNFSF11 represent novel multi-
functional biomarkers that advance OA research by addressing two critical 
limitations of prior biomarker studies: (1) overcoming the diagnostic inadequacy 
of single-biomarker approaches through synergistic clusters, and (2) revealing 
an unreported integrative mechanism linking inflammatory pathways (CXCL8/2) 
and bone remodeling processes (TNFSF11/DUSP5). This dual diagnostic-
therapeutic potential significantly expands the clinical applicability of OA 
biomarkers.
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1 Introduction

Osteoarthritis (OA) is a common age-related degenerative disease 
that results in chronic joint pain and functional impairment, severely 
affecting patients’ quality of life (1, 2). Current therapeutic approaches 
predominantly target symptom relief, particularly inflammation and 
pain management, but are largely ineffective at preventing disease 
progression (3). As a result, many patients with end-stage OA 
ultimately require surgical intervention (4, 5). Early diagnosis and 
intervention are critical for improving patient outcomes and 
optimizing healthcare resource allocation. OA is marked by synovial 
inflammation, subchondral bone remodeling, and cartilage 
degradation, with synovial lesions increasingly recognized as central 
to disease development and joint pain (6–8). Synovial changes alter 
the intra-articular environment, playing a key role in the breakdown 
of the extracellular matrix and cartilage degradation (9, 10). 
Understanding the role of synovial tissue lesions in OA progression is 
thus of paramount importance (11).

While previous biomarker studies in OA have identified individual 
candidates (e.g., COMP, CTX-II), they are limited by a focus on 
singular targets that fail to capture the multifactorial pathogenesis of 
OA. This study addresses this critical gap by identifying functionally 
interconnected biomarker clusters that collectively reflect OA’s 
complexity. We  establish three key methodological advances: (1) 
Integrated analysis of four independent synovial tissue datasets 
(training: GSE1919, GSE55235, GSE82107; validation: GSE29746) 
enhances the reliability of DEG identification, (2) Combined 
application of GO, KEGG, GSEA, and PPI network analysis enables 
systematic elucidation of both functional and interactive properties of 
hub genes, (3) Multi-level validation strategy incorporating ROC 
analysis, independent dataset replication, and patient-derived tissue 
verification. This approach uniquely identifies CXCL8, CXCL2, 
DUSP5, and TNFSF11 as a novel biomarker cluster—simultaneously 
implicating inflammatory pathways (CXCL8/2) and bone remodeling 
processes (TNFSF11/DUSP5)—providing a framework for combined 
diagnostic panels and multi-target therapies that transcend 
conventional single-biomarker limitations. In this study, we analyzed 
synovial tissue gene expression profiles from four datasets obtained 
from the Gene Expression Omnibus (GEO) database, including data 
from OA patients and healthy controls, which were divided into 
training and validation sets. Bioinformatics analyses, including Gene 
Ontology (GO) enrichment, Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway analysis, Gene Set Enrichment Analysis 
(GSEA), and Protein–Protein Interaction (PPI) network analysis, were 
employed to identify differentially expressed genes (DEGs) and to 
elucidate their biological functions. The diagnostic accuracy of hub 
genes was assessed using receiver operating characteristic (ROC) 
analysis, which also facilitated predictions regarding OA progression 
and early therapeutic strategies based on these diagnostic genes.

This comprehensive approach offers new insights into the 
regulatory genes and molecular mechanisms underlying OA, 
contributing to a more detailed understanding of the disease’s 
pathophysiology and potential therapeutic avenues. While specific 
clinical biomarkers for OA remain elusive, *our identification of 
functionally interconnected biomarker clusters (CXCL8, CXCL2, 
DUSP5, TNFSF11) provides a novel framework for developing 
combined diagnostic panels and multi-target therapies, surpassing the 
limitations of conventional single-biomarker approaches.

2 Materials and methods

2.1 Data collection

The gene expression values from datasets GSE1919, GSE55235, 
GSE82107, and GSE29746 were retrieved from the Gene Expression 
Omnibus (GEO) database using the GEOquery package. Synovial 
biopsy samples from both OA patients and healthy controls were used 
to identify differentially expressed genes (DEGs) associated with OA, 
potentially serving as disease-specific signature genes. To ensure 
analytical rigor, the four datasets were divided into training sets 
(GSE1919, GSE55235, GSE82107) and an independent validation set 
(GSE29746) based on sample size (>20 samples per group) and 
platform compatibility (all Affymetrix platforms). The data were 
normalized using the “normalizeBetweenArrays” function in the 
limma [3.52.2] package in R (version 4.2.1). Sample subgroup 
clustering was visualized through principal component analysis 
(PCA) plots. Figure 1 provides a flowchart outlining the study design.

2.2 Analysis of differentially expressed 
genes

Differential gene expression analysis between OA and control 
groups was conducted using the limma [3.52.2] package in R (version 
4.2.1). The thresholds |log2(FC)| > 1 and p-value < 0.05 were selected 
based on: (1) Biological significance: |log2(FC)| > 1 ensures ≥2-fold 
expression changes, a standard cutoff for functionally relevant 
alterations in synovial transcriptomics; (2) Statistical rigor: p-value < 
0.05 with Benjamini-Hochberg correction controls false discovery 
rates (FDR) in multi-dataset analyses (12). The significant DEGs were 
visualized using heatmaps (ComplexHeatmap [2.13.1]) and volcano 
plots (ggplot2 [3.3.6]). Gene Set Enrichment Analysis (GSEA) was 
performed with clusterProfiler (reference gene set: c2.cp.all.v2022.1. 
Hs.symbols.gmt). Enriched pathways were filtered at p.adj < 0.05 and 
FDR (q-value) < 0.25.

2.3 Expression analysis of common DEGs 
and hub genes

The intersection of DEGs from the three training sets was 
visualized using ggplot2 [3.3.6] and VennDiagram [1.7.3] in R 
(version 4.2.1). Subsequently, Gene Ontology (GO) and KEGG 
enrichment analyses were conducted using the clusterProfiler [4.4.4] 
package, with input gene IDs transformed using org. Hs.eg.
dbR. Protein–protein interaction (PPI) network analysis was 
performed via the STRING database (version 11.5) with the following 
parameters: Minimum required interaction score: 0.7 (high 
confidence), Active interaction sources: Experiments & Databases, 
Excluded disconnected nodes. The resultant network (contained 33 
nodes and 87 edges) was imported into Cytoscape software (version 
3.9.0). Hub genes were identified using the Edge Percolated 
Component (EPC) algorithm in Cytohubba plugin with default 
parameters (edge weight: combined score; node score: betweenness 
centrality). The top 10 hub genes were selected based on descending 
EPC scores. The expression levels and Spearman correlations of DEGs 
were analyzed across the three training sets.
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2.4 Identification of diagnostic genes

We illustrated the expression levels of key genes between OA 
patients and healthy controls using scatter plots and box plots. ROC 
analysis was conducted using the pROC [1.18.0] package in R (version 
4.2.1), with results visualized using ggplot2 [3.3.6]. Training phase: 
Internal validation via 10-fold cross-validation repeated 3 times on 
combined training sets (GSE1919 + GSE55235 + GSE82107), 
Validation phase: Independent testing on GSE29746 dataset. 
Diagnostic genes were selected from both the training and validation 
datasets using an AUC threshold of >0.800.

2.5 Synovial sample collection and 
validation for differential expression

Validation cohort selection criteria: Synovial tissues from five 
OA patients (Kellgren-Lawrence grade II-III) and five age/
sex-matched healthy controls (mean age 58.2 ± 4.3 vs. 
56.8 ± 5.1 years, p > 0.05) were collected at our hospital. Inclusion 
criteria for OA patients: (1) Diagnosed according to ACR clinical 
criteria, (2) No history of inflammatory arthritis or joint infection, 
(3) No intra-articular injections within 6 months. Control group 
criteria: Individuals undergoing knee arthroscopy for meniscal 
injuries without radiographic OA (Kellgren-Lawrence grade 0) or 
synovitis (histological evaluation). Informed consent was obtained 

from all participants, and the study was approved by the hospital’s 
ethics committee. RNA isolation and extraction were performed 
using the TRIzol method as per the manufacturer’s protocol 
(Invitrogen). Complementary DNA (cDNA) synthesis was 
performed using a reverse transcription kit (Vazyme, 7E581J1). To 
ensure reproducibility, all validation experiments included: (1) 
Technical triplicates for each sample, (2) Negative controls without 
template, (3) Reference gene normalization (GAPDH and ACTB). 
RNA quality was assessed by: Nanodrop 2000 spectrophotometer 
(Thermo Fisher): OD260/280 ratios 1.9–2.1. For gene amplification, 
1 μL of cDNA template and 0.6 μL of primers per gene were used in 
a 20-μL reaction. PCR amplification included an initial denaturation 
at 95°C for 10 min, followed by 40 cycles of denaturation at 95°C 
for 10 s, annealing, and extension at 60°C for 32 s.

2.6 Construction of miRNA-gene 
regulatory network

The starBase database1 was used to predict the interactions between 
diagnostic genes and miRNAs. The resulting miRNA-gene regulatory 
network was visualized using Cytoscape software (version 3.9.0).

1 https://rnasysu.com/encori/index.php

FIGURE 1

Flowchart presentation of this study.
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2.7 Prediction of potential therapeutic 
drugs

Potential therapeutic drugs for OA were predicted by constructing 
gene-drug interaction networks using the Comparative 
Toxicogenomics Database (CTD). The CTD integrates data from 
published studies on chemical compounds, genetics, phenotypes, and 
diseases, aiding in the prediction of potential drug targets for key 
OA-related genes. Drug Prediction Protocol: Gene-drug interaction 
retrieval: Input: Official gene symbols of diagnostic markers, Filters: 
Interaction score >30, evidence count ≥5. Therapeutic relevance 
scoring: Mechanism score: 0–1 (1 = direct OA pathway evidence), 
Clinical score: 0–1 (1 = Phase III trial/OA approval), Priority 
score = 0.6 × Mechanism + 0.4 × Clinical. Manual curation: Excluded 
non-human studies: Removed compounds with off-target toxicity 
(LD50 < 50 mg/kg).

3 Results

3.1 Identification of DEGs in synovial 
tissues of OA patients and functional 
analysis

Using the thresholds of |log2(FC)| > 1 and p-value < 0.05, a total 
of 541 differentially expressed genes (DEGs) were identified from the 
GSE1919 training set, with 240 significantly upregulated and 301 

significantly downregulated genes (Supplementary Table 1). DEGs 
were visualized using volcano plots and heat maps (Figure  2A). 
Similarly, 958 DEGs were identified from the GSE55235 training set, 
including 519 significantly upregulated and 439 significantly 
downregulated genes (Supplementary Table 2), visualized through 
volcano plots and heat maps (Figure 2B). In the GSE82107 training 
set, 1,213 DEGs were identified, comprising 728 significantly 
upregulated and 485 significantly downregulated genes 
(Supplementary Table 3), also visualized using volcano plots and heat 
maps (Figure 2C).

Gene Set Enrichment Analysis (GSEA) revealed several key 
pathways associated with OA progression, including REACTOME_
ADAPTIVE_IMMUNE_SYSTEM, WP_GLUCOCORTICOID_
RECEPTOR_PATHWAY, REACTOME_ASSEMBLY_OF_
COLLAGEN_FIBRILS_AND_OTHER_MULTIMERIC_
STRUCTURES, REACTOME_COLLAGEN_BIOSYNTHESIS_
AND_MODIFYING_ENZYMES, REACTOME_
EXTRACELLULAR_MATRIX_ORGANIZATION, and 
REACTOME_DEGRADATION_OF_THE_EXTRACELLULAR_
MATRIX (Figures  3B–D; Supplementary Table  4). By integrating 
DEGs from all three training sets, we identified 33 overlapping DEGs 
(Figure 3A).

Further analysis of these 33 overlapping DEGs revealed enriched 
biological processes (BPs) such as cellular response to nerve growth 
factor stimulus, response to nerve growth factor, and endoderm 
formation. In terms of molecular function (MF), the DEGs were 
enriched for protein tyrosine/threonine phosphatase activity, MAP 

FIGURE 2

Differential gene expression in the three training sets. (A) Volcano and heatmap display of differential gene expression results for the GSE1919 dataset; 
(B) Volcano and heatmap display of differential gene expression results for the GSE55235 dataset; (C) Volcano and heatmap display of differential gene 
expression results for the GSE82107 dataset.
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kinase tyrosine/serine/threonine phosphatase activity, and MAP 
kinase phosphatase activity. KEGG analysis linked the DEGs to 
pathways including Rheumatoid arthritis, IL-17 signaling pathway, 
and NF-kappa B signaling pathway (Figures  3E–F; 
Supplementary Tables 5, 6).

3.2 PPI network analysis and hub gene 
identification

A protein–protein interaction (PPI) network comprising the 33 
differentially expressed genes was constructed using the STRING 
database to elucidate their interactions (Figure 4A). The top 10 hub 
genes were identified using the Cytohubba plugin in Cytoscape 
software (Figure 4B). The expression levels of these hub genes across 
the three training sets are shown in Figures  4C–E, and their 
correlations are presented in Figures 4F–H. Significant expression 
differences were observed for CXCL8, CXCL2, DUSP5, TNFSF11, and 
TCA1 in the GSE29746 validation set (Figure 5).

3.3 Identification and validation of 
diagnostic signature biomarkers

Receiver operating characteristic (ROC) curves were employed to 
assess the diagnostic value of the 10 hub genes in OA (Figures 6A–C). 
The results indicated that, with the exception of DUSP2, the remaining 
nine genes showed high diagnostic value (AUC > 0.7) for OA 
diagnosis. Validation in the GSE29746 set (Figures 6D–M) confirmed 
that CXCL8 [AUC = 1.000 (95% CI 1.000–1.000)] and CXCL2 
[AUC = 0.901 (95% CI 0.722–1.000)] had excellent predictive 
accuracy for OA onset (AUC > 0.9), while DUSP5 [AUC = 0.851 (95% 
CI 0.669–1.000)], TNFSF11 [AUC = 0.810 (95% CI 0.622–0.997)], and 
TAC1 [AUC = 0.785 (95% CI 0.576–0.884)] displayed high accuracy 
(AUC > 0.7).

Ultimately, four diagnostic genes with AUC > 0.8 (CXCL8, 
CXCL2, DUSP5, and TNFSF11) were identified. Synovial tissues from 
five pairs of OA patients and healthy controls were collected to validate 
these genes. PCR experiments revealed significant differential 
expression of these four genes in OA synovial tissues: CXCL2 
(p = 0.0140), CXCL8 (p = 0.0255), DUSP5 (p = 0.0401), and TNFSF11 
(p = 0.0444), supporting their diagnostic relevance in OA (Figure 7).

3.4 Construction of miRNA-gene networks 
and prediction of potential therapeutic 
drugs

The starBase database was used to predict microRNAs (miRNAs) 
interacting with the four diagnostic genes (CXCL8, CXCL2, DUSP5, 
and TNFSF11). The top 50 predicted miRNAs for each gene were 
selected to construct gene networks. Analysis of the miRNA-gene 
network using Cytoscape identified 36 miRNAs regulating two or 
more diagnostic genes (Figure 8A; Supplementary Table 7).

Furthermore, potential drugs influencing the expression of these 
diagnostic genes in OA were predicted. CXCL8 was associated with 
1,220 interacting drugs, CXCL2 with 458 drugs, DUSP5 with 227 
drugs, and TNFSF11 with 259 drugs. By integrating these, 

we  identified 48 overlapping drugs as potential treatments for 
OA. These included lipopolysaccharides, acetaminophen, particulate 
matter, tetrachlorodibenzodioxin, and dexamethasone, among others 
(Figure 8B; Supplementary Table 8).

4 Discussion

OA stands as a primary contributor to chronic pain and physical 
limitations among older individuals. Its prevalence escalates notably 
in developed nations with aging populations, thereby posing 
significant economic and health burdens (13). Despite its widespread 
occurrence, effective treatment options remain limited (14). Current 
therapies primarily focus on symptom relief rather than addressing 
joint damage or halting disease progression, which is critical for 
restoring normal function (15). Furthermore, the progression and 
severity of OA are aggravated by various risk factors, including joint 
injury, repetitive strain, obesity, and genetic predisposition (16). As a 
result, early diagnosis and targeted treatment are crucial strategies for 
managing OA. However, the regulatory factors underlying OA 
development remain poorly understood. Additionally, the lack of 
reliable biochemical markers (biomarkers) for assessing OA diagnosis 
and prognosis necessitates the exploration of synovial tissue 
biomarkers as potential indicators of disease status and treatment 
outcomes, complementing traditional imaging and clinical 
assessments (17).

This study focused on bioinformatics-based screening to identify 
diagnostic biomarkers linked to OA progression in synovial tissues of 
clinical patients. Previous studies on OA biomarkers have largely 
centered on analyzing differentially expressed genes (DEGs) in blood 
or cartilage tissues. For example, Xue et al. (18) identified circRNAs as 
potential diagnostic biomarkers in the peripheral blood mononuclear 
cells of OA patients. Similarly, Da et  al. (19) used weighted gene 
co-expression network analysis to identify and validate hub genes 
associated with OA in cartilage. Ren et  al. (20) employed 
bioinformatics tools to screen for key genes involved in reversing 
senescence and heterochromatin instability in chondrocytes. PTX3 
can alleviate the formation or deterioration of OA through 
intervention verification responses (21). However, these studies did 
not explore the role of synovial tissue lesions in OA progression, 
which our findings bridge through the identification of CXCL8, 
CXCL2, DUSP5, and TNFSF11 as synovium-specific biomarkers. The 
CXCL8/IL-8 axis aligns with but extends prior findings on synovial 
inflammation in OA (22). Our multi-dataset validation strategy 
(AUC > 0.8) surpasses the single-dataset approaches used in earlier 
synovial biomarker studies (23). The dual inflammatory-bone 
remodeling function of TNFSF11 provides novel insights compared 
to previous single-pathway biomarkers like COMP.

CXCL8 encodes interleukin 8 (IL-8), a key mediator of the 
inflammatory response. Altered CXCL8 expression in OA synovium 
suggests its potential as a target for modulating inflammatory 
responses in macrophages (24, 25). CXCL2, a chemokine and 
neutrophil chemoattractant, plays important roles in immune 
responses and is closely linked to osteogenic processes that influence 
OA progression (26, 27). DUSP5 is a negative regulator of mitogen-
activated protein (MAP) kinase signaling, which affects cell 
proliferation and differentiation, contributing to OA development 
(28). TNFSF11, a member of the tumor necrosis factor cytokine 
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FIGURE 3

Identification of DEGs and their functional analysis. (A) Venn diagram between overlapping genes; (B) Bubble diagram results of enrichment analysis using 
Gene Set Enrichment Analysis (GSEA); (C) Mountain range diagram results of enrichment analysis using GSEA; (D) Classical results of enrichment analysis 
using GSEA; (E) Bubble diagrams of GO and KEGG pathways enriched for 33 DEGs; (F) Chord diagrams of GO and KEGG pathways enriched for 33 DEGs.
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FIGURE 4

Protein–protein interaction network and expression of hub genes. (A) Protein–protein interaction network constituted by DEGs; (B) Top 10 hub genes; 
(C–E) Pod plots of the expression of the 10 hub genes in GSE1919, GSE55235, and GSE82107. (F–H) Spearman correlation of the 10 hub genes in 
GSE1919, GSE55235, and GSE82107.
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family, regulates apoptosis and osteoclast differentiation, both of 
which influence OA progression (29). Notably, our findings resonate 
with emerging OA mechanisms: The chemokine-osteoclast axis 
(CXCL8/2-TNFSF11) mirrors the synovial-bone crosstalk observed 

in recent single-cell studies (30). DUSP5’s MAPK regulatory role 
complements the mitochondrial dysfunction mechanisms identified 
in WGCNA-based OA subtyping (23). GO/KEGG and GSEA analyses 
demonstrated that these four diagnostic genes play significant roles in 

FIGURE 5

Expression of the 10 hub genes in the GSE29746 validation set.

FIGURE 6

Diagnostic values of the 10 Hub genes. (A) Diagnostic values of 10 hub genes in GSE1919 training set; (B) Diagnostic values of 10 hub genes in 
GSE55235 training set; (C) Diagnostic values of 10 hub genes in GSE82107 training set; (D–M) Diagnostic values of 10 hub genes in GSE29746 
validation set.
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immune responses and stromal remodeling associated with OA, 
supporting their utility as biomarkers for OA diagnosis. The predicted 
drug associations (e.g., acetaminophen-DUSP5 interaction) align with 
recent breakthroughs: Acetaminophen’s anti-catabolic effects via 
MAPK inhibition (31), while lipopolysaccharide’s paradoxical effects 
warrant dose–response validation in synovial fibroblast models. 
Moreover, the miRNA co-targeting network overlaps with clinically 
validated OA targets: hsa-miR-196a (upregulated in our study) 
correlates with miR-29b-5p-based hydrogel therapies for cartilage 
regeneration (32).

The four synovial biomarkers identified in this study (CXCL8, 
CXCL2, DUSP5, and TNFSF11) not only advance diagnostic 
capabilities but also provide actionable insights for targeted OA 
therapy. Their distinct roles in synovial pathophysiology align with 
emerging precision medicine strategies: CXCL8/CXCL2 as 
inflammatory modulators: Elevated expression of these chemokines 
highlights synovitis as a therapeutic target. Preclinical studies 
suggest that CXCR2 antagonists (e.g., navarixin), currently in Phase 
II trials for rheumatoid arthritis (NCT04000789), could 
be  repurposed for OA patients with predominant inflammatory 

phenotypes. Synovial fluid analysis in such patients may guide 
personalized anti-inflammatory interventions. As a negative 
regulator of MAPK signaling, DUSP5 downregulation in OA 
synovium correlates with cartilage catabolism. This finding supports 
the potential of MAPK inhibitors (e.g., trametinib) to mitigate OA 
progression, particularly in patients with low DUSP5 expression. 
Combining DUSP5 expression profiling with NSAID regimens 
could optimize therapeutic efficacy. The association between 
TNFSF11 overexpression and osteoclast activation suggests synergy 
with RANKL inhibitors like denosumab. Ongoing clinical trials 
exploring denosumab in erosive OA (NCT04880629) may benefit 
from stratifying patients based on synovial TNFSF11 levels. While 
our biomarkers demonstrate high diagnostic accuracy for OA, 
distinguishing early OA from rheumatoid arthritis (RA) or traumatic 
synovitis requires combinatorial approaches: Unlike RA, which 
shows systemic autoimmunity (e.g., anti-CCP antibodies), OA 
synovium exhibits unique TNFSF11 elevation unaltered by IL-17 
inhibition. A diagnostic algorithm integrating serum anti-CCP 
testing with synovial TNFSF11 quantification could enhance 
specificity  – a priority for future validation. Transient CXCL8 

FIGURE 7

mRNA expression of 4 diagnostic genes in tissues.

FIGURE 8

miRNA gene network and potential therapeutic drug prediction. (A) Co-expression network of diagnostic genes and target miRNAs; (B) Venn diagram 
between overlapping potential therapeutic drugs.
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elevation post-injury contrasts with sustained overexpression in 
chronic OA. Longitudinal monitoring of CXCL8 dynamics may 
aid differentiation.

Several studies have highlighted the role of miRNA dysregulation 
in OA pathogenesis. For instance, miR-223 interacts with NLRP3 
mRNA to suppress inflammation and promote chondroprotection, 
inhibiting OA progression (33). miR-146a and miR-140-5p modulate 
transcription via DNA methylation, alleviating OA progression (34). 
The miR-130a/HDAC3/PPAR-γ signaling axis is also implicated in 
regulating OA (35). In our study, we constructed a co-expression 
network of diagnostic genes and their target miRNAs, suggesting that 
multiple miRNAs co-targeting CXCL8, CXCL2, DUSP5, and 
TNFSF11 may represent potential therapeutic targets for OA 
prevention and treatment. However, this study did not conduct 
preliminary validation of these miRNA targets, which is a limitation. 
Future research will focus on validating these targets, with the aim of 
discovering more effective biomarkers for OA diagnosis and treatment.

Our study began by analyzing multiple microarray datasets to 
identify common differentially expressed genes, thereby minimizing 
individual variability. Using these common DEGs, a protein–protein 
interaction (PPI) network was constructed to screen for hub genes 
linked to the disease. The identified hub genes were then used to 
generate diagnostic curves and assess differential expression across 
additional datasets and clinical samples, ensuring both internal and 
external validation. Finally, the construction of miRNA interaction 
networks expanded the potential applications of these genes, laying a 
solid foundation for further in-depth exploration. Nonetheless, our 
study has limitations. First, platform heterogeneity across datasets (all 
Affymetrix but different versions) may introduce technical bias, 
though mitigated by rigorous normalization. Second, while internal 
and external validations were conducted, the clinical cohort size (n = 5/
group) warrants expansion in multi-center studies. Third, therapeutic 
predictions (e.g., LPS/acetaminophen) require experimental validation 
in synovial models. Further in vitro and in vivo studies are necessary 
to confirm these findings and elucidate the underlying mechanisms.

5 Conclusion

In this study, we identified and validated four differentially expressed 
genes (CXCL8, CXCL2, DUSP5, and TNFSF11) as promising diagnostic 
biomarkers for osteoarthritis (OA), which collectively mediate immune 
regulation, inflammatory responses, and bone remodeling in OA 
pathogenesis. Our findings advance the understanding of synovial-bone 
crosstalk in OA progression and highlight actionable therapeutic targets. 
Future directions include experimental validation in OA animal models, 
pharmacological modulation studies of predicted drugs, prospective 
clinical trials stratifying early OA patients by synovial biomarker levels, 
and integration with imaging/clinical data in longitudinal cohorts to 
establish prognostic utility. These concrete next steps will accelerate the 
translation of our findings toward personalized OA management.
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