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In recent decades, medical short texts, such as medical conversations and

online medical inquiries, have garnered significant attention and research.

The advances in the medical short text have profound implications in

practical applications, particularly for classifying in-patient discharge summaries

and medical text reports, leading to improved understandability for medical

professionals. However, the challenges posed by the short length, professional

medical vocabulary, complex medical measures, and feature sparsity are further

magnified in medical short text classification compared to general domains.

This paper introduces a novel soft prompt-tuning method designed specifically

for medical short text classification. Inspired by the recent success of prompt-

tuning, which has been extensively explored to enhance semantic modeling

in various natural language processing tasks with the appearance of GPT-3,

our method incorporates an automatic template generation method to address

the issues related to short length and feature sparsity. Additionally, we propose

two di�erent strategies to expand the label word space, e�ectively handling

the challenges associated with specialized medical vocabulary and complex

medical measures in medical short texts. The experimental results demonstrate

the e�ectiveness of our method and its potential as a significant advancement

in medical short text classification. By addressing issues related to short text

length, feature sparsity, and specializedmedical terminology, it o�ers a promising

advancement towardmore accurate and interpretablemedical text classification.
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medical short text, short text classification, prompt-tuning, soft prompt, NLP

1 Introduction

In the past few years, short texts have been posted at unprecedented rates, which

emphasizes the significance of learning tasks and also highlights the challenges stemming

from the vast feature space (1). Different from traditional documents, short texts present

considerable obstacles to the effectiveness of mainstream text classification solutions due

to their short length, feature sparsity, and high ambiguity. The advances in short text

classification have significant implications in practical applications including medical-

aided diagnosis (2), thereby necessitating an urgent need to comprehend and address the

characteristics of short texts.

With the rapid development of the Internet, online medical inquiries have garnered

significant attention in the real world. These inquiries are presented in narrative formats

that retain the characteristics of ambiguity and informality (3). Within these medical short

texts, the presence of professional medical vocabulary and complex medical measures

varies depending on the responses provided to different users. Moreover, the use of

abbreviations and diverse forms of expression complicates the discovery of underlying

patterns using conventional short text methods (4). Additionally, due to the requirements
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on professional expert knowledge, it is time-consuming and labor-

intensive to collect enough labeled data for medical short text,

which remains prohibitively expensive and impractical to learn in

existing deep learning methods (5).

In recent decades, the research paradigm of medical

short text classification has transformed, shifting from early

feature engineering-based methods to the adoption of neural

networks, which have been extensively applied and demonstrated

superiority in this task. Prominent deep neural networks, such

as Convolutional Neural Network (CNN) (6), Recurrent Neural

Network (RNN) (7), Long Short-Term Memory (LSTM) (8),

and autoencoder (9), have exhibited impressive performance in

learning more abstract and higher-level representations for medical

short texts. For instance, (10) proposed the optimized TextCNN

model for Chinese medicine text classification, which yielded

highly promising results. Recently, Pre-trained Language Models

(PLMs) such as BERT (11), RoBERTa (12), T5 (13), and GPT (14)

have emerged as powerful tools for language understanding and

generation. To leverage the rich knowledge embedded in PLMs for

various natural language processing (NLP) tasks, the fine-tuning

method, coupled with an additional classifier, has been widely

employed and achieved remarkable performance across various

downstream tasks, including medical short text classification (15).

More recently, inspired by the success of GPT-3, prompt-

tuning has gained extensive attention to enhance semantic

modeling in various Natural Language Processing (NLP) tasks (16,

17). In prompt-tuning, hand-crafted or auto-generated templates

are employed to formalize downstream NLP tasks into cloze-style

filling tasks. For instance, in the context of medical short text

classification, given the input sentence x as “Which department

of the hospital should be registered for epilepsy?,” prompt-tuning

with a hand-crafted template wraps it into “A problem for [MASK]:

x.” The probability of different topic words, such as “Neurology”

or “Endocrinology,” is then calculated to fill the “[MASK]” token.

Remarkably, without the need for fine-tuning on large volumes of

labeled data for the downstream task, prompt-tuning has exhibited

promising performance, even in few-shot or zero-shot learning

scenarios. Despite the effectiveness of prompt-tuning methods

with hand-crafted templates in various NLP downstream tasks,

their construction remains time-consuming and labor-intensive,

requiring substantial human effort. Moreover, poorly designed

templates can degrade model performance. More recently, soft

prompt-tuning methods have been explored (18). Unlike hand-

crafted templates, soft prompts are continuous representations,

typically encoded as vectors, that can be optimized during training

to achieve better performance.

In this paper, we present a novel method for Medical short

text classification via Soft Prompt-tuning (short for MSP). Our

method aims to address the challenges posed by professional

medical vocabulary and complex medical measures in medical

short texts. Specifically, we construct the mapping from the

expanded label words (e.g., breast, sterility, obstetrics, Cervical

diseases, gynecologist, etc.) to their corresponding categories (e.g.,

gynecology and obstetrics) in prompt-tuning. This mapping,

referred to as “verbalizer,” has been proven effective in reducing

the discrepancy between the text and label spaces (19). In our

method, we propose two strategies, i.e., Concepts Retrieval and

Context Information, to construct the verbalizer, each capturing

different characteristics of the expanded words. The integration of

these two strategies yields the final verbalizer, which significantly

enhances the accuracy of classification. Moreover, to accommodate

the requirements for large-scale labeled training datasets, our MSP

method is grounded in soft prompt-tuning. Soft prompt-tuning

incorporates the vector of the input sentence, the mask, and the

soft tokens, enabling the model to achieve robust performance even

in few-shot scenarios. The experimental results on online medical

inquiries demonstrated the effectiveness of our MSP method

compared to other state-of-the-art methods for medical short text

classification. The contributions of our method can be summarized

as follows:

• Our MSP is a novel medical short text classification method

based on prompt-tuning. Compared with existing methods,

MSP can achieve better performance even in few-shot

scenarios.

• The verbalizer is constructed for the professional medical

field, and two strategies are employed to capture different

characteristics of the expanded words. The integration of these

strategies is utilized as the final verbalizer.

• The experimental results on real-world online medical

inquiries demonstrated that our MSP obtains new state-of-

the-art results compared to other deep neural networks and

fine-tuned PLMs methods.

2 Related work

In this section, we review the related work onmedical short text

classification and prompt-tuning in detail, respectively.

2.1 Medical short text classification

The medical short text has garnered significant attention and

research in recent decades, and the advancements in this area

have had far-reaching implications in various practical applications,

such as medical-aided diagnosis (20) and online medical inquiries

(21). Specifically, medical short text classification focuses on

predicting accurate labels for texts with limited length. For instance,

in the context of online medical inquiries, both the problem and its

corresponding answer usually consist of fewer than 20 words (22).

In recent years, deep neural networks have demonstrated

remarkable performance in medical short text classification tasks,

attributed to their ability to learn abstract and higher-level

feature representations. For instance, Kim proposed the TextCNN

model, which achieved substantial performance in sentence-

level classification tasks by training a CNN with a single layer

on top of pre-trained word vectors (23). The model kept the

word vectors static while tuning and learning the parameters

of only one CNN layer. In the domain of medical short text

classification, Li et al. introduced the convolutional layer to extract

features from sentences and utilized bidirectional gated recurrent

unit (BIGRU) to learn both preceding and succeeding sentence
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features. Additionally, an attention mechanism was employed to

obtain sentence representations with important word weights (5).

BIGRU and the attention mechanism were also leveraged for

document representation learning, serving as both encoding and

decoding layers. (24) proposed the incorporation of word-cluster

embedding into deep neural networks to address the problem of

semantic feature scarcity and ambiguity. The method involved

hierarchical agglomerative clustering to cluster word embeddings

in the semantic space. The resulting cluster center vectors served as

potential theme information, and CNN and LSTM were employed

for classification using the cluster-based features. In the context of

online medical inquiries, (3) proposed a three-stage hybrid system

for classification. The system combined a regular expression-based

classifier with attentive bidirectional Long Short-Term Memory

(ABLSTM) to achieve high classification results. ABLSTM was

introduced to extract feature words of high quality, and the word

weights were then utilized in constructing regular expression-

based text classifiers. Furthermore, (2) proposed a method for

Chinese electronic medical record classification based on an

improved capsule network. In this approach, Chinese medical short

texts were initially processed using an LSTM network, followed

by the utilization of the Capsule network to achieve improved

performance.

Recently, fine-tuned Pre-trained Language Models (PLMs),

including BERT (11), ALBERT (25), RoBERTa (12), T5 (13), and

GPT (14), have emerged as powerful tools for leveraging rich

knowledge in NLP downstream tasks. Through fine-tuning PLMs

with specific downstream tasks, latent information can be learned,

leading to tremendous success in various NLP tasks, including

medical short text classification. Given the exceptional performance

of fine-tuned PLMmethods, it is widely acknowledged that training

new models from scratch can be avoided. For instance, (26)

proposed a Knowledge Graph enhanced multiType text BERT

method for medical text classification. This approach integrates

the medical knowledge graph to extract standard entity names

from medical text. Initially, the same BERT-Encoder is employed

to process multi-type text, and then multiple encodings are

concatenated to form the representation matrix. Different types

of pooling layers are explored for information summation. (27)

proposed an optimal deep learning model based on BERT and

hyperparameter selection for medical text classification. The BERT

model is used to learn the feature representations of medical texts,

followed by the utilization of the Particle Swarm Optimization

(PSO) algorithm for selecting hyperparameters for the deep

learning classifier. (4) proposed an ALBERT-based fusion Kalman-

filter model to address word-level and sentence-level noises for

medical short texts. They first employ a sliding window scheme

to handle the coupling relationships of large sequences and then

use the fusion block to integrate features of multiple segment

sequences. The ALBERT architecture with four iterative encoder

layers is leveraged as PLMs for word embedding learning. (28)

proposed a Traditional Chinese Medicine (TCM) text classification

method based on RoBERTa. They fine-tuned the RoBERTa model

with TCM medical records data and then tokenized the classified

sample data using the Tokenizer based on the pre-trained RoBERTa

model. Wang et al. propose the use of a discriminative pre-

training language model called ERNIE-Health for classifying

medical texts. Specifically, the authors attempt prompt tuning

based on a multi-token selection task, wrapping the original text in

a template into a new sequence where category labels are replaced

with [UNK] tokens. The model is then trained to compute the

probability distribution of candidate categories. Adapting prompt-

tuning methods designed primarily for English to Chinese text

classification tasks presents challenges (29). Li et al. introduce

Knowledge Enhanced Multi-Token Prompt Tuning (KMPT). The

implementation involves initially using multiple tokens as label

words with complete Chinese semantics. Subsequently, external

knowledge is utilized to expand the set of label words, improving

coverage and reducing bias (30).

2.2 Prompt-tuning

Despite the success of fine-tuning PLMs, recent studies have

identified a critical challenge: the significant gap in objective forms

between pre-training and fine-tuning, which limits the exploitation

of knowledge in PLMs. To tackle this issue, prompt-tuning has

emerged with inspiration from GPT-3 for improving semantic

modeling across a wide range of NLP tasks (31). Prompt-tuning

involves inserting input statements into natural language templates

and adjusting the mask model to transform tasks into cloze-style

filling tasks (17). The prompt-tuning has been widely explored and

applied with tremendous success in various downstreamNLP tasks,

including information extraction (32), question answering (33),

text generation (34), and text classification (35).

The primary components of prompt-tuning include a template

and a set of label words. The template serves as a background

description of the current task, while the label words consist of

the high-probability vocabulary predicted by PLMs in the given

context. Initially, hand-crafted templates, which involve discrete

prompts manually specified and kept unchanged during training,

were proposed and applied. For instance, (36) encoded prior

knowledge of a classification task into rules and decomposed

it into sub-tasks, combining human-picked sub-prompts for

the final classification tasks. (37) introduced learning discrete

prompts through continuous optimization, which achieved notable

performance in both image generation and language classification

tasks. In the context of relation extraction, (32) incorporated

knowledge among relation labels into prompt-tuning. The method

involved injecting learnable virtual answer words into semantic

knowledge to represent relation labels and then optimizing the

representations with structured constraints rather than relying on

entity-type annotations.

Although hand-crafted templates have shown substantial

success in various NLP tasks, their construction is often time-

consuming and labor-intensive, and inappropriate templates

may lead to substandard model performance. To address

this, more recently, automatic-generated template methods, i.e.,

soft templates, have been explored (18, 38). In contrast to

hard templates, soft templates are continuous prompts, usually

presented as vectors, that can be continually optimized during

training to yield optimal results. For example, (39) proposed to

learn a mixture of soft prompts to extract relational knowledge
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from language models, which has shown that continuous vectors

can achieve impressive performance compared to “hard prompts.”

(40) introduced an automatic prompt generation method that

achieved promising results in Natural Language Understanding

tasks by identifying the most suitable template for downstream

tasks and incorporating learnable vectors into the template

while continually optimizing it during training. Additionally, (41)

proposed a transfer learning method based on soft prompts, where

a prompt is first trained on one or more source tasks, and then

the resulting prompt is utilized to initialize the prompt for the

downstream tasks.

In addition to the template used in prompt-tuning, the

mapping from label words to categories, known as the verbalizer,

has been demonstrated to effectively address the discrepancy

between text and label space (19). There have been efforts to create

hand-collected verbalizers for various NLP downstream tasks. For

instance, (42) proposed to use pairs of cloze question patterns and

manually designed verbalizers to leverage the knowledge contained

within PLMs for downstream tasks. However, manually designed

verbalizers are heavily influenced by prior knowledge, leading to

potential omissions and biases in knowledge expansion. Automatic

verbalizer construction methods have been developed to mitigate

these issues (43–45). For example, (35) introduced a knowledgeable

expansion prompt-learning method for short text classification.

This approach incorporates both the short text itself and external

knowledge from open Knowledge Bases, such as Probase, to extend

the label words space. Several different strategies are employed

for automatic verbalizer construction. (46) proposed a method

to elicit knowledge from PLMs for constructing verbalizers. In

this method, the label information is encoded as prototypical

embeddings in the latent feature space, and representations of

masked words and prototypical embeddings are calculated for

the classification tasks. Furthermore, (47) devised a method to

incorporate imprecise knowledge from large unlabelled corpora

into verbalizer construction for biomedical text relation extraction.

In this method, word and relation word embeddings are learned

to infuse entity and relation information, and biomedical domain

knowledge constraints are introduced to enhance representations.

3 Methodology

The whole framework of our MSP is illustrated in Figure 1.

In this section, the automatic template generation, verbalizer

construction, and medical short text classification are described

successively in detail.

3.1 Soft template generation

As depicted in Figure 1, the soft template T comprises twomain

components: the soft prompt tokens and the embeddings of the

input sentence x and MASK. For example, in the aforementioned

example, where the task is to predict the topic of the sentence

x: “Which department of the hospital should be registered for

epilepsy?,” the prediction is based on the probability that the topic

word, such as “Neurology” or “Endocrinology,” fills the [MASK]

token.

In the experiments, we utilized BERT as PLMs to learn

the embeddings of the input sentence x and MASK. The

input sentence x is represented as x={x0, ..., xi, ..., xh}, which is

mapped into the embeddings as e (x)={e (x0) , ..., e (xi) , ..., e (xh)}

by PLMs e. Similarly, the mask is mapped into the embeddings

as e
(

mask
)

. Then the soft tokens in the template are denoted as
[

token1
]

...
[

tokeni
] [

tokeni+1
]

...
[

tokenn
]

. In contrast to manually

designed templates, the soft template generation involves the use

of a BiLSTM as the neural network to train the initial soft tokens,

resulting in h1, ..., hi, hi+ 1, ..., hn. The soft prompt T can then be

represented as Equation 1:

T =
{

h0, ..., hi, e (x) , hi+1, ..., hn, e
(

mask
)}

(1)

where hi can be formulated as Equation 2:

hi =

(

Ehi,
←

h i

)

=
(−−−→
LSTM

(

h0,
−−→
hi−1

)

,
←−−−
LSTM

(

hi+1,
←−
hn

))

(2)

The soft prompt T enables us to discover better continuous

prompts for enhancing the performance of downstream tasks.

Finally, the loss function L for the short text function with respect

to hi can be formulated as Equation 3:

ĥ = argmin
hi

L
(

M
(

x,mask
))

(3)

3.2 Automatic verbalizer construction

In prompt-tuning, verbalizer refers to the mapping from the

expanded label words (e.g., breast, sterility, obstetrics, Cervical

diseases, gynecologist, etc.) to their corresponding categories (e.g.,

gynecology and obstetrics), which has been empirically proven to

effectively reduce the discrepancy between text and label spaces,

thereby enhancing the performance of downstream tasks (19).

In contrast to previous methods that directly search concepts in

large knowledge bases using category names (44, 45), we propose

two different strategies, namely Concepts Retrieval and Context

Information, to expand the label words from the short text itself.

Each strategy captures different aspects of the characteristics of the

expanded words, and these words are subsequently integrated into

the final verbalizer. Below are the details of the two strategies:

3.2.1 Concepts retrieval
In previous verbalizer construction methods, such as

those mentioned in (44) and (45), the expanded label words

were identified in large knowledge bases through semantic

similarity calculation. However, these methods not only yielded

unsatisfactory performance in medical short text classification

but also proved to be time-consuming and labor-intensive.

To tackle this issue, in this paper, we first retrieved concepts

related to entities mentioned in the medical short text from

an open knowledge base, such as Probase,1 which provides the

1 https://concept.research.microsoft.com/
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FIGURE 1

The illustration of our MSP. There are three main components in our method: soft template generation, automatic verbalizer construction, and

medical short text classification. Firstly, the mask and the input x are mapped into the embedding by PLMs such as BERT in the experiments. The

neural network, i.e., BiLSTM in our experiments, is then employed to train soft tokens in the soft template. Secondly, the top Na concepts concerning

the entities in the medical short text itself are retrieved by two strategies for automatic verbalizer construction. Finally, the constructed soft prompt

and verbalizer are used to predict the probability of each label word belonging to a special class for medical short text classification.

probability of each entity belonging to a particular concept. This

novel approach, termed Concepts Retrieval, allows us to address

the challenges posed by professional medical vocabulary and

complex medical measures in medical short text classification.

Moreover, it enables us to avoid searching the entire knowledge

base and focus solely on retrieving professional medical concepts

by leveraging Probase for probabilities ranking. To be more

specific, we retrieved N(v) concepts from Probase ranked by their

probabilities. Subsequently, we introduced category names y (such

as “Neurology” and “Endocrinology” in medical text datasets as

anchor words. The distance dist(Vy, y) between each expanded

label word and the category name ywas calculated in the embedded

space. In our experiments, we selected the top Na words, excluding

morphological derivations of y. In the experiments, Na = 15 is

used for Concepts Retrieval strategy in the experiments.

3.2.2 Context information
To expand words while incorporating context information

from the words preceding and following the masked word, we

employed PLMs such as BERT in our experiments, as opposed to

traditional N-gram language modeling. However, due to that BERT

is a non-autoregressive language model, it cannot directly compute

the likelihood of a sentence. To address this, we introduced a

symmetric window of size c around the “[MASK]” word as the

context. LetW = ...w−c, ...w−1,w,w1, ...wc, ... represent the context

of the masked word w. We then masked each wi in W from front

to back and fed it into the BERT model to compute the loss of w, as

expressed in Equation 4:

L (wi) = −
∑

vi∈V

1 {vi = wi} × log p(vi = wi|W\wi ) (4)

where V represents the set of words in the vocabulary, 1· is the

indicator function, and p(vi = wi|W\wi ) is the BERT prediction

distribution that is conditioned onW excludingwi. The total loss of

W is then computed as the average of loss for each word wi, which

can be represented as Equation 5:

L (W) =
1

2c+ 1

i=c
∑

i=−c

L (wi) (5)

Finally, all the expanded words are sorted based on their

corresponding sequence loss L (W). In our experiments, we set c to

5 and discarded words with higher loss. Similar to the “Concepts

Retrieval” strategy, we finally selected Na words among all the

predicted words to construct the verbalizer, and Na = 15 is also

used for context information strategy in the experiments.

3.3 Medical short text classification

Once we have constructed the final verbalizer for medical

short text, the predicted probability for each label word needs to

be mapped to a specific category. This mapping process can be

represented by an objective function denoted as g. Since we assume

that each word in the final verbalizer contributes equally to the

prediction, we use the average of the predicted scores for text

classification. Specifically, g can be calculated as Equation 6:

argmax
y∈Y

1
∣

∣Vy

∣

∣

∑

v∈Vy

p
(

[MASK] = v|xp
)

(6)

where Vy represents the set of label words corresponding to the

label y, and |Vy| denotes the cardinality of Vy. The function
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p([MASK] = v|xp) computes the probability of the label word v

given the input text xp.

4 Experiments

4.1 Datasets

To validate the effectiveness of our proposed MSP, we utilized

web crawling techniques to acquire a certain amount of data

from the Chinese medical conversation dataset. This enabled

us to derive the symptom diagnosis classification dataset and

the gynecological multi-classification dataset, which were then

subjected to experimental analysis. Below is a comprehensive

depiction of the two datasets:

• Symptom dataset. This dataset contains contents of

eight categories, namely, infectious diseases, proctology,

orthopedics, respiratory, andrology, burn, cardiovascular,

and plastic surgery, crawled from the Internet, with a total of

80,000 training sets and 4,000 test sets of original data.

• Gynecology dataset. This dataset contains contents of the

infertility department, obstetrics department, and gynecology

department under the gynecology category crawled from the

network, with a total of 45,000 original data training sets and

2,100 test sets.

4.2 Compared methods

The following methods including deep neural networks and

fine-tuned PLMs models are utilized as compared methods.

• Regular Prompt-tuning (PT) (16): It employs hand-crafted

templates and label words to form the prompt, along with an

ensemble model to annotate an unlabeled dataset, To ensure

fairness we use the same sample template for the same dataset.

• TextCNN (23): The CNN architecture is utilized for the

task of text classification. In particular, the text undergoes

preliminary word segmentation, followed by passing through

a convolutional and pooling layer in succession, and the

outcome is then passed through an external softmax classifier

to classify the text.

• ERNIE (48): By improving the classical PLMs like BERT, the

knowledge and linguistic semantic information are integrated

to enhance the representation of text semantics, which is more

suitable for Chinese natural language processing tasks.

• P-tuning (40): It proposes to learn continuous prompts instead

of hand-crafted prompt by inserting trainable variables into

the embedded input.

4.3 Experiment setting

4.3.1 Training data
To simulate the situation of data scarcity, we conducted

experiments using 10-shot, 15-shot, and 20-shot sampling methods

to evaluate the effectiveness of our proposedMSP. Here, we provide

TABLE 1 The detail of training data of di�erent models.

Dataset ERNIE TextCNN PT/P-
tuning/Ours

Symptom 2,240/2,400/2,800 4,000/4,400/4,800 80/120/160

Gynecology 1,350/1,380/1,440 720/750/840 30/45/60

a detailed account of the training samples used in the experiments.

For each K-shot methodology discussed in this paper, along with

PT and P-tuning, K sample data from each class were extracted

from the original training set to form small-sized training sets.

Additionally, another K sample data from each class were extracted

to create the corresponding test sets. As the selection of training

and verification sets with small samples introduced variability,

we executed three random sampling experiments, and the final

experimental results were averaged over these instances of random

sampling.

Regarding the ERNIE and TextCNN models’ performance, we

conducted manual sampling by handpicking different numbers of

training samples. This allowed us to compare the quantities of 10-

shot, 15-shot, and 20-shot samples utilized in the proposedmethod.

Specific sample figures are presented in Table 1.

4.3.2 Parameter settings
The detailed experimental configurations are as follows: We

use Python 3.6 based programming environment on Linux as

our foundation. For both datasets, the batch size was set to

64. Considering the dataset distribution, the Symptom diagnosis

dataset was trained for a total of 10 epochs, while the Gynecological

multi-classification dataset was trained for 20 epochs. The model’s

learning rate was set to 0.0003 with an AdamW optimizer. The

hidden size was set to 200, and a dropout rate of 0.5 was applied

and weight decay was set to 0.01, while the pre-training language

model parameters were frozen during the training process. To

ensure fairness, we used the same experimental settings for all

compared methods based on prompt-tuning, such as Regular

Prompt-tuning: PT, p-tuning. BERT was used as the backbone

PLM, and its implementation was based on the Hugging Face

Transformer Library for the main methods.

4.4 Experimental results

Table 2, accompanied by Figures 2, 3, provides a comprehensive

analysis of the experimental findings. Based on the experimental

results, the following conclusions can be drawn. Firstly, the

accuracy of all methods has improved as the number of training

samples increases. This indicates that increasing the number

of samples in few-shot learning is beneficial for enhancing

model performance. Notably, the proposed method exhibits better

experimental results compared to the other four comparison

methods on all cases in terms of overall classification efficacy.

Secondly, in the Symptom dataset, when employing the PT and

P-tuning methods alongside manual templates, the experimental

results are significantly better than those of the ERNIE and

TextCNN models. However, none of these methods match the
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TABLE 2 The performance of accuracy (%) on all two datasets.

Dataset Method Training data and the accuracy (%) results

10/500/280/10/10 15/550/300/15/15 20/600/400/20/20

Symptom PT 83.35± 1.57 85.17± 1.51 86.87± 1.62

TextCNN 82.28± 1.82 82.82± 1.65 83.38± 2.94

ERNIE 83.38± 5.10 84.54± 3.82 85.18± 5.30

p-tuning 80.39± 0.98 84.94± 0.96 86.25± 0.46

Ours 83.78± 0.61 85.67± 082 86.93± 0.63

10/240/450/10/10 15/250/460/15/15 20/280/480/20/20

Gynecology PT 72.38± 1.82 75.66± 2.53 79.65± 1.70

TextCNN 72.30± 2.19 74.52± 3.81 78.15± 1.92

ERNIE 70.20± 3.55 74.51± 5.48 80.73± 2.90

p-tuning 65.79± 1.48 71.71± 1.06 74.43± 0.76

Ours 72.60± 0.74 76.30± 1.05 81.18± 0.97

The bolder ones mean better.

FIGURE 2

Results of each method on the Symptom dataset.

performance of ourMSPmethod presented in this paper, validating

the effectiveness of the proposed model. On the other hand, the

overall effect on Gynecological datasets is not as satisfactory. This

can be attributed to the relatively limited content differentiation

within the Gynecological classification datasets. Nonetheless, the

proposed MSP method shows improvement in classification

accuracy by incorporating external knowledge.

Lastly, in the context of Chinese medical dialogue datasets, it

is noteworthy that despite the ERNIE model being a pre-trained

language model and TextCNN being considered highly adept at

Chinese natural language processing tasks, the sample size of the

proposed method in this paper is merely 1/20 of those used in

the two methods. Despite this, the classification accuracy of the

proposed method still surpasses that of these two widely used text

classification approaches, highlighting the efficacy of the proposed

method, especially in limited data learning scenarios.

4.5 Parameter sensitivity

Some important parameters in the experiments often affect the

performance, such as learning rate and batch size. In this section,

FIGURE 3

Results of each method on the Gynecology dataset.

we performed sensitivity experiments on the Symptom dataset

under the condition of 20-shot.

4.5.1 Batch size
The batch size parameter plays a crucial role in determining

the performance of the model in the realm of text classification.

In our experiment, we conducted a comparison of the model’s

performance under five different batch sizes: 8, 16, 32, 64,

and 128, and analyzed the results. Our empirical findings, as

depicted in Figure 4, reveal that the highest accuracy score of

86.91% was attained when the batch size was set to 64, while

a suboptimal accuracy score of 83.52% was recorded at a batch

size of 8. When the batch size was increased to 128, the accuracy

plummeted to 85.72%. We attribute this experimental result to

the distinct data distribution patterns learned by the model under

different batch sizes. Smaller batch sizes are more susceptible to

overfitting due to the relatively limited amount of data processed

at each interval. Conversely, excessively large batch sizes tend

to complicate the model training process, leading to inefficient

learning. Based on our analysis of the Symptom dataset, we
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FIGURE 4

The e�ect of batch size on experimental results.

FIGURE 5

The e�ect of learning rate on experimental results.

conclude that a batch size of 16 represents the most favorable

parameter for the model, striking a balance between overfitting and

training efficiency.

4.5.2 Learning rate
When undertaking the task of medical short text classification,

the learning rate parameter plays a crucial role in the optimization

process, as it governs the magnitude of weight adjustments

during training. The selection of an appropriate learning rate

is of utmost importance, given its profound influence on the

model’s performance. Our analysis of the experimental results,

as shown in Figure 5, confirms that the model’s performance

varies under the influence of the learning rate, with optimal

results achieved at a learning rate of 0.00003, reaching an

accuracy of 86.91%. Conversely, when the learning rate is

set to 0.00004, the model’s accuracy is the lowest, measuring

at 85.19%.

Achieving optimal performance necessitates the careful

selection of an appropriate learning rate. However, it is essential

to acknowledge that disparate tasks and datasets may require

different learning rates. Hence, conducting experimental testing is

imperative to determine the ideal parameter values that yield the

best results for a specific task and dataset.

FIGURE 6

The results of the ablation experiment.

4.6 Ablation experiment

To better exemplify the efficacy of our MSP, we conducted

ablation experiments to obtain verbalizers that were introduced

at varying degrees. Specifically, instead of engaging two strategies

concurrently to construct verbalizer, including Concepts

Retrieval (CR) and Context Information (CI). We incrementally

incorporated strategies and evaluated experimental performance

under 20-shot conditions on two datasets. As Figure 6 evinces,

the accuracy of the experiments improved to a certain extent with

the integration of diverse strategies. For instance, in the Symptom

dataset, the experimental results surged from 84.24% to 86.91 %,

representing a 2.67% increase, and there was discernible progress

made in the Gynecology dataset as well. The amalgamation

of various strategies detailed in this paper yields remarkable

outcomes.

5 Conclusions

This paper introduces a novel method for medical short

text classification with soft prompt-tuning (short for MSP). MSP

is proposed to address the problems of professional medical

vocabulary and complex medical measures, and it achieved

excellent performance even in few-shot scenarios. The soft prompt

in MSP comprises the vectors of the MASK and the input

sentence learned by BERT, and the soft tokens learned by BiLSTM.

Furthermore, two strategies including concept retrieval and context

information are adopted for verbalizer construction. Extensive

experiments validated the effectiveness of our MSP compared

to other neural networks, fine-tuned PLMs, and prompt-tuning

methods.

In the future, we will extend the research work of medical

short text classification in the following two directions. Firstly,

we aim to explore adaptive prompt-tuning techniques that

automatically adjust based on data distribution, user intent, or

medical domain variations. Secondly, we plan to incorporate

more auxiliary information including medical ontologies, clinical

guidelines, or electronic health records (EHRs) for improving

context understanding and classification accuracy.
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6 Limitation

In this paper, we have validated the effectiveness of our

method on medical short text classification. However, firstly,

the constructed verbalizer has not been validated by domain

experts or automated knowledge bases, future work should

investigate strategies to address this problem. Secondly, the

optimization of soft prompts requires additional computational

resources compared to traditional hand-crafted prompt-tuning

methods. While our method reduces manual effort, further

optimizations could be explored to improve computational

efficiency.
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