Check for updates

OPEN ACCESS

EDITED BY Yanwu Xu, Baidu, China

REVIEWED BY Xiuju Chen, Xiamen University, China Rajalakshmi R., Madras Diabetes Research Foundation, India

*CORRESPONDENCE Hasan Nawaz Tahir ⊠ hasan.nawaz@su.edu.sa Naseer Ullah ⊠ khannasir965@gmail.com

RECEIVED 07 November 2024 ACCEPTED 14 April 2025 PUBLISHED 07 May 2025

CITATION

Tahir HN, Ullah N, Tahir M, Domnic IS, Prabhakar R, Meerasa SS, AbdElneam AI, Tahir S and Ali Y (2025) Artificial intelligence versus manual screening for the detection of diabetic retinopathy: a comparative systematic review and meta-analysis. *Front. Med.* 12:1519768. doi: 10.3389/fmed.2025.1519768

COPYRIGHT

© 2025 Tahir, Ullah, Tahir, Domnic, Prabhakar, Meerasa, AbdElneam, Tahir and Ali. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Artificial intelligence versus manual screening for the detection of diabetic retinopathy: a comparative systematic review and meta-analysis

Hasan Nawaz Tahir¹*, Naseer Ullah²*, Mursala Tahir³, Inbaraj Susai Domnic⁴, Ramaprabha Prabhakar⁵, Semmal Syed Meerasa⁵, Ahmed Ibrahim AbdElneam^{6,7}, Shahnawaz Tahir⁸ and Yousaf Ali¹

¹Department of Community Medicine, College of Medicine, Dwadimi, Shaqra University, Shaqra, Saudi Arabia, ²Department of Community Medicine, Khyber Medical College Peshawar, Peshawar, Pakistan, ³Department of Community Medicine, Liaquat National Hospital and Medical College, Jinnah Sindh Medical University, Karachi, Pakistan, ⁴Department of Pharmacology, College of Medicine, Dwadimi, Shaqra University, Shaqra, Saudi Arabia, ⁵Department of Pharmacology, College of Medicine, Shaqra University, Shaqra, Saudi Arabia, ⁶Departments of Clinical Biochemistry and Basic Medical Sciences, College of Medicine, Dwadimi, Shaqra University, Shaqra, Saudi Arabia, ⁷Molecular Genetics and Enzymology Department, Human Genetics and Genome Research Institute, National Research Center, Dokki, Cairo, Egypt, ⁸Department of Gastroenterology, Dow University of Health Sciences, Karachi, Pakistan

Background: Diabetic retinopathy is one of the leading causes of blindness globally, among individuals with diabetes mellitus. Early detection through screening can help in preventing disease progression. In recent advancements artificial Intelligence assisted screening has emerged as an alternative to traditional manual screening methods. This diagnostic test accuracy (DTA) review aims to compare the sensitivity and specificity of Al versus manual screening for detecting diabetic retinopathy, focusing on both dilated and un-dilated eyes.

Methods: A systematic review and meta-analysis were conducted for comparison of AI vs. manual screening of diabetic retinopathy using 25 observational (cross sectional, validation and cohort) studies with total images of 613,690 used for screening published between January 2015 and December 2024. Outcomes of the study was sensitivity, and specificity. Risk of bias was assessed using the QUADAS-2 tool for validation studies, the AXIS tool for cross-sectional studies, and the Newcastle-Ottawa Scale for cohort studies.

Results: The results of this meta-analysis showed that for un-dilated eyes, Al screening showed pooled sensitivity of 0.90 [95% CI: 0.85–0.94] and pooled specificity of 0.94 [95% CI: 0.91–0.96] while manual screening shows pooled sensitivity of 0.79 [95% CI: 0.60–0.91] and pooled specificity of 0.99 [95% CI: 0.98–0.99]. For dilated eyes the pooled sensitivity of Al screening is 0.95 [95% CI: 0.91–0.97] and pooled specificity is 0.87 [95% CI: 0.79–0.92], while manual screening sensitivity is 0.90 [95% CI: 0.87–0.92] and specificity is 0.99 [95% CI: 0.99–1.00]. These data show comparable sensitivities and specificities of Al and manual screening, with Al performing better in sensitivity.

Conclusion: Al-assisted screening for diabetic retinopathy shows comparable sensitivity and specificity compared to manual screening. These results suggest that Al can be a reliable alternative in clinical settings, with increased early detection rates and reducing the burden on ophthalmologists. Further research is needed to validate these findings.

Systematic review registration: https://www.crd.york.ac.uk/PROSPERO/home, CRD42024596611.

KEYWORDS

diabetic retinopathy, screening, artificial intelligence, deep learning, manual screening, automated detection

Introduction

Diabetic Retinopathy (DR) is one of the most prevalent microvascular complications of diabetes, characterized by damage to the retina due to prolonged hyperglycemia. It remains a leading cause of blindness globally, particularly among working-age adults. The World Health Organization (WHO) estimates that over 422 million people worldwide have diabetes (1), with approximately 103.12 million adult individuals affected by diabetic retinopathy and 160.50 million by 2045 (2). In advanced stages, untreated DR can lead to severe vision impairment and blindness. According to a 2023 global report on vision by the WHO report globally distance vision impairment or blindness from diabetic retinopathy are 3.9 million (3). Early detection and timely treatment can significantly reduce the risk of vision loss, but widespread screening remains a challenge, particularly in low-resource settings.

Screening for diabetic retinopathy has traditionally been performed through manual methods, including fundus photography, direct ophthalmoscopy, mydriatic and non mydriatic retinal photography, slit lamp microscopy, and retinal video recording conducted by trained ophthalmologists. However, these methods are often time-consuming and require specialized equipment and personnel, limiting their availability in certain regions (4). Recent technological advancements have led to the development of automated screening methods using artificial intelligence (AI). AI-based algorithms, particularly deep learning models, can analyze retinal images and detect signs of DR with comparable sensitivity and specificity to human graders. These systems have the potential to increase screening efficiency, reduce costs, and provide access to screening in underserved populations. AI has been recognized for its ability to identify DR and classify the severity of the condition, making it a valuable tool in large-scale screening programs.

There are few systematic reviews and meta-analyses which have evaluated the performance of AI-based systems for DR screening. Meta-analysis reported high sensitivity and specificity for AI algorithms (5–8). Another review (9) supported these findings but highlighted the variability in performance. However there is no review on comparison of AI vs. manual method to clarify the role of AI in different screening contexts, particularly in comparison to manual methods.

This Review aims to evaluate the performance of AI versus manual screening in DR detection. We systematically review the sensitivity and specificity of AI and manual methods, with a focus on both dilated and un-dilated eye conditions.

Methods

Search strategy

We conducted a literature search for AI and manual screening methods of diabetic retinopathy using PubMed and Google Scholar to identify relevant studies published between January 2015 to September 2024 and a second search was done in Feb 2025 which added 13 studies to included studies which become 25 included studies. Search strategy contain mesh terms and keywords which included "diabetic retinopathy," "artificial intelligence," "deep learning," "manual screening," and "automated detection." Only English language articles were included if they show AI-based or manual-based screening methods for DR detection and reported sensitivity and specificity outcomes.

Inclusion criteria

Studies were included if they were observational or validation and evaluated AI algorithms or manual screening for DR with patients aged 15 to 90 years diagnosed with DR and reported sensitivity and specificity outcomes for either dilated or un-dilated eye conditions. Studies were excluded if they did not report the outcomes of interest (specificity and sensitivity), the author of the studies did not respond or if the full text were not available.

Study selection

Initially two independent reviewers screened the articles by titles and abstracts. Once the articles met the inclusion criteria or were uncertain than full texts were obtained for those. The same reviewers then independently assessed the full texts. Discrepancies were resolved through discussion or, if needed, consultation with a third reviewer. PRISMA flow diagram was used for documentation of selection process Figure 1.

Quality assessment

Each study was assessed for quality by two independent reviewers to evaluate selection bias, outcome/exposure assessment bias, follow-up bias, measurement bias, sample representativeness, reporting bias, index test bias, reference standard bias, flow and timing bias, and ethical considerations bias was evaluated. Three different tools QUADAS-2, AXIS tool, and Newcastle-Ottawa scale was used according to type of studies (validation study, cross-sectional and cohort respectively) to evaluate risk of bias, which were used for strength of evidence of meta-analysis results.

Data extraction

Sensitivity and specificity data for AI and manual screening methods were extracted using a standardized data collection form for dilated or un-dilated eyes. Extracted information included study characteristics such as first author, country, number of participants, number of images, age of participants, comparison to human grader, photographic protocol, reference standard and outcomes of interest like sensitivity, and specificity. Two reviewers independently extracted data to minimize bias, by consensus or consulting a third reviewer disagreements were resolved. The information was initially entered into Excel tables and then

transferred to Review Manager 5.4 and R-software for analysis. The risk of bias was assessed using the Newcastle-Ottawa scale for cohort studies, the AXIS tool for cross-sectional studies, and the QUADAS-2 tool for validation studies.

Results

Study characteristics

A total of 25 studies met the inclusion criteria of this review which evaluated Artificial intelligence based screening and manual screening for diabetic retinopathy. Twelve studies reported images of un-dilated eyes screened by AI-based or manual methods, while 14 studies show dilated eyes images screened by AI-based and manual methods. Twelve out of 25 studies were prospective (10–21), and 13 were retrospective design (22–34).

The range of sample size is from 54 to 5,738 in 19 studies with total participants of 29,358 while six studies did not mentioned number of participants but only images, 613,690 images in 25 studies were used for screening process, in a broad geographic range of settings (out patients, hospital, community based and nationwide survey) and populations. The details are given in Table 1.

Test accuracy

The diagnostic accuracy of AI-based diabetic retinopathy (DR) screening compared to manual methods shows that, in dilated eyes, the SROC curves shows wider confidence intervals of specificities across the included studies, indicating variability in diagnostic performance.

Un-dilated eye screening tends to achieve high sensitivity and specificity values with most of the studies reporting sensitivity and specificity of more than 0.90. This suggests a reliable ability of AI algorithms to correctly identify DR in un-dilated eye examinations. The studies generally cluster around the upper-left corner of the plot, indicating strong diagnostic performance with low rates of false positives and false negatives.

Overall, these SROC plots highlight that AI models demonstrate robust diagnostic accuracy for detecting diabetic retinopathy in both dilated and un-dilated settings, with higher sensitivity and closer specificity compared to manual screening methods in most of the studies as can be seen in the Figures 2, 3.

Sensitivity

The sensitivity of AI-based screening for dilated eyes show consistent results across the studies with a pooled sensitivity of 0.95 (95% CI: 0.91, 0.97). For manual screening in dilated eyes, the pooled sensitivity reported was 0.90 (95% CI: 0.87, 0.92), showing lower performance than AI as given in Table 2 and Figure 4. For un-dilated eyes, AI screening achieved a pooled sensitivity of 0.92 (95% CI: 0.87, 0.95). In the manual screening of un-dilated eyes images pooled sensitivities of 0.79 (95% CI: 0.60, 0.91) is reported given in Table 2 and Figure 5. AI-based screening shows higher performance than manual screening.

Specificity

Pooled specificity of AI screening for dilated eyes was reported at 0.87 (95% CI: 0.79, 0.92) showing a good performance and manual screening for dilated eyes also showed a high pooled specificity value of 0.99 (95% CI: 0.99, 1.00). Showing a good performance of both AI-based and manual screening methods as shown in the Figure 6. For un-dilated eyes, AI screening demonstrated pooled specificity of 0.94 (95% CI: 0.91, 0.96). Manual screening similarly showed robust specificity 0.99 (95% CI: 0.98, 0.99) as given in the Figure 7. Showing that AI a comparable alternative to manual screening.

Multi-test analysis

The combined pooled sensitivity and specificity of dilated eye is 0.94 [95% CI: 0.90; 0.97] and 0.91 [0.83; 0.95] with heterogeneity of 95.2 and 99.9% and p value of 0.0386 and 0.0001, respectively, showing comparable results in the outcomes with high variability among studies as shown in Figures 4, 6. Un-dilated eye report combined pooled sensitivity and specificity of 0.90 [95% CI: 0.85; 0.94] and 0.95 [0.93; 0.97] with heterogeneity of 98.1 and 99.1% and p value of 0.0437 and 0.0001, respectively, showing results with no statistically significant difference as shown in Figures 5, 7.

Risk of bias

Risk of bias was systematically assessed using appropriate tools for the study designs. For the 16 validation studies (13, 16, 18–21, 23, 26–34), the QUADAS-2 tool was used. Thirteen of these studies demonstrated a low risk of bias, while three study shows some concerns particularly in the domain 3 and 4, as shown in the accompanying Figures 8, 9.

For the five cross-sectional studies, the AXIS tool was used to assess the risk of bias (10, 12, 15, 22, 25). The results reported a moderate risk of bias across the studies, with bias related to results and conclusion. These findings are summarized in Table 3.

In the risk of bias assessment of four cohort studies, the Newcastle-Ottawa Scale was applied. All four studies demonstrated a low risk of bias, in all domains such as selection, comparability, and outcome assessment (11, 14, 17, 24). These results are detailed in Table 4, supporting the reliability of the included cohort studies.

Discussion

The development of artificial intelligence based screening systems has led to potential use as a diagnostic tool in health care system. Evaluating the accuracy of AI in clinical settings is essential to ensure its implementation in clinical settings. Diabetic retinopathy screening is important in preventing vision loss. In this meta-analysis, we assessed the diagnostic accuracy of AI-based systems versus manual screening methods for both dilated and un-dilated eyes, for detecting DR. The aim was to determine whether AI systems could offer a comparable or superior alternative to manual methods in clinical practice.

Our results showed that AI systems demonstrated a high sensitivity across most studies. In comparison sensitivity for both dilated and un-dilated eyes using AI screening shows a good performance and specificity for AI screening and manual screening was generally comparable, with dilated eyes as well as un-dilated eyes.

These results highlight that AI systems, especially in un-dilated eye conditions, show promise for clinical use with reliable sensitivity and specificity, but variations exist depending on the system and clinical setting.

Most of the studies exhibit low risk of bias showing which shows robust methodologies and reliable findings but some validation studies have shown moderate risk of bias especially in index test and reference standards suggesting possible inconsistencies in diagnostic criteria or lack of blinding. Also the studies assessed with axis tool shows moderate risk of bias in all studies especially in the results and conclusion domain indicates potential selective reporting, which could introduce bias in outcome interpretation.

Limitations and implications

Despite the promising outcomes, several limitations must be acknowledged. First, there is considerable heterogeneity across the included studies in terms of study settings, photographic protocols, and reference standards. The studies vary from community-based to outpatient settings, and the imaging techniques range from two-field

TABLE 1 Characteristics of included studies.

Study	Country	Study setting	No. of images	No. of participants	Prospective	Compared to human graders	Photographic protocol	Reference standard
Ting et al. 2017 (25)	Singapore	Community-based and clinic-based populations	225,302	Not mentioned	No	Yes	2 fields images, Mydriasis	Grading by a retinal specialist (>5 years' experience in conducting diabetic retinopathy assessment)
Sosale et al. 2020 (15)	India	Outpatient	618	297	Yes	Yes	3-fields dilated retinal imaging, Mydriasis	Adjudicated diagnosis of the two fellowship-trained vitreoretinal specialists
Surya et al. 2023 (16)	India	Outpatient	1,234	1,085	Yes	Yes	5 fields imaging, No Mydriasis	Diagnosis made by the specialist ophthalmologists
Piatti et al. 2024 (13)	Italy	Outpatient	602	598	Yes	Yes	2 field imaging, Mydriasis	Classification of the retinal images by the human ophthalmologist grader
Sedova et al. 2022 (14)	Austria	Outpatient	113	54	Yes	Yes	45-degree, 2 fields imaging, No Mydriasis	Manual grading of images by retina specialists
Ipp 2021 (10)	United states	Outpatient	4,004	893	Yes	Yes	4-wide field imaging for no Mydriasis and 2 fields imaging No Mydriasis	Grading of 4-wide-field stereoscopic dilated fundus photographs by the WFPRC
Tokuda et al. 2022 (17)	Japan	Inpatient	69	70	Yes	No	45-degree, no mydriasis	Grading of the fundus images by three retinal experts according to the ICDRS scale
Acharyya et al. 2024 (22)	India	Outpatient	1,783	Not mentioned	No	Yes	45-degree, no mydriasis	Consensus of three blinded vitreoretinal specialists, with an arbitrator resolving any disagreements.
Arenas-Cavalli et al. 2022 (23)	Chile	Outpatient	1,142	1,123	No	Yes	45-degree, 2 fields, variable for case to case	assessment performed remotely by a clinical ophthalmologist.
Li et al. 2022 (11)	China	Hospital-based study	1,464	1,147	Yes	Yes	45-degree, no mydriasis	Grading of the retinal fundus images by a certified retinal specialist with more than 12 years of experience, who used the 5-point (ICDRS) scale to assign grades
Limwattanayingyong et al. 2020 (24)	Thailand	Nationwide screening program	11,148	5,738	No	Yes	45-degree, 1 field, no mydriasis	Grading of the retinal photographs by a panel of three IRS
Lupidi et al. 2023 (12)	Italy	Outpatient	831	251	Yes	Yes	50-degree, 1 field, no mydriasis	Fundus biomicroscopic examination by an experienced retina specialist
González-Gonzalo et al. 2020 (26)	Sweden	Dataset	600	288	No	Yes	45-degree field, no mdriasis	Certified ophthalmologist with over 12 years of experience
Lin et al. 2018 (27)	United states	Dataset	33,000		No	no	not mentioned	Well-trained clinicians according to the International Clinical Diabetic Retinopathy scale
Li et al. 2019 (28)	China	Hospital-based study	19,233	5,278	No	Yes	Inner circle of retina	Expert committee of three senior ophthalmologists
Soto-Pedre et al. 2015 (18)	Spain	Dataset	10,556	5,278	Yes	Yes	45-degree field, mdriasis	One retinal specialist
Hansen et al. 2015 (29)	Kenya	Community-based	6,788	3,460	No	Yes	2 field, mydraisis	Moorfields Eye Hospitals Reading Centre in the UK

10.3389/fmed.2025.1519768

TABLE 1 (Continued)

Study	Country	Study setting	No. of images	No. of participants	Prospective	Compared to human graders	Photographic protocol	Reference standard
Rajalakshmi et al. 2018 (19)	India	Hospital-based study	2,408	301	Yes	Yes	45-degree field, mdriasis	Ophthalmologists (retina specialists)
Gargeya and Leng 2017 (30)	United states	Dataset	75,137	Not mentioned	No	Yes	inner retinal circle	Panel of human retinal specialists
Wang et al. 2018 (20)	India	Outpatient	1,661	383	Yes	Yes	non-steered central image, mydriasis	Certified diabetic retinopathy (DR) graders at the Doheny Image Reading Center (DIRC)
Abràmoff et al. 2016 (31)	United states	Dataset	1,748	874	No	Yes	45-degree field, mdriasis	Three US Board certified retinal specialists
Zhang et al. 2019 (32)	China	Hospital-based study	13,767	1,872	No	Yes	45-degree field, mdriasis	One retinal specialist with over 27 years of experience and two ophthalmologists with over 5 years of experience
Li et al. 2018 (21)	China and Australia	Hospital-based study	106,244	Not mentioned	Yes	Yes	45-degree field, mdriasis and non mydraisis	Panel of ophthalmologists
Zhang et al. 2022 (33)	China	Dataset	92,894	Not mentioned	No	Yes	Fundus images	Ophthalmologist used international grading system for diabetic retinopathy
Kumar et al. 2016 (34)	India	Hospital-based study	1,344	368	No	Yes	50-degree field, mdriasis	Panel of expert ophthalmologists at the Regional Institute of Ophthalmology

WFPRC, Wisconsin Fundus Photograph Reading Center; IRS, international retina specialists; ICDRS, International Clinical Diabetic Retinopathy Severity scale. "These are the external datasets for which accuracy estimates were included in the meta-analysis; datasets used for training and internal validation were not included. b. "Compared to human graders" refers to whether retinal images were graded and compared with the results provided by AI with human graders. c. Where specified the mydriatic or non-mydriatic imaging protocols were followed depending on the study setting, with multiple fields captured. d. For certain studies, the primary reference standard was provided by expert ophthalmologists or retinal specialists with a minimum of 5 years' experience in diabetic retinopathy assessment, though in some cases, decisions were made through consensus from multiple specialists or reading centers. e. External validation of these studies was conducted in clinical settings such as hospital-based, outpatient, or community-based screening programs, as specified.

to five-field photography with or without mydriasis. These differences may have influenced the diagnostic performance of AI based screening, limiting the generalizability of the findings. Additionally, the reference standards used for manual grading differ across studies, with some having single specialists and others using diagnoses by multiple experts, potentially affecting the accuracy of comparisons. Second, not all studies report the number of participants, making it difficult to assess the true sample size, which could impact diagnostic validity. Third, there is a significant variability among the studies in AI based screening, Variability in AI performance can arise from differences in study methodologies, dataset quality, and model training conditions. The findings highlight the need for standardized evaluation metrics and more transparent reporting to solve inconsistencies. Addressing these issues will enhance the reliability of AI applications in clinical settings and ensure robust decision-making. Moreover, some of the studies had a moderate risk of bias which could lead to over-estimation or down-estimation of accuracy. To ensure that AI systems are safe and effective for real-world use, evaluations need to be conducted in representative clinical settings. Systems should be tested on a wide range of image qualities, and medical settings.

Conclusion

The findings from this meta-analysis suggest that AI systems are promising for DR screening, especially in settings where high sensitivity is critical. However, further independent studies, particularly those assessing the dilated eyes screening, are required to establish the efficacy of AI in broader clinical practice. Factors such as

TABLE 2 Results for outcomes.

Study	Outcome	Dilated/ Un-dilated eye	TP	FP	FP	TN	Sensitivity (CI at 95%)	Specificity (CI at 95%)
Piatti et al. 2024 (13)	Mild DR with AI	Dilated	70	102	102	399	0.41 [0.33, 0.48]	0.93 [0.90, 0.95]
Piatti et al. 2024 (13)	Moderate and beyond with AI	Dilated	35	0	0	0	1.00 [0.90, 1.00]	Not estimable
Sosale et al. 2020 (15)	AI for referable DR	Dilated	120	23	23	153	0.84 [0.77, 0.90]	0.99 [0.96, 1.00]
Sosale et al. 2020 (15)	AI for any DR	Dilated	105	8	8	168	0.93 [0.87, 0.97]	0.91 [0.86, 0.95]
Ting et al. 2017 (25)	AI for referable DR	Dilated	3,057	9,172	9,172	100,097	0.25 [0.24, 0.26]	1.00 [1.00, 1.00]
Ting et al. 2017 (25)	Moderate and beyond with AI	Dilated	676	9,969	9,969	102,003	0.06 [0.06, 0.07]	1.00 [1.00, 1.00]
Ipp 2021 (10)	AI for Mod and beyond	Dilated	356	375	375	2,630	0.49 [0.45, 0.52]	0.99 [0.99, 1.00]
Soto-Pedre et al. 2015 (18)	AI screening for DR	Dilated	535	1,034	1,034	2,277	0.34 [0.32, 0.37]	0.69 [0.67, 0.70]
Wang et al. 2018 (20)	AI screening for DR	Dilated	213	205	205	206	0.51 [0.46, 0.56]	0.50 [0.45, 0.55]
Abràmoff et al. 2016 (31)	AI screening for DR	Dilated	182	88	88	598	0.67 [0.61, 0.73]	0.87 [0.84, 0.90]
Hansen et al. 2015 (29)	AI screening for DR	Dilated	91	900	900	2,093	0.09 [0.07, 0.11]	0.70 [0.68, 0.72]
Rajalakshmi et al. 2018 (19)	AI screening for DR	Dilated	184	21	21	84	0.90 [0.85, 0.94]	0.80 [0.71, 0.87]
Kumar et al. 2016 (34)	AI screening for DR	Dilated	722	176	176	176	0.80 [0.78, 0.83]	0.50 [0.45, 0.55]
Zhang et al. 2019 (32)	AI screening for DR (Grading system)	Dilated	414	4	4	344	0.99 [0.98, 1.00]	0.99 [0.97, 1.00]
Zhang et al. 2019 (32)	AI screening for DR (identification system)	Dilated	412	8	8	340	0.98 [0.96, 0.99]	0.98 [0.96, 0.99]
Zhang et al. 2022 (33)	AI screening for DR (InceptionV3_299)	Dilated	12,440	3,580	3,580	35,953	0.78 [0.77, 0.78]	0.91 [0.91, 0.91]
Zhang et al. 2022 (33)	AI screening for DR (InceptionV3_896)	Dilated	12,984	3,676	3,676	35,857	0.78 [0.77, 0.79]	0.91 [0.90, 0.91]
Sedova et al. 2022 (14)	AI screening for DR	Undilated	27	1	1	16	0.96 [0.82, 1.00]	0.80 [0.56, 0.94]
Ipp 2021 (10)	AI for Mod to Severe	Undilated	331	345	345	2,342	0.49 [0.45, 0.53]	0.99 [0.99, 1.00]
Surya et al. 2023 (16)	AI screening for DR	Undilated	42	10	10	283	0.81 [0.67, 0.90]	0.91 [0.88, 0.94]
Limwattanayingyong et al. 2020 (24)	1st screening DL for DR	Undilated	669	102	102	4,932	0.87 [0.84, 0.89]	0.99 [0.99, 1.00]
Limwattanayingyong et al. 2020 (24)	2nd screening DL for DR	Undilated	190	84	84	3,853	0.69 [0.64, 0.75]	0.99 [0.99, 1.00]
Arenas-Cavalli et al. 2022 (23)	AI screening for DR	Undilated	226	227	227	657	0.50 [0.45, 0.55]	0.98 [0.97, 0.99]
Lupidi et al. 2023 (12)	AI screening for DR (Selena +)	Undilated	121	4	4	122	0.97 [0.92, 0.99]	0.97 [0.92, 0.99]
Acharyya et al. 2024 (22)	AI screening for DR	Undilated	848	128	128	732	0.87 [0.85, 0.89]	0.91 [0.88, 0.93]
Li et al. 2022 (11)	AI screening for DR	Undilated	86	25	25	1,323	0.77 [0.69, 0.85]	0.99 [0.99, 1.00]
Tokuda et al. 2022 (17)	AI screening for DR	Undilated	13	5	5	49	0.72 [0.47, 0.90]	0.96 [0.87, 1.00]
Li et al. 2019 (28)	AI screening for DR	Undilated	519	16	16	256	0.98 [0.97, 0.99]	0.94 [0.91, 0.97]
Lin et al. 2018 (27)	AI screening for DR	Undilated	10,254	1,519	1,519	13,481	0.68 [0.68, 0.69]	0.90 [0.89, 0.90]
González-Gonzalo et al. 2020 (26)	AI screening for DR	Undilated	132	30	30	295	0.92 [0.86, 0.96]	0.91 [0.87, 0.94]
Gargeya and Leng 2017 (30)	AI screening for DR	Undilated	813	113	113	761	0.93 [0.91, 0.95]	0.87 [0.85, 0.89]
Li et al. 2018 (21)	AI screening for DR	Undilated	371	199	199	13,057	0.93 [0.89, 0.95]	0.98 [0.98, 0.99]
Limwattanayingyong et al. 2020 (24)	!st screening Manual for DR	Undilated	165	124	59	3,915	0.74 [0.67, 0.79]	0.97 [0.96, 0.97]
Limwattanayingyong et al. 2020 (24)	2nd screening Manual for DR	Undilated	519	185	71	4,963	0.88 [0.85, 0.90]	0.96 [0.96, 0.97]
Sedova et al. 2022 (14)	Manual screening for DR	Undilated	21	2	1	32	0.95 [0.77, 1.00]	0.94 [0.80, 0.99]
Sedova et al. 2022 (14)	Manual screening for DR	Undilated	22	2	1	32	0.96 [0.78, 1.00]	0.94 [0.80, 0.99]
Ting et al. 2017 (25)	Manual for referable DR	Dilated	3,077	302	768	108,501	0.80 [0.79, 0.81]	1.00 [1.00, 1.00]
Ting et al. 2017 (25)	Moderate and beyond with Manual	Dilated	558	78	447	111,525	0.56 [0.52, 0.59]	1.00 [1.00, 1.00]

Cl, Confidence Interval; DR, Diabetic Retinopathy; Referable DR, severity grade 2 and above; DL, Deep Learning; DLA, Deep Learning Algorithm; FN, False Negative; FP, False Positive; Mod, Moderate; RDR, Referable Diabetic Retinopathy; SVM, Support Vector Machine; TP, True Positive; TN, True Negative; UWF, Ultra-Wide Field Grading.

Author	Intro	Methods	Results	Conclusions	Other	Risk
Ting et al. 2017 (25)	100%	100%	50%	75%	50%	Moderate
Sosale et al. 2020 (15)	100%	100%	50%	75%	0%	Moderate
Ipp 2021 (10)	100%	100%	50%	50%	100%	Moderate
Acharyya et al. 2024 (22)	100%	90%	50%	75%	0%	Moderate
Lupidi et al. 2023 (12)	100%	100%	50%	75%	0%	Moderate

AXIS, Appraisal tool for Cross-Sectional Studies; %, percentage of the bias.

system technical failures, and operational settings should also be considered before full implementation. In conclusion, while AI-based systems offer a valuable tool for reducing the workload on human graders, their clinical utility depends on continued rigorous evaluation and refinement.

Future research

Future work should focus on refining AI algorithms for dilated eye conditions and exploring the integration of AI screening into routine ophthalmic practice. Large-scale, prospective validation studies will

Study	Events	Total		Proportion	95%-CI
Dataset = Dataset 1			1		
Limwattanayingyong 2020 1st screening Manual for DR	3915	3974		0.99	[0.98; 0.99]
Limwattanayingyong 2020 2nd screening Manual for D					[0.98; 0.99]
Sedova 2022 Manual screening for DR	32				[0.84; 1.00]
Sedova 2022 Manual screening for DR	32				[0.84; 1.00]
Common effect model		9074			[0.98; 0.99]
Random effects model					[0.98; 0.99]
Heterogeneity: $l^2 = 0\%$, $\tau^2 = 0$, $\chi_3^2 = 1.18$ ($\rho = 0.7571$)					
Dataset = Dataset 2					
Sedova 2022 AI screening for DR	16	17	i	0.94	[0.71; 1.00]
Ipp 2021 AI for Mod to Severe	2342	2687	-		[0.86; 0.88]
Surva et al 2023 Al screening for DR	283	293		0.97	[0.94; 0.98]
Limwattanayingyong 2020 1st screening DL for DR	4932	5034			[0.98; 0.98]
Limwattanayingyong 2020 2nd screening DL for DR	3853	3937			[0.97; 0.98]
Arenas-Cavalli 2022 AI screening for DR	657				[0.71; 0.77]
Lupidi 2023 Al screening for DR (Selena +)	122	126			[0.92; 0.99]
Acharya 2023 Al screening for DR	732	860		0.85	[0.83; 0.87]
Na Li 2022 Al screening for DR	1323	1348			[0.97; 0.99]
Tokuda 2022 AI screening for DR	49	54			[0.80; 0.97]
Li 2019 Al screening for DR	256	272			[0.91; 0.97]
Lin 2018 AI screening for DR	13481	15000			[0.89; 0.90]
Gonzalo 2019 Al screening for DR	295	325		0.91	[0.87; 0.94]
Gargeya 2017 AI screening for DR	761	874			[0.85; 0.89]
Li 2018 Al screening for DR	13057	13256		0.98	[0.98; 0.99]
Common effect model		44967	•:	0.94	[0.94; 0.94]
Random effects model Heterogeneity: l^2 = 99.1%, τ^2 = 0.8970, χ^2_{14} = 1586.58 (ρ =	0)		-	0.94	[0.91; 0.96]
Common effect model		54041		0.95	[0.94; 0.95]
Random effects model			· · · · · · · · · · · · · · · · · · ·	0.95	[0.93; 0.97]
Heterogeneity: $l^2 = 99.1\%$, $\tau^2 = 0.9649$, $\chi^2_{18} = 2015.33$ ($p = Test$ for subgroup differences (common effect): $\chi^2_1 = 281.41$,		0.0001)	0.75 0.8 0.85 0.9 0.95 Specificity		

FIGURE 4

Specificity forest plot for un-dilated eyes.

Dataset = Dataset 1			1 1		
Limwattanayingyong 2020 !st screening Manual for DI	R 165	289	- -	0.57	[0.51; 0.63]
Limwattanayingyong 2020 2nd screening Manual for I		704			[0.70; 0.77]
Sedova 2022 Manual screening for DR	21	23	÷		[0.72; 0.99]
Sedova 2022 Manual screening for DR	22	24			[0.73; 0.99]
Common effect model		1040	•		[0.67; 0.73]
Random effects model					[0.60; 0.91]
Heterogeneity: $I^2 = 91.5\%$, $\tau^2 = 0.6272$, $\chi_3^2 = 35.11$ ($\rho < 0.0$	0001)				
Dataset = Dataset 2					
Sedova 2022 AI screening for DR	27	31	-	0.87	[0.70; 0.96]
pp 2021 AI for Mod to Severe	331	347	-	0.95	[0.93; 0.97]
Surya et al 2023 Al screening for DR	42	69 -		0.61	[0.48; 0.72]
Limwattanayingyong 2020 1st screening DL for DR	669	704	-	0.95	[0.93; 0.97]
Limwattanayingyong 2020 2nd screening DL for DR	190	211		0.90	[0.85; 0.94]
Arenas-Cavalli 2022 AI screening for DR	226	239	: –	0.95	[0.91; 0.97]
Lupidi 2023 Al screening for DR (Selena +)	121	125	_	0.97	[0.92; 0.99]
Acharya 2023 Al screening for DR	848	923	-	0.92	[0.90; 0.94]
Na Li 2022 Al screening for DR	86	96	·	0.90	[0.82; 0.95]
Tokuda 2022 AI screening for DR	13	15	_	- 0.87	[0.60; 0.98]
Li 2019 AI screening for DR	519	528		 0.98 	[0.97; 0.99]
Lin 2018 AI screening for DR	10254	15000		0.68	[0.68; 0.69]
Gonzalo 2019 AI screening for DR	132	144	·	0.92	[0.86; 0.96]
Gargeya 2017 AI screening for DR	813	874		0.93	[0.91; 0.95]
Li 2018 AI screening for DR	371	401		0.93	[0.89; 0.95]
Common effect model		19707	•	0.74	[0.74: 0.75]
Random effects model				0.92	[0.87; 0.95]
Heterogeneity: $I^2 = 98.4\%$, $\tau^2 = 0.7525$, $\chi^2_{14} = 896.8$ ($p < 0.000$	0001)				
Common effect model		20747	•	0.74	[0.73; 0.75]
Random effects model			-	0.90	[0.85; 0.94]
2 0 0 2 0 0 2 0 0 2 0 0 0 2 0 0 0 0 0 0		0	5 0.6 0.7 0.8 0.9		
Heterogeneity: $l^2 = 98.1\%$, $\tau^2 = 0.9378$, $\chi^2_{18} = 934.16$ ($p < 0.000$		0017	Sensitivity		
Test for subgroup differences (common effect): $\chi_1^2 = 9.90$, of Test for subgroup differences (random effects): $\chi_1^2 = 4.07$, of	f = 1 (p = 0) f = 1 (p = 0)	0437)			

FIGURE 5 Sensitivity forest plot for un-dilated eyes.

	Study	Events	Total		Proportion	95%-CI
	Dataset = Dataset 1					
	Piatti 2023 Mild DR with Al	399	501		0.80	[0.76; 0.83]
	Sosale 2020 AI for referable DR	153	176		0.87	[0.81; 0.92]
	Sosale 2020 AI for any DR	168	176	-	- 0.95	[0.91; 0.98]
	Ting 2017 AI for referable DR	100097	109269		0.92	[0.91; 0.92]
	Ting 2017 Moderate and beyond with Al	102003	111972		0.91	[0.91; 0.91]
	Ipp 2021 AI for Mod and beyond	2630	3005	a :	0.88	[0.86; 0.89]
	Pedre 2015 AI screening for DR	2277	3311	•	0.69	[0.67; 0.70]
	Wang 2018 AI screening for DR	206	411		0.50	[0.45; 0.55]
	Abramoff 2016 AI screening for DR	598	686	-	0.87	[0.84; 0.90]
	Hansen 2015 AI screening for DR	2093	2993	-		[0.68; 0.72]
	Rajalakshimi 2018 AI screening for DR	84	105	_ :	0.80	[0.71; 0.87]
	Kumar 2016 AI screening for DR	176				[0.45; 0.55]
	Zhang 2019 AI screening for DR (Grading system)	344	348		0.99	[0.97; 1.00]
	Zhang 2019 AI screening for DR (identification system)		348			[0.96; 0.99]
	Zhang 2022 AI screening for DR (InceptionV3_299)	35953	39533		0.91	[0.91; 0.91]
	Zhang 2022 AI screening for DR (InceptionV3_896)	35857		•		[0.90; 0.91]
	Common effect model		312719	11		[0.91; 0.91]
	Random effects model Heterogeneity: $I^2 = 99.6\%$, $\tau^2 = 1.2820$, $\chi^2_{15} = 4106.82$ ($\rho = 0$	0)		-	0.87	[0.79; 0.92]
	Dataset = Dataset 2					
	Ting 2017 Manual for referable DR	108501	109269		 0.99 	[0.99; 0.99]
	Ting 2017 Moderate and beyond with Manual	111525	111972			[1.00; 1.00]
	Common effect model		221241			[0.99; 0.99]
	Random effects model					[0.99; 1.00]
	Heterogeneity: $I^2 = 98.9\%$, $\tau^2 = 0.0792$, $\chi_1^2 = 90.92$ ($\rho < 0.00$	01)				
	Common effect model		533960	i		[0.94; 0.94]
	Random effects model				0.91	[0.83; 0.95]
	Heterogeneity: $I^2 = 99.9\%$, $\tau^2 = 2.3154$, $\chi^2_{12} = 14080.74$ ($\rho =$	0)		0.5 0.6 0.7 0.8 0.9 Specificity		
	Test for subgroup differences (common effect): $\chi_1^2 = 9930.60$		= 0)	operations		
	Test for subgroup differences (random effects): $\chi_1^2 = 90.64$, d	f = 1 (p <	0.0001)			
GURE 6						
necificity fore	est plot for dilated eyes.					

Dataset = Dataset 1 Piati: 2023 Mid DR with AI Piati: 2023 Mid DR with AI Piati: 2023 Mid DR with AI Sosale 2020 AI for referable DR 100 [0.90; 1.00] Sosale 2020 AI for any DR 105 [121 107 2017 AI for referable DR 3077 3379 Pedre 2015 AI screening for DR 2017 AI for referable DR 2017 AI for referable DR 2017 AI for referable DR 3022 I AI for Mod and beyond with AI 100 [0.99; 1.00] 100 [0.99; 0.91] 100 [0.99; 0.92] 100 [0.93; 0.91] 111 0.95 [0.91] 2017 AI for the for DR 112 202 113 222 113 222 113 222 113 222 113 222 113 222 113 222 113 222 113 222 114 2017 AI screening for DR 114 243 114 24	Study	Events	Total			Proportion	95%-CI	
Platti 2023 Moderate and beyond with Al 35 35 Sosale 2020 Al for referable DR 120 121 Sosale 2020 Al for referable DR 3057 3379 Ting 2017 Al for referable DR 3057 3379 Up 2017 Al for referable DR 3057 3379 Pedre 2015 Al screening for DR 213 232 Wang 2018 Al screening for DR 113 Rajalashimi 2016 Al screening for DR 113 Rajalashimi 2018 Al screening for DR 114 423 Zhang 2019 Al screening for DR 722 902 Mumar 2016 Al screening for DR 114 423 Zhang 2019 Al screening for DR 114 423 Zhang 2019 Al screening for DR 114 423 Zhang 2019 Al screening for DR 114 423 Common effect model Heterogeneity: $l^2 = 95.9$, $r^2 = 1.5209$, $\chi^2_{18} = 365.67$ ($p < 0.0001$) Ting 2017 Moderate and beyond with Manual 558 636 Out 10.991 (0.99	Dataset = Dataset 1				: :			
Piatti 2023 Moderate and beyond with Al 35 35 Sosale 2020 Al for referable DR 120 121 Sosale 2020 Al for referable DR 3057 3379 Ting 2017 Al for referable DR 3057 3379 Ting 2017 Moderate and beyond with Al 676 676 100 [0.99; 1.00] Ipp 2021 Al for Mod and beyond 356 373 Pedre 2015 Al screening for DR 213 222 0.95 [0.93; 0.97] Pedre 2015 Al screening for DR 182 188 0.97 [0.93; 0.99] Hansen 2015 Al screening for DR 91 113 Rajalaschimi 2018 Al screening for DR 184 191 Kumar 2016 Al screening for DR 184 191 Kumar 2016 Al screening for DR 184 191 Common effect model 0 0.96 [0.93; 0.99] Zhang 2022 Al screening for DR 1224 0 12440 14043 Zhang 2022 Al screening for DR 100 [0.996] 12844 14043 Common effect model 0 0.91 [0.90; 0.91] Random effects model Heterogeneity: $l^2 = 95.6\%$, $t^2 = 1.7266$, $\chi^2_{16} = 365.67$ ($\rho < 0.0001$) Test br subgroup differences (common effect) $\chi^2_1 = 0.58$ ($d = 1$ ($\rho = 0.7013$)	Piatti 2023 Mild DR with Al	70	101	-	11	0.69	[0.59; 0.78]	
Sosale 2020 Al for referable DR 120 121 0.99 [0.95; 1.00] Sosale 2020 Al for any DR 105 121 0.87 [0.79; 0.92] Ting 2017 Al for referable DR 3057 3379 0.00 [0.88; 0.91] Ting 2017 Moderate and beyond with Al 676 676 1.00 [0.99; 1.00] Ip 2021 Al for Mod and beyond 356 373 0.95 [0.93; 0.97] Pedre 2015 Al screening for DR 213 232 0.95 [0.92; 0.96] Wang 2018 Al screening for DR 182 188 0.95 [0.92; 0.98] Mansen 2015 Al screening for DR 184 191 0.96 [0.93; 0.99] Hansen 2015 Al screening for DR 184 191 0.96 [0.93; 0.99] Kumar 2016 Al screening for DR 184 191 0.96 [0.93; 0.99] Zhang 2019 Al screening for DR 184 191 0.96 [0.93; 0.99] Zhang 2019 Al screening for DR (identification system) 414 423 0.98 [0.96; 0.99] Zhang 2019 Al screening for DR (identification system) 414 423 0.97 [0.95; 0.99] Zhang 2022 Al screening for DR (inceptionV3_299) 12440 14043 0.97 [0.95; 0.99] Zhang 2022 Al screening for DR (inceptionV3_2896) 12894 14043 0.92 [0.92; 0.93] Common effect model 35930 0.91 [0.90; 0.91] Random effects model 0.95 [0.91; 0.97] Heterogeneity: $l^2 = 95.6\%$, $t^2 = 1.7266$, $\chi_{56}^2 = 365.67$ ($p < 0.0001$) Heterogeneity: $l^2 = 95.4\%$, $t^2 = 1.5029$, $\chi_{18}^2 = 373.14$ ($p < 0.0001$) The st or subgroup differences (common effect) $\chi_{16}^2 = 373.14$ ($p < 0.001$) Test for subgroup differences (common effect) $\chi_{16}^2 = 373.14$ ($p < 0.001$) Test for subgroup differences (common effect) $\chi_{16}^2 = 373.14$ ($p < 0.001$)	Piatti 2023 Moderate and beyond with Al	35	35		÷ –			
Sosale 2020 Al for any DR 105 121 0.087 (0.79; 0.92] Ting 2017 Al for referable DR 3057 3379 0.90 (0.88; 0.91] Ting 2017 Al for referable DR 356 373 0.90 (0.88; 0.91] Pedre 2015 Al screening for DR 535 566 0.95 (0.92; 0.96] Wang 2018 Al screening for DR 121 222 0.96] Hansen 2015 Al screening for DR 182 188 0.97 (0.93; 0.99) Hansen 2015 Al screening for DR 184 191 0.81 (0.72; 0.87] Rajalakshimi 2016 Al screening for DR 722 902 0.96 (0.93; 0.99) Kumar 2016 Al screening for DR 722 902 0.96 (0.93; 0.99) Zhang 2019 Al screening for DR (identification system) 412 423 0.97 (0.95; 0.99) Zhang 2022 Al screening for DR (identification system) 412 423 0.97 (0.95; 0.99) Zhang 2022 Al screening for DR (identification system) 412 423 0.97 (0.95; 0.99) Zhang 2022 Al screening for DR (identification system) 412 423 0.97 (0.95; 0.99) Zhang 2022 Al screening for DR (identification system) 412 423 0.97 (0.95; 0.99) Zhang 2022 Al screening for DR (identification system) 412 423 0.97 (0.95; 0.99] Zhang 2022 Al screening for DR (identification system) 412 423 0.97 (0.95; 0.99] Zhang 2022 Al screening for DR (identification system) 412 423 0.97 (0.95; 0.99] Zhang 2022 Al screening for DR (identification system) 412 423 0.97 (0.95; 0.99] Zhang 2022 Al screening for DR (identification system) 412 423 0.97 (0.92; 0.93] Common effect model 0.99 (0.90; 0.91] Random effects model 0.91 (0.90; 0.92] Ting 2017 Manual for referable DR 3077 3379 0.91 (0.90; 0.91] Random effects model 0.91 (0.90; 0.92] Ting 2017 Manual for referable DR 3077 3379 0.91 (0.90; 0.92] Common effect model 0.91 (0.90; 0.92] Heterogeneity: $l^2 = 95.2\%$, $\tau^2 = 1.5029$, $\chi_{10}^2 = 3.73.14 (p < 0.0001)$ Ter for subgroup differences (common effect model 39945 Common effect model 0.91 (0.90; 0.91] Random effects model 0.91 (0.90; 0.91] Ter tor subgroup differences (common effect model 2.92 = 0.15, df = 1 (p = 0.7013)		120	121		: - •			
Ting 2017 Al for referable DR 3057 3379 Ting 2017 Moderate and beyond with Al 676 676 10p 2021 Al for Mod and beyond 356 373 Pedre 2015 Al screening for DR 213 232 Abramoff 2016 Al screening for DR 182 188 Abramoff 2016 Al screening for DR 184 191 Hansen 2015 Al screening for DR 184 191 Wum 2016 Al screening for DR (Grading system) 414 423 Zhang 2019 Al screening for DR (Grading system) 414 423 Zhang 2022 Al screening for DR (InceptionV3_896) 12984 14043 Common effect model 33930 Common effect model 33930 Common effect model 4015 Random effects model Heterogeneity: $l^2 = 95.6\%$, $\tau^2 = 1.7266$, $\chi_{16}^2 = 365.67$ ($p < 0.0001$) Common effect model 39945 Common effect model 001 Heterogeneity: $l^2 = 95.4\%$, $\tau^2 = 1.5029$, $\chi_{16}^2 = 373.14$ ($p < 0.0001$) Text or subgroup differences (common effect; $\chi_{16}^2 = 373.14$ ($p < 0.0001$) Text or subgroup differences (common effect; $\chi_{16}^2 = 373.14$ ($p < 0.0001$) Text or subgroup differences (common effect; $\chi_{16}^2 = 373.14$ ($p < 0.0001$) Text or subgroup differences (common effect; $\chi_{16}^2 = 373.14$ ($p < 0.0001$) Text or subgroup differences (common effect; $\chi_{16}^2 = 373.14$ ($p < 0.0001$) Text or subgroup differences (common effect; $\chi_{16}^2 = 373.14$ ($p < 0.0001$) Text or subgroup differences (common effect; $\chi_{16}^2 = 373.14$ ($p < 0.0001$) Text or subgroup differences (common effect; $\chi_{16}^2 = 1.5, df = 1$ ($p = 0.7013$)				_	÷ –			
Ting 2017 Moderate and beyond with AI 676 676 1pp 2021 AI for Mod and beyond 356 373 Pedter 2015 AI screening for DR 535 566 Wang 2018 AI screening for DR 213 232 Abramoff 2016 AI screening for DR 182 188 Hansen 2015 AI screening for DR 91 113 Rajalakshimi 2018 AI screening for DR 722 902 Zhang 2019 AI screening for DR 722 902 Zhang 2019 AI screening for DR 722 902 Zhang 2019 AI screening for DR 184 191 Aumar 2016 AI screening for DR 722 902 Zhang 2019 AI screening for DR 722 902 Zhang 2019 AI screening for DR (identification system) 414 423 Zhang 2019 AI screening for DR (inceptionV3_299) 12440 14043 Zhang 2022 AI screening for DR (inceptionV3_299) 12440 14043 Common effect model 35930 Common effect model 4015 Random effects model Heterogeneity: $l^2 = 95.4\%$, $t^2 = 0.0205$, $\chi_1^2 = 6.85 (p = 0.0089)$ Common effect model 39945 Common effect model 9945 Common effect model 9945 Common effect model 995 0.991 Heterogeneity: $l^2 = 95.4\%$, $t^2 = 1.5029$, $\chi_{18}^2 = 373.14 (p < 0.0001)$ Heterogeneity: $l^2 = 95.2\%$, $t^2 = 1.5029$, $\chi_{18}^2 = 373.14 (p < 0.0001)$ Test for subgroup differences (common effect; $\chi_1^2 = 0.15$, $dt = 1 (p = 0.7013)$					÷ .			
$ \begin{array}{c} p_{0}^{2}2021 \ \text{Al for Mod and beyond} & 356 & 373 & 0.95 & [0.93; 0.97] \\ \text{Pedre 2015 Al screening for DR & 213 & 232 & 0.92 & [0.88; 0.95] \\ \text{Wang 2018 Al screening for DR & 182 & 188 & 0.97 & [0.93; 0.99] \\ \text{Hansen 2015 Al screening for DR & 91 & 113 & 0.81 & [0.72; 0.87] \\ \text{Raisen 2018 Al screening for DR & 184 & 191 & 0.86 & [0.93; 0.99] \\ \text{Kumar 2016 Al screening for DR & 722 & 902 & 0.88 & [0.96; 0.93] \\ \text{Zhang 2019 Al screening for DR & 114 & 423 & 0.98 & [0.96; 0.99] \\ \text{Zhang 2019 Al screening for DR (Grading system) & 414 & 423 & 0.98 & [0.96; 0.99] \\ \text{Zhang 2022 Al screening for DR (InceptionV3_299) & 12440 & 14043 & 0.89 & [0.88; 0.89] \\ \text{Zhang 2022 Al screening for DR (InceptionV3_299) & 12440 & 14043 & 0.92 & [0.92; 0.93] \\ \text{Common effect model & 35930 & 0.91 & [0.90; 0.91] \\ \text{Heterogeneity: } l^2 = 95.6\%, \tau^2 = 1.7266, \chi_{16}^2 = 365.67 (p < 0.0001) \\ \hline \\ $					T 🗖			
Pedre 2015 Al screening for DR 535 566 0.95 [0.92; 0.96] Wang 2018 Al screening for DR 213 232 0.92 [0.88; 0.95] Abramoff 2016 Al screening for DR 182 188 0.97 [0.93; 0.99] Hansen 2015 Al screening for DR 184 191 0.96 [0.93; 0.99] Kumar 2016 Al screening for DR 722 902 0.86 [0.97; 0.83] Zhang 2019 Al screening for DR 124 423 0.97 [0.95; 0.99] Zhang 2019 Al screening for DR (identification system) 412 423 0.97 [0.95; 0.99] Zhang 2022 Al screening for DR (inceptionV3_299) 12440 14043 0.99 [0.88; 0.89] Zhang 2022 Al screening for DR (inceptionV3_299) 12440 14043 0.99 [0.98; 0.99] Zhang 2022 Al screening for DR (inceptionV3_299) 12440 14043 0.92 [0.92; 0.92] Common effect model 35930 0.91 [0.90; 0.91] Random effects model Heterogeneity: $t^2 = 95.6\%$, $t^2 = 1.7266$, $\chi^2_{16} = 365.67$ ($\rho < 0.0001$) Common effect model 0.91 [0.90; 0.92] Ting 2017 Manual for referable DR 3077 3379 0.91 [0.90; 0.92] Ting 2017 Maderate and beyond with Manual 558 636 0.91 [0.94] Common effect model 0.91 [0.90; 0.92] Heterogeneity: $t^2 = 95.6\%$, $t^2 = 1.7266$, $\chi^2_{16} = 365.67$ ($\rho < 0.0001$) Common effect model 0.91 [0.90; 0.91] Random effects model 0.91 [0.90; 0.91] Heterogeneity: $t^2 = 95.2\%$, $t^2 = 1.5029$, $\chi^2_{18} = 373.14$ ($\rho < 0.0001$) Test for subgroup differences (common effect; $\chi^2_1 = 0.15$, $df = 1$ ($\rho = 0.7013$)					3 4 T			
Wang 2018 Al screening for DR 213 232 0.92 [0.88: 0.95] Abramoff 2016 Al screening for DR 182 188 0.97 [0.93: 0.99] Hansen 2015 Al screening for DR 113 0.96 [0.93: 0.99] Kumar 2016 Al screening for DR 184 191 0.96 [0.93: 0.99] Kumar 2016 Al screening for DR 184 191 0.96 [0.93: 0.99] Kumar 2016 Al screening for DR 184 191 0.96 [0.93: 0.99] Zhang 2019 Al screening for DR (Grading system) 411 423 0.97 [0.95: 0.99] Zhang 2022 Al screening for DR (InceptionV3_299) 12440 14043 0.89 [0.88: 0.89] Zhang 2022 Al screening for DR (InceptionV3_896) 12984 14043 0.92 [0.92: 0.93] Common effect model 35930 0.91 [0.90: 0.91] 0.91 [0.90: 0.92] Random effects model 4015 0.95 [0.91: 0.97] 0.91 [0.90: 0.92] Ting 2017 Manual for referable DR 3077 3379 0.91 [0.90: 0.92] 0.91 [0.90: 0.92] Random effects model 4015 0.91 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
Abramoff 2016 AI screening for DR 182 188 Hansen 2015 AI screening for DR 91 113 Rajalakshimi 2018 AI screening for DR 184 191 Kumar 2016 AI screening for DR 722 902 Zhang 2019 AI screening for DR (Grading system) 414 423 Zhang 2019 AI screening for DR (Grading system) 414 423 Zhang 2019 AI screening for DR (InceptionV3_299) 12440 14043 Zhang 2022 AI screening for DR (InceptionV3_299) 12984 14043 Common effect model Random effects model Heterogeneity: $l^2 = 95.6\%$, $t^2 = 1.7266$, $\chi_{16}^2 = 365.67$ ($\rho < 0.0001$) Common effect model Random effects model Heterogeneity: $l^2 = 95.2\%$, $t^2 = 1.5029$, $\chi_{16}^2 = 373.14$ ($\rho < 0.0001$) Test for subgroup differences (common effect; $\chi_{16}^2 = 373.14$ ($\rho < 0.0001$) Test for subgroup differences (common effect; $\chi_{16}^2 = 373.14$ ($\rho < 0.0001$)				_				
Hansen 2015 Al screening for DR 91 113 Rajalakshimi 2018 Al screening for DR 184 191 Umar 2016 Al screening for DR 722 902 Chang 2019 Al screening for DR (Grading system) 414 423 Chang 2019 Al screening for DR (InceptionV3_299) 12440 14043 Chang 2022 Al screening for DR (InceptionV3_299) 12440 14043 Common effect model Random effects model Heterogeneity: $l^2 = 95.6\%$, $\tau^2 = 1.7266$, $\chi^2_{16} = 365.67$ ($\rho < 0.0001$) Common effect model Random effects model Heterogeneity: $l^2 = 85.4\%$, $\tau^2 = 0.0205$, $\chi^2_{1} = 6.85$ ($\rho = 0.0089$) Common effect model Random effects model Heterogeneity: $l^2 = 95.2\%$, $\tau^2 = 1.5029$, $\chi^2_{16} = 373.14$ ($\rho < 0.0001$) Test for subgroup differences (common effect); $\chi^2_{1} = 0.15$, df = 1 ($\rho = 0.7013$) Heterogeneity: $l^2 = 95.2\%$, $\tau^2 = 1.5029$, $\chi^2_{16} = 373.14$ ($\rho < 0.0001$) Test for subgroup differences (common effect); $\chi^2_{1} = 0.15$, df = 1 ($\rho = 0.7013$)					- -			
Rajalakshimi 2018 Al screening for DR 184 191 0.96 0.93; 0.99] Kumar 2016 Al screening for DR 722 902 0.80 0.77; 0.83] Zhang 2019 Al screening for DR (Grading system) 414 423 0.98 0.96; 0.99] Zhang 2019 Al screening for DR (identification system) 412 423 0.97; 0.95; 0.99] Zhang 2022 Al screening for DR (inceptionV3_299) 12440 14043 0.92 0.92; 0.92; 0.93] Common effect model 35930 0.91 0.91 0.90; 0.91] Random effects model 35930 0.91 0.91 0.90; 0.92] Heterogeneity: I ² = 95.6%, t ² = 1.7266, χ_{16}^2 = 365.67 ($p < 0.0001$) 0.91 0.90; 0.92] Ting 2017 Manual for referable DR 3077 3379 0.91 0.91 0.90; 0.92] Ting 2017 Moderate and beyond with Manual 558 636 0.88 0.88; 0.85; 0.90] 0.91 0.90; 0.92] Random effects model 4015 0.91 0.90 0.91 0.90; 0.97] Random effects model 4015 0.91 0.91 0.90; 0.97] Heterogeneity: I ² = 85.4%, t ² = 0.0205, \chi_1^2 = 6.85 ($p = 0$				_				
Kumar 2016 Al screening for DR 722 902 - 0.80 [0.77; 0.83] Zhang 2019 Al screening for DR (Grading system) 414 423 0.97 [0.95; 0.99] Zhang 2022 Al screening for DR (inceptionV3_299) 12440 14043 0.97 [0.95; 0.99] Zhang 2022 Al screening for DR (inceptionV3_299) 12440 14043 0.92 [0.92; 0.93] Common effect model 35930 0.91 [0.90; 0.91] 0.91 [0.90; 0.92] Random effects model 35930 0.91 [0.90; 0.92] 0.91 [0.90; 0.92] Heterogeneity: $l^2 = 95.6\%$, $t^2 = 1.7266$, $\chi_{16}^2 = 365.67$ ($p < 0.0001$) 0.91 [0.90; 0.92] 0.91 [0.90; 0.92] Ting 2017 Manual for referable DR 3077 3379 0.91 [0.90; 0.92] 0.91 [0.90; 0.92] Random effect model 4015 0.91 [0.90; 0.92] 0.91 [0.90; 0.92] 0.91 [0.90; 0.91] 0.91 [0.90; 0.91] 0.91 [0.90; 0.91] 0.91 [0.90; 0.91] 0.91 [0.90; 0.91] 0.91 [0.90; 0.91] 0.91 [0.90; 0.91] 0.91 [0.90; 0.91] 0.94 [0.90; 0.91]				-	1 - - -			
Zhang 2019 Al screening for DR (Grading system) 414 423 Zhang 2019 Al screening for DR (identification system) 412 423 Zhang 2022 Al screening for DR (inceptionV3_299) 12440 14043 Zhang 2022 Al screening for DR (inceptionV3_299) 12440 14043 Zhang 2022 Al screening for DR (inceptionV3_299) 12440 14043 Zhang 2022 Al screening for DR (inceptionV3_299) 12440 14043 Common effect model 35930 Common effect model 0.95 [0.92] 0.92 (0.92 (0.92) 0.91] Random effects model Heterogeneity: $l^2 = 95.6\%$, $t^2 = 1.7266$, $\chi_{56}^2 = 365.67$ ($p < 0.0001$) Dataset = Dataset 2 Ting 2017 Manual for referable DR 3077 3379 Ting 2017 Moderate and beyond with Manual 558 636 Common effect model 4015 Common effect model 4015 Random effects model Heterogeneity: $l^2 = 85.4\%$, $t^2 = 0.0205$, $\chi_1^2 = 6.85$ ($p = 0.0089$) Common effect model 9 Heterogeneity: $l^2 = 95.2\%$, $t^2 = 1.5029$, $\chi_{18}^2 = 373.14$ ($p < 0.0001$) Test for subgroup differences (common effect); $\chi_1^2 = 0.15$, $df = 1$ ($p = 0.7013$)								
Zhang 2019 Al screening for DR (identification system) 412 423 Zhang 2022 Al screening for DR (inceptionV3_299) 12440 14043 Zhang 2022 Al screening for DR (inceptionV3_299) 12440 14043 Common effect model 01 Random effects model 0.92 [0.92; 0.93] Random effects model 0.95 [0.91; 0.97] Heterogeneity: $I^2 = 95.6\%$, $t^2 = 1.7266$, $\chi_{16}^2 = 365.67$ ($\rho < 0.0001$) Dataset = Dataset 2 Ting 2017 Manual for referable DR 3077 3379 Ting 2017 Moderate and beyond with Manual 558 636 Common effect model 0.91 [0.90; 0.92] Ting 2017 Moderate and beyond with Manual 558 636 Common effect model 0.91 [0.90; 0.92] Random effects model 0.91 [0.90; 0.91] Random effects model 0.91 [0.90; 0.91] Random effects model 0.91 [0.90; 0.91] Random effect model 0.91 [0.90; 0.91] Random effects model 0.91 [0.90; 0.91] Heterogeneity: $I^2 = 85.4\%$, $t^2 = 0.0205$, $\chi_1^2 = 6.85$ ($\rho = 0.0089$) Common effect model 0.91 [0.90; 0.91] Heterogeneity: $I^2 = 95.2\%$, $t^2 = 1.5029$, $\chi_{18}^2 = 373.14$ ($\rho < 0.0001$) Test for subgroup differences (common effect): $\chi_1^2 = 0.15$, $df = 1$ ($\rho = 0.7013$)				-	1 .			
Zhang 2022 AI screening for DR (InceptionV3_299) 12440 14043 Zhang 2022 AI screening for DR (InceptionV3_896) 12984 14043 Common effect model 35930 Random effects model Heterogeneity: $I^2 = 95.6\%$, $t^2 = 1.7266$, $\chi^2_{16} = 365.67$ ($p < 0.0001$) Dataset = Dataset 2 Ting 2017 Manual for referable DR 3077 3379 Ting 2017 Moderate and beyond with Manual 558 636 Common effect model Random effects model Heterogeneity: $I^2 = 85.4\%$, $t^2 = 0.0205$, $\chi^2_1 = 6.85$ ($p = 0.0089$) Common effect model Heterogeneity: $I^2 = 95.2\%$, $t^2 = 1.5029$, $\chi^2_{16} = 373.14$ ($p < 0.0001$) Heterogeneity: $I^2 = 95.2\%$, $t^2 = 1.5029$, $\chi^2_{16} = 373.14$ ($p < 0.0001$) Test for subgroup differences (common effect); $\chi^2_1 = 0.15$, $df = 1$ ($p = 0.7013$)					: .			
Zhang 2022 Al screening for DR (InceptionV3_896) 12984 14043 Common effect model 35930 Random effects model 0.91 [0.90; 0.91] Heterogeneity: $l^2 = 95.6\%$, $t^2 = 1.7266$, $\chi_{16}^2 = 365.67$ ($p < 0.0001$) Dataset = Dataset 2 Ting 2017 Manual for referable DR 3077 3379 Ting 2017 Moderate and beyond with Manual 558 636 Common effect model 4015 Random effects model 0.91 [0.90; 0.92] Random effects model 0.91 [0.90; 0.92] Random effects model 0.91 [0.90; 0.92] Random effect model 0.91 [0.90; 0.92] Random effect model 0.91 [0.90; 0.91] Random effect model 0.91 [0.90; 0.91] Random effect model 0.91 [0.90; 0.91] Heterogeneity: $l^2 = 85.4\%$, $t^2 = 0.0205$, $\chi_1^2 = 6.85$ ($p = 0.0089$) Common effect model 0.91 [0.90; 0.91] Random effects model 0.91 [0.90; 0.91] Random effects model 0.91 [0.90; 0.91] Random effects model 0.91 [0.90; 0.91] Random effect model 39945 Common effect model 0.91 [0.90; 0.91] Random effects model 0.91 [0.90; 0.91] Random effects model 0.91 [0.90; 0.91] Random effects model 0.91 [0.90; 0.91] Random effect model 1.95.2%, $t^2 = 1.5029$, $\chi_{18}^2 = 373.14$ ($p < 0.0001$) Test for subgroup differences (common effect); $\chi_1^2 = 0.15$, $df = 1$ ($p = 0.7013$)								
Common effect model 35930 0.91 [0.90; 0.91] Random effects model 0.95 [0.91; 0.97] Heterogeneity: $l^2 = 95.6\%$, $t^2 = 1.7266$, $\chi_{56}^2 = 365.67$ ($p < 0.0001$) 0.95 [0.91; 0.97] Dataset = Dataset 2 0.91 [0.90; 0.92] Ting 2017 Manual for referable DR 3077 3379 Common effect model 4015 Common effect model 4015 Random effects model 0.91 [0.90; 0.91] Random effect model 4015 Random effect model 0.91 [0.90; 0.91] Random effect model 0.91 [0.90; 0.91] Random effect model 0.91 [0.90; 0.91] Heterogeneity: $l^2 = 85.4\%$, $t^2 = 0.0205$, $\chi_1^2 = 6.85$ ($p = 0.0089$) 0.91 [0.90; 0.91] Common effect model 39945 0.91 [0.90; 0.91] Random effects model 0.94 [0.90; 0.97] Heterogeneity: $l^2 = 95.2\%$, $t^2 = 1.5029$, $\chi_{18}^2 = 373.14$ ($p < 0.0001$) Sensitivity Test for subgroup differences (common effect): $\chi_1^2 = 0.15$, $df = 1$ ($p = 0.7013$) 0.91 [0.90; 0.97]				-				
Random effects model 0.95 [0.91; 0.97] Heterogeneity: $I^2 = 95.6\%$, $\tau^2 = 1.7266$, $\chi_{16}^2 = 365.67$ ($p < 0.0001$) 0.95 [0.91; 0.97] Dataset = Dataset 2 Ting 2017 Manual for referable DR 3077 3379 0.91 [0.90; 0.92] Ting 2017 Moderate and beyond with Manual 558 636 0.91 [0.90; 0.92] Common effect model 4015 0.91 [0.90; 0.91] Random effects model 0.91 [0.90; 0.91] 0.90 [0.87; 0.92] Heterogeneity: $I^2 = 85.4\%$, $\tau^2 = 0.0205$, $\chi_1^2 = 6.85$ ($p = 0.0089$) 0.91 [0.90; 0.91] 0.94 [0.90; 0.91] Common effect model 39945 0.91 [0.90; 0.91] 0.94 [0.90; 0.97] Heterogeneity: $I^2 = 95.2\%$, $\tau^2 = 1.5029$, $\chi_{18}^2 = 373.14$ ($p < 0.0001$) Sensitivity 0.91 [0.90; 0.91] Test for subgroup differences (common effect): $\chi_1^2 = 0.15$, $df = 1$ ($p = 0.7013$) 0.91 [0.90; 0.91] 0.91 [0.90; 0.91]					- T			
Heterogeneity: $l^2 = 95.6\%$, $t^2 = 1.7266$, $\chi_{56}^2 = 365.67$ ($p < 0.0001$) Dataset = Dataset 2 Ting 2017 Manual for referable DR 3077 3379 Ting 2017 Moderate and beyond with Manual 558 636 Common effect model 4015 Random effects model Heterogeneity: $l^2 = 85.4\%$, $t^2 = 0.0205$, $\chi_1^2 = 6.85$ ($p = 0.0089$) Common effect model 39945 Random effects model 0.91 [0.90; 0.91] 0.90 [0.87; 0.92] Heterogeneity: $l^2 = 95.2\%$, $t^2 = 1.5029$, $\chi_{26}^2 = 373.14$ ($p < 0.0001$) Test for subgroup differences (common effect); $\chi_1^2 = 0.15$, $df = 1$ ($p = 0.7013$)					-			
Ting 2017 Manual for referable DR 3077 3379 0.91 $[0.90; 0.92]$ Ting 2017 Moderate and beyond with Manual 558 636 0.88 $[0.85; 0.90]$ Common effect model 4015 0.91 $[0.90; 0.91]$ Random effects model 0.91 $[0.90; 0.91]$ Heterogeneity: $l^2 = 85.4\%$, $t^2 = 0.0205$, $\chi_1^2 = 6.85$ ($p = 0.0089$) 0.91 $[0.90; 0.91]$ Common effect model 39945 0.91 $[0.90; 0.91]$ Random effects model 0.94 $[0.90; 0.91]$ 0.94 $[0.90; 0.91]$ Heterogeneity: $l^2 = 95.2\%$, $t^2 = 1.5029$, $\chi_{18}^2 = 373.14$ ($p < 0.0001$) 0.6 0.7 0.8 0.9 1 Heterogeneity: $l^2 = 95.2\%$, $t^2 = 1.5029$, $\chi_{18}^2 = 373.14$ ($p < 0.0001$) Sensitivity Sensitivity 0.91 $0.90; 0.97$		0001)						
Ting 2017 Moderate and beyond with Manual 558 636 0.88 (0.85; 0.90] 0.91 (0.90; 0.91] 0.90 (0.92; 0.91] 0.90 (0.92; 0.91] 0.90 (0.90; 0.91] 0.90 (0.90; 0.91] 0.90 (0.90; 0.91] 0.90 (0.90; 0.91] 0.91 (0.90; 0.91] 0.91 (0.90; 0.91] 0.94 (0.90; 0.97] Heterogeneity: $l^2 = 95.2\%$, $t^2 = 1.5029$, $\chi_{18}^2 = 373.14$ ($p < 0.0001$) 0.6 0.7 0.8 0.9 1 Heterogeneity: $l^2 = 95.2\%$, $t^2 = 1.5029$, $\chi_{18}^2 = 373.14$ ($p < 0.0001$) 0.6 0.7 0.8 0.9 1 Test for subgroup differences (common effect): $\chi_1^2 = 0.15$, $df = 1$ ($p = 0.7013$) 0.9011 0.	Dataset = Dataset 2							
Ting 2017 Moderate and beyond with Manual 558 636 0.88 (0.85; 0.90] 0.91 (0.90; 0.91] 0.90 (0.92; 0.91] 0.90 (0.92; 0.91] 0.90 (0.90; 0.91] 0.90 (0.90; 0.91] 0.90 (0.90; 0.91] 0.90 (0.90; 0.91] 0.91 (0.90; 0.91] 0.91 (0.90; 0.91] 0.94 (0.90; 0.97] Heterogeneity: $l^2 = 95.2\%$, $t^2 = 1.5029$, $\chi_{18}^2 = 373.14$ ($p < 0.0001$) 0.6 0.7 0.8 0.9 1 Heterogeneity: $l^2 = 95.2\%$, $t^2 = 1.5029$, $\chi_{18}^2 = 373.14$ ($p < 0.0001$) 0.6 0.7 0.8 0.9 1 Test for subgroup differences (common effect): $\chi_1^2 = 0.15$, $df = 1$ ($p = 0.7013$) 0.9011 0.	Ting 2017 Manual for referable DR	3077	3379			0.91	[0.90; 0.92]	
Random effects model Heterogeneity: $l^2 = 85.4\%$, $\tau^2 = 0.0205$, $\chi_1^2 = 6.85$ ($\rho = 0.0089$) 0.90 [0.87; 0.92] Common effect model Random effects model 39945 0.91 [0.90; 0.91] Heterogeneity: $l^2 = 95.2\%$, $\tau^2 = 1.5029$, $\chi_{18}^2 = 373.14$ ($\rho < 0.0001$) Test for subgroup differences (common effect); $\chi_1^2 = 0.15$, $df = 1$ ($\rho = 0.7013$) 0.80 [0.87; 0.92]	Ting 2017 Moderate and beyond with Manual	558	636	-	-	0.88	[0.85; 0.90]	
Random effects model Heterogeneity: $I^2 = 85.4\%$, $\tau^2 = 0.0205$, $\chi_1^2 = 6.85$ ($\rho = 0.0089$) 0.90 [0.87; 0.92] Common effect model Random effects model 39945 0.91 [0.90; 0.91] Heterogeneity: $I^2 = 95.2\%$, $\tau^2 = 1.5029$, $\chi_{18}^2 = 373.14$ ($\rho < 0.0001$) Test for subgroup differences (common effect); $\chi_1^2 = 0.15$, $df = 1$ ($\rho = 0.7013$) 0.80 [0.87; 0.92]	Common effect model		4015	_	•	0.91	[0.90; 0.91]	
Heterogeneity: $l^2 = 85.4\%$, $\tau^2 = 0.0205$, $\chi_1^2 = 6.85$ ($\rho = 0.0089$) Common effect model Random effects model Heterogeneity: $l^2 = 95.2\%$, $\tau^2 = 1.5029$, $\chi_{16}^2 = 373.14$ ($\rho < 0.0001$) Test for subgroup differences (common effect); $\chi_1^2 = 0.15$, $df = 1$ ($\rho = 0.7013$) 0.6 0.7 0.8 0.9 1 Sensitivity	Random effects model			<	>			
Random effects model 0.94 [0.90; 0.97] Heterogeneity: $l^2 = 95.2\%$, $t^2 = 1.5029$, $\chi^2_{16} = 373.14$ ($\rho < 0.0001$) 0.6 0.7 0.8 0.9 1 Heterogeneity: $l^2 = 95.2\%$, $t^2 = 1.5029$, $\chi^2_{16} = 373.14$ ($\rho < 0.0001$) Sensitivity Sensitivity	Heterogeneity: $I^2 = 85.4\%$, $\tau^2 = 0.0205$, $\chi_1^2 = 6.85$ ($\rho = 0.008$	9)						
Heterogeneity: $l^2 = 95.2\%$, $\tau^2 = 1.5029$, $\chi^2_{18} = 373.14$ ($\rho < 0.0001$) Test for subgroup differences (common effect): $\chi^2_1 = 0.15$, df = 1 ($\rho = 0.7013$)	Common effect model		39945			0.91	[0.90; 0.91]	
Heterogeneity: $l^2 = 95.2\%$, $\tau^2 = 1.5029$, $\chi^2_{18} = 373.14$ ($\rho < 0.0001$) Sensitivity Test for subgroup differences (common effect): $\chi^2_1 = 0.15$, df = 1 ($\rho = 0.7013$)	Random effects model				-	0.94	[0.90; 0.97]	
Heterogeneity: $l^2 = 95.2\%$, $\tau^2 = 1.5029$, $\chi^2_{18} = 373.14$ ($\rho < 0.0001$) Sensitivity Test for subgroup differences (common effect): $\chi^2_1 = 0.15$, df = 1 ($\rho = 0.7013$)								
Test for subgroup differences (common effect): $\chi_1^2 = 0.15$, df = 1 ($\rho = 0.7013$)	Heterogeneity: $l^2 = 95.2\%$, $\tau^2 = 1.5029$, $\gamma_{e_1}^2 = 373.14$ ($\rho < 0.0$	0001)	0.6		1.9			
			.7013)					
	and a second sec		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
	forest plat for dilated aves							

FIG

Sensitivity forest plot for dilated eyes.

		D1	Ris D2	k of bias dom D3	ains D4	Overall
	Study 1	+	+	+	+	+
	Study 2	+	+	+	+	+
	Study 3	+	+	+	-	-
	Study 4	+	+	+	+	+
	Study 5	+	+	+	+	+
	Study 6	+	+	+	+	+
	Study 7	+	+	+	+	+
Study	Study 8	+	-	-	+	-
Sti	Study 9	+	+	+	+	+
	Study 10	+	+	+	+	+
	Study 11	+	-	-	+	-
	Study 12	+	+	+	+	+
	Study 13	+	+	+	+	+
	Study 14	+	+	+	+	+
	Study 15	+	+	+	+	+
	Study 16	+	+	+	+	+
		Domains: D1: Patient sel D2: Index test. D3: Reference D4: Flow & tim	standard.		Ju - -	dgement Some concerns Low
ent t	raffic light plot	D4: Flow & tim	ing.			COW.

10.3389/fmed	.2025.1519768
--------------	---------------

Study		Adequac	Adequacy of selection		Comparability	NO	Outcome assessment	ent	Asterisk	Overall
	Representative Selection of of the exposed the exposed cohorts cohorts	Selection of the exposed cohorts	Representative Selection of ascertainment of the exposed the exposed of exposure cohorts cohorts	Demonstration that Outcome of Interest was Not Present at Start of Study		Assessment of outcomes	Follow-up period long enough for outcome to occur	Adequacy of follow-up period among cohorts	rating	
Sedova et al. 2022 (14)	*		*	*	* *	*	×	*	8.0/9.0	Low
Tokuda et al. 2022 (17)	*		*	*	* *	*		*	7.0/9.0	Low
Li et al. 2022 (11)	*		*	*	**	*		*	7.0/9.0	Low
Limwattanayingyong et al. 2020 (24)	*		*		*	*	*	*	7.0/9.0	Low

be essential to confirm these findings and guide the adoption of AI in DR screening protocols.

Data availability statement

The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.

Author contributions

HT: Conceptualization, Methodology, Project administration, Supervision, Writing – original draft, Writing – review & editing. NU: Conceptualization, Data curation, Formal analysis, Investigation, Writing – review & editing, Writing – original draft. MT: Formal analysis, Validation, Writing – review & editing. ID: Data curation, Formal analysis, Writing – review & editing. RP: Data curation, Validation, Writing – review & editing. SM: Formal analysis, Writing – review & editing. SM: Formal analysis, Writing – review & editing. AA: Methodology, Writing – review & editing. ST: Formal analysis, Writing – review & editing. YA: Methodology, Writing – review & editing.

Funding

The author(s) declare that no financial support was received for the research and/or publication of this article.

Acknowledgments

The authors would like to thank the Deanship of Scientific Research at Shaqra University for supporting this work. This research is supported by the author, there are no sponsors or funds for the research.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Generative Al statement

The authors declare that no Gen AI was used in the creation of this manuscript.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

TABLE 4 Asterisk rating in observational studies according Newcastle-Ottawa scale (NOS) tool

References

1. World Health Organization. Global report on diabetes. Geneva: World Health Organization (2016).

2. Teo ZL, Tham YC, Yu M, Chee ML, Rim TH, Cheung N, et al. Global prevalence of diabetic retinopathy and projection of burden through 2045: systematic review and meta-analysis. *Ophthalmology*. (2021) 128:1580–91. doi: 10.1016/j.ophtha.2021.04.027

3. World Health Organization. (2023) Blindness and visual impairment fact sheet. Available online at: https://www.who.int/news-room/fact-sheets/detail/blindness-and-visual-impairment

4. Piyasena M, Murthy GVS, Yip JLY, Gilbert C, Zuurmond M, Peto T, et al. Systematic review on barriers and enablers for access to diabetic retinopathy screening services in different income settings. *PLoS One*. (2019) 14:e0198979. doi: 10.1371/journal.pone.0198979

5. Hasan SU, Siddiqui MAR. Diagnostic accuracy of smartphone-based artificial intelligence systems for detecting diabetic retinopathy: a systematic review and metaanalysis. *Diabetes Res Clin Pract.* (2023) 205:110943. doi: 10.1016/j.diabres.2023.110943

6. Uy H, Fielding C, Hohlfeld A, Ochodo E, Opare A, Mukonda E, et al. Diagnostic test accuracy of artificial intelligence in screening for referable diabetic retinopathy in real-world settings: a systematic review and meta-analysis. *PLOS Glob Public Health*. (2023) 3:e0002160. doi: 10.1371/journal.pgph.0002160

7. Wang S, Zhang Y, Lei S, Zhu H, Li J, Wang Q, et al. Performance of deep neural network-based artificial intelligence method in diabetic retinopathy screening: a systematic review and meta-analysis of diagnostic test accuracy. *Eur J Endocrinol.* (2020) 183:41–9. doi: 10.1530/EJE-19-0968

8. Zhelev Z, Peters J, Rogers M, Allen M, Kijauskaite G, Seedat F, et al. Test accuracy of artificial intelligence-based grading of fundus images in diabetic retinopathy screening: a systematic review. *J Med Screen*. (2023) 30:97–112. doi: 10.1177/09691413221144382

9. Tan CH, Kyaw BM, Smith H, Tan CS, Tudor Car L. Use of smartphones to detect diabetic retinopathy: scoping review and Meta-analysis of diagnostic test accuracy studies. *J Med Internet Res.* (2020) 22:e16658. doi: 10.2196/16658

10. Ipp E, Liljenquist D, Bode B, Shah VN, Silverstein S, Regillo CD, et al. Pivotal evaluation of an artificial intelligence system for autonomous detection of referrable and vision-threatening diabetic retinopathy. *JAMA Netw Open.* (2021) 4:e2134254. doi: 10.1001/jamanetworkopen.2021.34254

11. Li N, Ma M, Lai M, Gu L, Kang M, Wang Z, et al. A stratified analysis of a deep learning algorithm in the diagnosis of diabetic retinopathy in a real-world study. *J Diabetes.* (2022) 14:111–20. doi: 10.1111/1753-0407.13241

12. Lupidi M, Danieli L, Fruttini D, Nicolai M, Lassandro N, Chhablani J, et al. Artificial intelligence in diabetic retinopathy screening: clinical assessment using handheld fundus camera in a real-life setting. *Acta Diabetol.* (2023) 60:1083–8. doi: 10.1007/s00592-023-02104-0

13. Piatti A, Romeo F, Manti R, Doglio M, Tartaglino B, Nada E, et al. Feasibility and accuracy of the screening for diabetic retinopathy using a fundus camera and an artificial intelligence pre-evaluation application. *Acta Diabetol.* (2024) 61:63–8. doi: 10.1007/s00592-023-02172-2

14. Sedova A, Hajdu D, Datlinger F, Steiner I, Neschi M, Aschauer J, et al. Comparison of early diabetic retinopathy staging in asymptomatic patients between autonomous AI-based screening and human-graded ultra-widefield colour fundus images. *Eye.* (2022) 36:510–6. doi: 10.1038/s41433-021-01912-4

15. Sosale B, Sosale AR, Murthy H, Sengupta S, Naveenam M. Medios-an offline, smartphone-based artificial intelligence algorithm for the diagnosis of diabetic retinopathy. *Indian J Ophthalmol.* (2020) 68:391–5. doi: 10.4103/ijo.IJO_1203_19

16. Surya J, Garima, Pandy N, Hyungtaek Rim T, Lee G, Priya MNS, et al. Efficacy of deep learning-based artificial intelligence models in screening and referring patients with diabetic retinopathy and glaucoma. *Indian J Ophthalmol.* (2023) 71:3039–45. doi: 10.4103/IJO.IJO_11_23

17. Tokuda Y, Tabuchi H, Nagasawa T, Tanabe M, Deguchi H, Yoshizumi Y, et al. Automatic diagnosis of diabetic retinopathy stage focusing exclusively on retinal hemorrhage. *Medicina*. (2022) 58:1681. doi: 10.3390/medicina58111681

18. Soto-Pedre E, Navea A, Millan S, Hernaez-Ortega MC, Morales J, Desco MC, et al. Evaluation of automated image analysis software for the detection of diabetic retinopathy to reduce the ophthalmologists' workload. *Acta Ophthalmol.* (2015) 93:e52–6. doi: 10.1111/aos.12481

19. Rajalakshmi R, Subashini R, Anjana RM, Mohan V. Automated diabetic retinopathy detection in smartphone-based fundus photography using artificial intelligence. *Eye (Lond)*. (2018) 32:1138–44. doi: 10.1038/s41433-018-0064-9

20. Wang K, Jayadev C, Nittala MG, Velaga SB, Ramachandra CA, Bhaskaranand M, et al. Automated detection of diabetic retinopathy lesions on ultrawidefield pseudocolour images. *Acta Ophthalmol.* (2018) 96:e168–73. doi: 10.1111/aos.13528

21. Li Z, Keel S, Liu C, He Y, Meng W, Scheetz J, et al. An automated grading system for detection of vision-threatening referable diabetic retinopathy on the basis of color fundus photographs. *Diabetes Care.* (2018) 41:2509–16. doi: 10.2337/dc18-0147

22. Acharyya M, Moharana B, Jain S, Tandon M. A double-blinded study for quantifiable assessment of the diagnostic accuracy of AI tool "ADVEN-i" in identifying diseased fundus images including diabetic retinopathy on a retrospective data. *Indian J Ophthalmol.* (2024) 72:S46–s52. doi: 10.4103/IJO.JJO_3342_22

23. Arenas-Cavalli JT, Abarca I, Rojas-Contreras M, Bernuy F, Donoso R. Clinical validation of an artificial intelligence-based diabetic retinopathy screening tool for a national health system. *Eye (Lond).* (2022) 36:78–85. doi: 10.1038/s41433-020-01366-0

24. Limwattanayingyong J, Nganthavee V, Seresirikachorn K, Singalavanija T, Soonthornworasiri N, Ruamviboonsuk V, et al. Longitudinal screening for diabetic retinopathy in a Nationwide screening program: comparing deep learning and human graders. *J Diabetes Res.* (2020) 2020:8839376. doi: 10.1155/2020/8839376

25. Ting DSW, Cheung CYL, Lim G, Tan GSW, Quang ND, Gan A, et al. Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes. *JAMA*. (2017) 318:2211–23. doi: 10.1001/jama.2017.18152

26. González-Gonzalo C, Sánchez-Gutiérrez V, Hernández-Martínez P, Contreras I, Lechanteur YT, Domanian A, et al. Evaluation of a deep learning system for the joint automated detection of diabetic retinopathy and age-related macular degeneration. *Acta Ophthalmol.* (2020) 98:368–77. doi: 10.1111/aos.14306

27. Lin GM, Chen M-J, Yeh C-H, Lin Y-Y, Kuo H-Y, Lin M-H, et al. Transforming retinal photographs to entropy images in deep learning to improve automated detection for diabetic retinopathy. *J Ophthalmol.* (2018) 2018:2159702. doi: 10.1155/2018/2159702

28. Li F, Liu Z, Chen H, Jiang M, Zhang X, Wu Z. Automatic detection of diabetic retinopathy in retinal fundus photographs based on deep learning algorithm. *Transl Vis Sci Technol.* (2019) 8:4. doi: 10.1167/tvst.8.6.4

29. Hansen MB, Abràmoff MD, Folk JC, Mathenge W, Bastawrous A, Peto T. Results of automated retinal image analysis for detection of diabetic retinopathy from the Nakuru study, Kenya. *PLoS One.* (2015) 10:e0139148. doi: 10.1371/journal.pone.0139148

30. Gargeya R, Leng T. Automated identification of diabetic retinopathy using deep learning. *Ophthalmology*. (2017) 124:962–9. doi: 10.1016/j.ophtha.2017.02.008

31. Abràmoff MD, Lou Y, Erginay A, Clarida W, Amelon R, Folk JC, et al. Improved automated detection of diabetic retinopathy on a publicly available dataset through integration of deep learning. *Invest Ophthalmol Vis Sci.* (2016) 57:5200–6. doi: 10.1167/iovs.16-19964

32. Zhang W, Zhong J, Yang S, Gao Z, Hu J, Chen Y, et al. Automated identification and grading system of diabetic retinopathy using deep neural networks. *Knowl-Based Syst.* (2019) 175:12–25. doi: 10.1016/j.knosys.2019.03.016

33. Zhang X, Li F, Li D, Wei Q, Han X, Zhang B, et al. Automated detection of severe diabetic retinopathy using deep learning method. *Graefes Arch Clin Exp Ophthalmol.* (2022) 260:849–856. doi: 10.1007/s00417-021-05402-x

34. Kumar PS, Deepak RU, Sathar A, Sahasranamam V, Rajesh Kumar R. Automated detection system for diabetic retinopathy using two field fundus photography. *Procedia Comput Sci.* (2016) 93:486–94. doi: 10.1016/j.procs.2016.07.237