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Background: Hepatocellular carcinoma (HCC) poses a significant global burden

as a highly prevalent and life-threatening malignant tumor that endangers

human life and wellbeing. The purpose of this study was to examine how DNA

methylation-driven genes impact the prognosis of HCC patients.

Methods: Differentially expressed genes from The Cancer Genome Atlas,

GSE76427, GSE25097 and GSE14520 datasets were collected to perform

differential expression analysis between HCC patients and controls. Weighted

gene coexpression network analysis (WGCNA) was subsequently performed to

create coexpression modules for the DEGs. Then, ssGSEA was employed to

investigate the infiltration of immune cells in HCC. Enrichment analysis and

methylation were carried out for the module genes. We utilized Kaplan–Meier

survival analysis to assess patient prognosis.

Results: Eight coexpression modules were identified via WGCNA for 1927

upregulated and 1,231 downregulated DEGs, after which the hub genes of the

modules were identified. Module 5 had high immune infiltration, and the hub

gene SCAMP3 was positively associated with Tcm. Module 3 exhibited a low level

of immune infiltration, and the expression of the hub gene HCLS1 was negatively

correlated with T cells and dendritic cells. Furthermore, we obtained five hub

genes (BOP1, BUB1B, NOTCH3, SCAMP3, and SNRPD2) as methylation-driven

genes. BOP1 and BUB1B were found to be correlated with unfavorable overall

survival in patients with HCC.

Conclusion: HCLS1 and SCAMP3 are associated with immunity, whereas

BOP1 and BUB1B are modified by methylation and may serve as prognostic

markers for HCC.
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Introduction

Hepatocellular carcinoma (HCC) ranks as the fifth most
prevalent cancer globally and is the third leading cause of cancer-
related fatalities (1, 2). HCC has a high mortality rate, and its
incidence is increasing (3). The 5 years survival rate is only
18%, mainly because the majority of patients are diagnosed at an
advanced stage (4). According to the SEER registration project, the
incidence of HCC is projected to increase until 2030 (5). Currently,
liver resection (LR), liver transplantation (LT), and percutaneous
radiofrequency ablation (RFA) are considered effective methods for
treating different stages of HCC (6). However, the high recurrence
rate of HCC remains a key problem in LR (7). In addition to tumor
size, the efficacy of RFA is also limited by tumor location (8, 9).

Despite numerous investigations, most patients suffering
from HCC face a discouraging prognosis. The interaction
between different immune cells and tumor cells has garnered
significant attention in recent years. The HCC microenvironment,
which has an immune-rich background, is a promising target
for immunotherapy (10). The development of various novel
immunotherapy techniques, including immune checkpoint
blockade and chimeric antigen receptor T-cell therapy, has
led to fresh optimism in treating HCC (11, 12). Hence,
immune cell-associated genes could be considered possible
targets for therapy.

Moreover, the atypical methylation of DNA in cancer can cause
the suppression of tumor suppressor genes or the deregulation
of genes, ultimately facilitating tumor promotion, a critical step
in cancer development (13, 14). Accumulating evidence indicates
that DNA methylation abnormalities can affect clinical outcomes
in HCC patients (15, 16). DNA methylation has become a key
factor associated with the diagnosis, treatment, prognosis, and
malignant progression of HCC (17). Kisiel also found that TSPYL5
and SPINT2 were hypermethylated in HCC tissues (18). The
expression of TSPYL5 was found to effectively separate HCC from
corresponding non-tumor adjacent tissues in the same patients (19,
20). However, the link between DNA methylation-driven genes and
the diagnosis and prognosis of HCC is not fully understood.

In this study, we investigated the significant methylation
markers that are relevant to patient prognosis. We examined
differentially expressed genes between tumor and non-tumor
tissues from patients with HCC in publicly available datasets.
Afterward, the researchers evaluated the characteristics of
immunocyte infiltration, conducted enrichment analysis, and
examined methylation regulation. The findings from this study
could lead to the identification of valuable biomarkers and targets
for potential therapies that could affect the occurrence and
prognosis of patients with HCC.

Abbreviations: HCC, hepatocellular carcinoma; WGCNA, weighted gene
coexpression network analysis; LR, liver resection; LT, liver transplantation;
RFA, radiofrequency ablation; GEO, Gene Expression Omnibus; TCGA,
The Cancer Genome Atlas; ANTTs, adjacent non-tumor tissues; RMA,
robust multiarray average; DEGs, differentially expressed genes; TOM,
topological overlap measure; ROC, receiver operating characteristic; GO,
Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; DMPs,
differentially methylated positions; AUC, area under the ROC curve; BP,
biological processes.

Materials and methods

Data sources and differentially expressed
genes

We obtained gene expression profiles from two distinct sources,
Gene Expression Omnibus (GEO) datasets1 (21) and The Cancer
Genome Atlas (TCGA)2 (22). The GSE76427 dataset included
115 HCC tissues and 52 adjacent non-tumor tissues (ANTTs),
while the GSE25097 dataset included 268 HCC tissues and 243
ANTTs. In addition, GSE14520 comprised 222 HCC samples and
212 ANTTs. Each dataset was individually normalized using the
robust multi-array average (RMA) method. The outlier detection
was performed using the Grubbs’ test, and samples with extreme
values were excluded from further analysis. The TCGA cohort
included 369 liver cancer samples and 50 control samples. We
utilized the DESeq2 (23) R package to standardize the data and
perform differential expression analysis between the liver cancer
and control samples in the TCGA. The differentially expressed
genes (DEGs) between HCC and ANTT samples in the GEO
dataset were screened using the limma package (24). A threshold
of p < 0.05 was used to indicate a statistically significant difference.
This threshold is commonly employed in bioinformatics and
genomics studies to balance false positives and negatives, ensuring
reliable detection of DEGs.

Weighted gene coexpression network
analysis (WGCNA)

The coexpression network was constructed using the R package
WGCNA (25) with the intersected DEGs from four datasets.
Briefly, the expression profiles were used to calculate Pearson’s
correlation matrices. The ideal soft threshold was determined and
used to create a weighted adjacency matrix. Then, a topological
overlap measure (TOM) matrix was obtained, and modules were
identified using hierarchical clustering with minModuleSize = 30
and mergeCutHeight = 0.25. Additionally, the hub gene of each
module was determined based on the degree of connectivity of
genes within the module (26). Specifically, we used network analysis
methods to determine the importance of each gene in the module
by calculating its correlation with other genes in the module.
We have selected the gene with the highest correlation within
the module as the hub gene of the module. We used the pROC
R package (27) to plot receiver operating characteristic (ROC)
curves, which were used to evaluate the clinical diagnostic ability
of the hub genes.

Single-sample gene set enrichment
analysis (ssGSEA)

The marker gene set for congenital and adaptive immune cells,
include 24 immune cell types was obtained (28), where ssGSEA

1 http://www.ncbi.nlm.nih.gov/geo/

2 https://portal.gdc.cancer.gov/repository
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was used to evaluate the infiltration of immune cells in HCC
though the GSVA R package (29). ssGSEA method can calculate the
enrichment score of 24 immune cell types in each sample, which
reflects the activity level of that immune cell type in each sample.
Tumors with varying infiltration patterns of immune cells were
grouped using hierarchical clustering. The correlation between the
ssGSEA score of immune cells and the expression of module genes
was calculated using Pearson correlation analysis.

Gene set enrichment analysis (GSEA)

The clusterProfiler package (30) was used to perform the
enrichment analysis of the module genes. A P value less than 0.05
was used as the cutoff for both Gene Ontology (GO) functional
analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway analysis. The gene set enrichment analysis of the module
genes was carried out through the use of the GSEA tool3.

Methylation analysis

The methylation characteristics were obtained from the
TCGA dataset using the Illumina Human Methylation 450K
DNA Analysis BeadChip assay. The ChAMP package (31) was
used to process the data and identify differentially methylated
positions (DMPs).

Overall survival (OS) was estimated using Kaplan–Meier (K-
M) survival analysis. The results with P < 0.05 were considered to
indicate statistical significance.

Correlation analysis between BOP1 or
BUB1B and immune checkpoints

The associations between BOP1 or BUB1B and immune
checkpoints were assessed through Pearson correlation analysis.
The tumor purity (32) of the HCC cells was assessed, and
the correlation between BOP1 or BUB1B expression and tumor
purity was calculated.

Statistical analysis

In the study, all the bioinformatics analyses were performed by
bioinformatics cloud platform4.

Results

Genes that are differentially expressed in
patients with HCC

To determine the genes related to HCC patients, DEGs
were obtained between the four groups of HCC patients

3 http://software.broadinstitute.org/gsea/index.jsp

4 http://www.bioinforcloud.org.cn

and controls (TCGA, GSE76427, GSE25097, and GSE14520)
(Figure 1A). Among these genes, 1,927 upregulated genes and
1,231 downregulated genes were present at the intersection of the
four groups of DEGs (Figure 1B). The progression of HCC may
be strongly linked to these genes. Thus, WGCNA was employed
to identify genes in modules that exhibited coexpression through
synergistic expression. A soft threshold power of six was chosen
(Figure 1C), resulting in the acquisition of eight coexpression
modules (Figure 1D). DEGs were upregulated or downregulated
in different modules, although MEpink contained only upregulated
genes (Figure 1E and Supplementary Figure 1). Furthermore, the
central gene of each module was determined (Table 1).

Immunophenotype of patients with
hepatocellular carcinoma

By detecting the difference in the proportions of the 24 immune
cells between the HCC patients and the control individuals, we
found that most of the immune cells in the HCC patients were
decreased (Figure 2A), suggesting that the immune system may
affect the occurrence of HCC. The infiltration fraction of immune
cells in the TCGA cohort was detected using ssGSEA.

An unsupervised hierarchical clustering algorithm was used to
cluster HCC samples into two groups (low infiltration and high
infiltration) (Figure 2B). By calculating the correlation between
the module and phenotype, MEyellow (module 4) was observed
to have the highest positive correlation with the control, while
MEgreen (module 3) had the highest positive correlation with
low immune infiltration, and MEred (module 5) had the highest
positive correlation with high immune infiltration (Figure 2C).
Correlation analysis also revealed that HCLS1, the hub gene of
module 3, exhibited a positive correlation with several immune
cells, particularly T cells and DCs. SCAMP3, the hub gene of
module 5, was negatively correlated with most immune cells,
especially TCM cells (Figure 2D). The area under the ROC curve
(AUC) values of the hub genes, as shown in Figure 2E, were greater
than 0.79, with HCLS1 and SCAMP3 exhibiting values above 0.8.

Biological functions and signaling
pathways of the module genes

Gene Ontology functional enrichment analysis revealed that
the module genes were involved mainly in autophagy, the MAPK
cascade, oxidative stress and other biological processes (BPs)
(Figure 3A). Among them, module 3 genes were involved in the
negative regulation of interleukin-2 production and the negative
regulation of the T-cell receptor signaling pathway. The genes
in Module 5 were involved in position regulation of the MAPK
cascade, regulation of innate immune responses, and so forth.
According to the KEGG enrichment results, the module genes were
related mainly to the MAPK signaling pathway, FoxO signaling
pathway, hepatocellular carcinoma pathway and other pathways
(Figure 3B). In addition, four KEGG pathways were identified in
the GSEA results and were equivalent to the enrichment results
(Figure 3C) and the module genes involved in these signaling
pathways (Figure 3D).
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FIGURE 1

Coexpression of hepatocellular carcinoma-related genes. (A) Differentially expressed genes (DEGs) were identified between the hepatocellular
carcinoma (HCC) and control groups in the TCGA, GSE14520, GSE25097, and GSE76427 datasets. The genes were considered significantly
differentially expressed with p < 0.05. (B) The intersection of DEGs among the four datasets was determined using a Venn diagram to identify
commonly upregulated and downregulated genes. (C) The soft threshold power for Weighted Gene Co-expression Network Analysis was
determined based on the scale-free topology criterion. (D) The DEGs were clustered into eight modules based on hierarchical clustering of the gene
expression data. Module significance was assessed using the K-means clustering algorithm, and the number of clusters was determined based on
the silhouette score. (E) The upregulated or downregulated DEGs within each module were determined by calculating the average log2 fold change
across datasets and tested for significance using t-test (p < 0.05).

Methylation factors regulate the
prognosis of hepatocellular carcinoma

Next, the overall extent of methylation in HCC patients
was investigated (Figure 4A), during which the proportion

of methylation on different chromosomes was determined
(Figure 4B). Among them, five hub genes (BOP1, BUB1B,
NOTCH3, SCAMP3, and SNRPD2) were expressed at higher levels
in HCC patients than in controls (Figure 4C). Interestingly, the
hypomethylation of these genes occurs mainly in its promoter
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TABLE 1 Hub genes of the modules.

Color Hub genes Module

Black BOP1 M6

Blue PCK2 M7

Brown SNRPD2 M8

Green HCLS1 M3

Pink NOTCH3 M1

Red SCAMP3 M5

Turquoise BUB1B M2

Yellow ECM1 M4

region. By comparing the methylation levels of HCC tissues
with normal liver tissues, we found that the methylation of the
promoter regions of these genes was significantly lower than that
in normal controls, thus potentially leading to the upregulation of
their transcriptional activity (Figure 4D). This finding suggested
that these genes may be modified by methylation and may be
methylation-driven genes. Survival analysis of patients stratified
according to methylation status showed that BOP1 and BUB1B
significantly affected OS in HCC patients (Figure 4E).

Correlations of checkpoint molecules,
BOP1 and BUB1B in HCC

Moreover, the correlations between immune checkpoint
molecules and BOP1 or BUB1B were analyzed (Figure 5A).
BOP1 was negatively correlated with PD-L1, CD4, CD160, and
CD200, while BUB1B was positively correlated with TIGIT, CTLA4,
and CD8A. Interestingly, immune checkpoint molecules were
expressed at lower levels in HCC patients than in controls
(Figure 5B). Therefore, BOP1 and BUB1B exhibit distinct
correlations with immune checkpoint molecules, suggesting their
potential roles in modulating immune responses in HCC, where
immune checkpoint molecules are generally expressed at lower
levels compared to controls.

Discussion

In this study, we identified several DNA methylation-driven
genes that significantly impact the prognosis of HCC patients,
highlighting their potential as therapeutic targets. Our analysis
integrated gene expression profiles and methylation data from
multiple datasets to elucidate the complex interplay between
genetic and epigenetic factors in HCC.

The identification of disease-related modules via WGCNA has
become a powerful method for obtaining new insights into cancer
biology (33–35). Each module may represent a different form of
pathogenesis (36). The markers identified by WGCNA are closely
related to HCC and have the potential to serve as diagnostic and
prognostic markers for patients (37). Studies showed that key
module genes and hub genes associated with poor prognosis of
HCC were identified by WGCNA, including CCNB1, DLGAP5
(38) and ARPC4 (39). We identified eight coexpression modules

through WGCNA, with specific focus on modules 3 and 5 due to
their distinct immune infiltration profiles. Module 3, characterized
by low immune infiltration, was significantly associated with the
hub gene hematopoietic lineage cell-specific protein (HCLS1).
HCLS1 showed a negative correlation with the infiltration of T cells
and dendritic cells, suggesting an immunosuppressive role. A high
expression level of HCLS1 in B-cell-derived malignant tumors was
observed to be related to poor prognosis (40, 41). Moreover, the
relationship between HCLS1 and HCC has rarely been reported,
although it was negatively correlated with the OS of patients with
colorectal cancer (42). HCLS1-associated protein X-1 (HAX-1) was
observed to be significantly upregulated in human hepatoma tissues
and demonstrated its ability to enhance cell proliferation (43).

Conversely, module 5 exhibited high immune infiltration and
was associated with the hub gene secret carrier membrane protein
3 (SCAMP3). SCAMP3’s positive correlation with Tcm cells and
its significant overexpression in HCC indicate its potential as an
immune-related biomarker. Previous studies have identified high
expression of SCAMP3 (44) as a poor prognostic marker in HCC,
supporting our findings (45). The differential immune infiltration
patterns observed in these modules underscore the heterogeneity
of the HCC tumor microenvironment and highlight the necessity
of personalized therapeutic strategies.

A small-scale clinical research institute conducted a systematic
analysis and evaluated the efficacy of IL-2 in the treatment of
HCC using the enrichment results of module 3, but the results
were inconclusive (46). Further studies have indicated that IL-2
has the potential to enhance the antitumor activity of NK cells
and inhibit the metastasis of HCC (47). T-cell receptor-mediated
antigen-dependent tumor cytotoxicity directly induces cell death by
binding to the Fas ligand on the membrane and suppresses tumor
proliferation by secreting IFN-γ (48). TLRs potentially contribute
to the inflammation-associated development and progression of
HCC (49). Based on the enrichment results of module 5, the
MAPK signaling pathway was found to be an important pathway
that promotes the development of HCC (50). The occurrence
and development of HCC are significantly influenced by innate
immunity (51). In addition, the regulation of natural immune
cells could enhance or serve as an alternative immunotherapy to
overcome current limitations (52).

It is commonly believed that the activation of oncogenes or
the inhibition of tumor suppressor genes could be attributed to
abnormal hypermethylation and hypomethylation in cancer, as
indicated by such epigenetic variations (53). Our study further
identified five hub genes (BOP1, BUB1B, NOTCH3, SCAMP3,
and SNRPD2) as methylation-driven. Among these, BOP1 and
BUB1B were significantly associated with unfavorable overall
survival, emphasizing their prognostic value. BOP1, known for its
role in ribosome biogenesis, has been linked to advanced HCC
and poor disease-free survival (54). Its upregulation, driven by
hypomethylation, may contribute to tumor progression through
enhanced cell proliferation. Similarly, BUB1B, a key player in the
spindle checkpoint, was associated with high histological grade and
vascular invasion in HCC, further corroborating its role in poor
prognosis (55).

Methylation is usually associated with changes in gene
expression, especially when methylation occurs in the promoter
region (56). The low methylation mode may release the
inhibitory effect of transcription factors on promoters, thereby
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FIGURE 2

Infiltration of immune cells in hepatocellular carcinoma samples. (A) The change of immune cell composition between hepatocellular carcinoma
(HCC) and control groups. Red indicates high infiltration, and blue indicates low infiltration. (B) The hepatocellular carcinoma samples were
clustered into high immune cell infiltration and low immune cell infiltration groups using single-sample gene set enrichment analysis (ssGSEA)
scores. The robustness of clustering was assessed using cophenetic correlation coefficient (p < 0.05). (C) The correlation between high and low
immune infiltration groups was evaluated using Pearson correlation analysis. (D) Correlations between module hub genes and immune cells were
assessed using Pearson correlation coefficient. (E) The Receiver Operating Characteristic curve for module hub genes was generated to evaluate
their ability to distinguish between high and low immune infiltration groups. All the statistical significance was determined with p < 0.05. * indicates
p < 0.05, ** indicates p < 0.01.
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FIGURE 3

The biological functions and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways associated with the module genes are shown. (A) The
biological process enriched for the module genes were determined using Gene Ontology (GO) enrichment analysis. (B) KEGG pathway enrichment
analysis of the module genes. Pathways with p < 0.05 were considered significantly enriched. (C) The same KEGG pathway analysis of the module
genes identified via GSEA and enrichment analysis. (D) The module genes involved in the same KEGG pathway were visualized using network
analysis in Cytoscape.
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FIGURE 4

Changes in regulatory factors of hepatocellular carcinoma. (A) The methylation differences between hepatocellular carcinoma (HCC) patients and
controls were assessed using Methylation Analysis (Illumina 450K BeadChip). Statistical significance was determined with p < 0.05. (B) The
proportion of methylation sites across different genes was assessed and presented as pie plots. (C) The expression of hub genes between HCC and
control groups. *p < 0.05. (D) The level of methylation of hub genes in the HCC and control groups. (E) K-M survival curve of genes that significantly
influence overall survival, with p < 0.05 considered significant.
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FIGURE 5

Immune checkpoint molecules between the hepatocellular carcinoma (HCC) and control group. (A) The correlations between BOP1 or BUB1B and
immune checkpoint proteins were assessed using Pearson correlation analysis. Red indicates a positive correlation, and green indicates a negative
correlation, with significance determined as p < 0.05. (B) The expression of immune checkpoint molecules between the HCC and control groups.
p < 0.05 was considered significant.

promoting gene expression. We also found that the expression
of these low methylation genes was significantly enhanced in
HCC, indicating that the loss of methylation may be a key
factor driving the overexpression of these genes during the
disease process (57). The methylation status of these genes
offers insights into potential therapeutic interventions. Targeting
the epigenetic modifications that drive BOP1 and BUB1B
expression could provide novel treatment avenues. Epigenetic
therapies, such as DNA methyltransferase inhibitors, have shown
promise in reversing abnormal methylation patterns and restoring
normal gene function.

While the combination of existing methods might seem
arbitrary, our integrated approach provides a comprehensive
analysis of HCC from multiple dimensions—epigenetic, and
immunological. To address concerns about reproducibility, we
validated our findings across multiple datasets and ensured
rigorous statistical controls.

Limitations

This study has some limitations. Firstly, this study mainly relies
on data from public databases for computational analysis, lacking
direct experimental verification. Future research should further
validate the biological functions of these hub genes and pathways
through cell experiments and animal models. Secondly, in order
to improve the reliability and universality of the results, future
work will use independent clinical cohorts from different hospitals
or databases for validation. In addition, although we integrated
multiple datasets (TCGA, GSE14520, GSE25097, and GSE76427)
and screened for common differentially expressed genes through
intersection analysis, there may be some heterogeneity in sample
sources, sample sizes, and experimental methods between different
datasets. Despite our efforts to standardize and preprocess these

data, sample heterogeneity may still affect the robustness of the
results. The clinical translation of biomarkers still faces challenges,
particularly in terms of accuracy, sensitivity, and specificity. Future
research requires validation through large-scale clinical samples,
combined with clinical data, to evaluate the potential applications
of these biomarkers in early diagnosis, prognosis assessment, and
personalized treatment of HCC. Due to the fact that this study
mainly relies on secondary data analysis of public databases, certain
potential confounding factors may affect the accuracy of the results.
In future research, we will control for these potential confounding
factors by designing more rigorous experimental validations.

Conclusion

Our study highlights the significance of integrating genetic
and epigenetic data to uncover novel therapeutic targets in HCC.
HCLS1, SCAMP3, BOP1, and BUB1B are promising candidates for
future research and clinical applications.
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