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Background: Sepsis biomarker research over the past 30 years has been plagued 
by the use of wrong animal models and inappropriate patient selections, leading 
to the failure of translating findings into precision medicine. Thousands of sepsis-
related gene biomarkers have been published, but this excess hinders medical 
advancement because (1) an overwhelming number of genes make targeted 
drug development and precision medicine unfeasible; (2) many biomarkers 
lack cross-cohort validation, rendering them clinically unhelpful. Our goal is to 
identify a highly informative, single-digit set of sepsis biomarkers to advance 
precision medicine.

Methods: We conducted large-scale research on heterogeneous populations, 
including patients with sepsis, severe sepsis, and septic shocks, and collected 
plasma samples from 32 sepsis patients and 18 healthy controls at Renmin 
Hospital of Wuhan University, China. RNA was isolated using the HYCEZMBIO 
Serum/Plasma RNA Kit, and RT-qPCR was performed on the Roche Light Cycler 
480 platform. An AI-based max-logistic competing classifier was applied across 
11 cohorts with thousands of samples, using both self-designed and public 
datasets to identify the most critical sepsis biomarkers.

Results: Our analysis highlights CKAP4, FCAR, and RNF4 as key genetic drivers in 
sepsis-related variations. In whole blood, NONO is crucial for immune response, 
while in plasma, PLEKHO1 and BMP6 reveal further genetic heterogeneities. 
Pediatric patients also exhibit significant contributions from RNASE2 and 
OGFOD3. These genes form the most effective miniature set of biomarkers.

Conclusion: Achieving 99.42% accuracy across cohorts, this miniature set 
outperforms larger published gene sets. These findings provide critical insights 
for personalized risk assessment, targeted drug development, and tailored 
treatments for both adult and pediatric sepsis patients.
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Introduction

Sepsis is a major global health issue characterized by life-
threatening organ failures and high mortality rates. In 2017, a global 
study estimated 48.9 million sepsis cases and 11 million sepsis-related 
deaths worldwide (1). That same year, the WHO highlighted sepsis as 
a critical health priority, predicting its incidence to rise with the aging 
global population (2). Survivors often face long-term impairments 
and increased mortality rates post-discharge (3). Sepsis is particularly 
burdensome in low to middle-income countries, contributing to over 
40% of all-cause mortality in some areas (1).

Sepsis results from an abnormal host response to infection, 
leading to multiple organ dysfunction (MODS) or multiple organ 
failure (MOF). Many patients suffer from long-term complications 
even the acute infection is treated with antibiotics (1). Unlike localized 
infections, sepsis causes a systemic, maladaptive response, often 
resulting in remote multiorgan failures (4). Factors like infection 
source and pathogen- or patient-specific variables influence its 
manifestation (5). Research indicates a typical pathophysiological 
pattern in sepsis, with over 80% of the transcriptomic response in 
leukocytes being independent of the infection source or pathogen (6). 
This suggests a shared transcriptomic pattern among sepsis patients, 
offering a potential target for personalized strategies. Although an 
updated international consensus on sepsis was introduced in 2017, the 
genomic pathology remains unclear (7). However, advances in 
sequencing technology and analytical platforms bring hope for future 
genomic studies on sepsis.

Traditional transcriptomic studies have used classic approaches 
like fold changes or conventional machine learning to identify 
differentially expressed genes (DEGs) between sepsis patients and 
healthy individuals (8–16). These approaches often result in large 
panels of DEGs, sometimes exceeding the number of samples. For 
instance, pioneering genomic studies at Cincinnati Children’s Hospital 
identified over 1,000 DEGs in pediatric sepsis patients (14, 15). Later 
studies on adult cohorts from Europe, America, and Australia refined 
the DEGs to fewer than 100 genes, though they still lack consensus on 
the reported DEGs (8, 13, 16). This inconsistency hinders the 
development of genetic treatments for sepsis, and the wrong animal 
models and the inappropriate selections of patients contribute to the 
failure of 30 years in sepsis researches (17). Thus, it is crucial to 
identify a concise and more accurate set of DEGs.

The evolution of quantitative medical research, fueled by 
advancements in computing power, brings artificial intelligence (AI) 
to the forefront. However, current AI models often function as black 
boxes, with their computational processes remaining opaque (18, 19). 
Additionally, AI training is often biased due to high costs limiting it 
to high-income settings, and the underrepresentation of pediatric data 
due to ethical challenges (20). A newly developed machine learning 
model shows promise in addressing above issues (21). This model, 
which has demonstrated advanced capabilities in cancer DEG 
recognition and subtype classification (22), aims to integrate new 
genomic evidence of sepsis into a concise and interpretable biological 
framework. Utilizing the max-logistic competing risk factors 
framework, this model can accurately identify a small set of critical 
DEGs and explain their interactions. It has proven effective in 
modeling various cancers and COVID-19 (22–25).

This study examined twelve datasets, including 1876 samples 
(1,572 sepsis and 304 control), covering diverse socioeconomic and 

ethnic groups, including pediatric patients highly susceptible to sepsis 
mortality (8–16). Among the first 11 datasets containing 
heterogeneous populations, including whole blood, plasma, adults, 
and pediatrics, three panels of five or fewer DEGs, with a common 
three-gene core, were identified. The first panel, consisting of four 
genes from adult cohorts’ whole blood gene expression data 
(n = 1,413), included CKAP4, FCAR, RNF4, and NONO, achieving 
near-perfect classification accuracy. The second panel, from pediatric 
cohorts (n = 287), included RNASE2 and OGFOD3 in addition to the 
core genes, achieving 100% accuracy. The third panel, from adult 
plasma samples (n = 106), included PLEKHO1 and BMP6 alongside 
the core genes, also achieving 100% accuracy. The twelfth dataset is a 
gene expression profiling dataset of peripheral blood mononuclear 
cells (PBMCs), which differs from the whole blood and plasma 
cohorts. Additional genes are needed to reach nearly 100% accuracy.

These gene panels demonstrated exceptional sensitivity and 
specificity, achieving 100% accuracy in 9 out of 11 datasets and over 
95% in the remaining two. This new biological model offers a robust 
tool for identifying sepsis gene variations, representing the highest-
performing sepsis biomarkers in the literature. The findings suggest 
that many previously published genes may be  redundant or 
misleading, emphasizing the need for concise and precise biomarkers 
to advance precision medicine in sepsis (17, 22–26).

Materials and methods

Our study differs from orthodox clinical studies in the literature, 
which focused on rigorous experiment design while only running 
basic analysis on standard software. In most cases, the basic analysis 
was sufficient to answer the questions in completed studies in the 
literature. However, we  argue that there is information that is 
overlooked, and we  can extract it from public data with more 
advanced methods. In this section, we  present both our new 
experimental protocol and advanced analytical method. The schematic 
flow of our study design is presented in Figure 1.

Public data acquisition

This study utilized 10 public datasets from the National Center for 
Biotechnology Information’s (NCBI) Gene Expression Omnibus 
(GEO) database, using keywords “sepsis,” “septic shock,” and “homo 
sapiens.” Two datasets (GSE9692, GSE13904) were from pediatric 
cohorts in the US, while the others were adult cohorts from the US, 
Australia, France, Spain, and Germany. A validation dataset was self-
collected from a Chinese cohort. An overview of these datasets is 
provided in Table 1.

The first seven datasets consisted of whole blood samples from 
adult patients. The first dataset, GSE65682, was from a North 
American adult cohort with 761 severe pneumonia/sepsis samples and 
41 healthy controls. Blood was collected from ICUs, and RNA was 
isolated using the PaxGene Blood RNA kit (Qiagen, Netherlands) and 
analyzed on the Affymetrix Human Genome U219 Array platform (8). 
The second dataset, GSE28750 (9), the third dataset, GSE57065 (10), 
the fourth dataset, GSE95233 (10), the fifth dataset, GSE69528 (11), 
the sixth dataset, GSE131761 (12), the seventh dataset, GSE154918 
(13), were from heterogeneous cohorts with different platforms and 
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technologies. The details of data information are stated in the 
Supplementary material submitted together with the main file.

Two datasets (the eighth and the ninth) were from pediatric 
patients’ whole blood samples. The eighth dataset, GSE13904, was 
from a North American children’s cohort with 209 sepsis samples and 
18 controls. RNA was isolated using the PaxGene Blood RNA kit 
(PreAnalytiX, United States) and analyzed on the Affymetrix Human 
Genome U133 Plus 2.0 Array platform (14). The ninth dataset, 
GSE9692, also from a North American children’s cohort, included 
30 sepsis samples and 14 controls (15).

The tenth dataset, GSE49757, consisted of plasma samples from 
a North American adult cohort with 37 sepsis and 19 control samples. 
RNA was isolated using the RNeasy Mini kit (Qiagen, Netherlands) 
and analyzed on the Illumina HumanHT-12 V4.0 expression beadchip 
platform (16).

Among these datasets, seven from adult whole blood samples 
allowed much more advanced cohort-to-cohort cross-validation 
(different from traditional cross-validation in the literature); the two 
pediatric datasets could also be cross-validated. A validation cohort 
was collected from Renmin Hospital of Wuhan University, Wuhan, 
China, comprising 32 sepsis samples and 18 healthy controls to verify 
findings from the only public plasma dataset. RNA was isolated using 
the HYCEZMBIO Serum/Plasma RNA Kit (HuiYuCheng 
Biotechnology, China), and gene copy counting was performed using 
rt-QPCR on the Roche Light Cycler 480 platform.

A total of 1,806 samples (1,518 sepsis and 288 healthy controls) 
were collected from diverse settings and ethnicities. This 
comprehensive analysis addressed the challenges of data source 
heterogeneity and varying study objectives, which are often overlooked 
in the current literature. The sepsis patient cohort includes two 

datasets that encompass three distinct sepsis statuses: sepsis, severe 
sepsis, and septic shock. This enables a deeper exploration of sepsis 
progression by evaluating whether genes identified in sepsis versus 
healthy controls also carry information relevant to disease progression, 
specifically by comparing severe sepsis to sepsis, and septic shock to 
sepsis, with sepsis serving as the control in both cases.

Validation data acquisition

Since there was only one dataset with plasma samples, we collected 
another cohort to validate the findings in plasma samples. The self-
collected cohort was collected at Renmin Hospital of Wuhan 
University, which is the designated tertiary 3A (highest level) hospital 
of Hubei Province and provides healthcare services to patients from 
diverse geographic and socioeconomic backgrounds. Any patient 
presenting to the Department of ICU of Wuhan University Renmin 
Hospital with suspected severe infection or sepsis/septic shock was 
recognized as a prospective participant. Blood samples of prospective 
participants would be collected upon administration; usually, multiple 
tubes would be  collected and sent to the Department of Clinical 
Laboratory for routine diagnostic testing. Patients who were positively 
diagnosed with sepsis via the SOFA scoring system would 
be  approached for consent to participate in the study (7). The 
Department of Clinical Laboratory would release the patient samples 
for research proceedings when written consent was obtained. Control 
samples were acquired from non-sepsis volunteers.

The enrolled participants included 32 sepsis patients (21 sepsis 
and 11 septic shock) and 18 healthy controls. The detailed patient 
characteristics and gene expression values are presented in Table 2. 

FIGURE 1

Schematic workflow of new AI-driven discovery of most effective biomarkers for sepsis patients.
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We noted that the ration of women in the self-collected cohort may 
limit the generalizability of the findings. Although some prospective 
epidemiology studies have reported differences in sepsis incidence 
and mortality in different genders, there is no consensus on whether 
gender is a risk factor.

We used real-time quantitative polymerase chain reaction (rt-qPCR) 
for the gene expression study. All six genes identified in the adult plasma 
samples (NONO, CKAP4, RNF4, FCAR, PLEKHO1, and BMP6) were 
examined. We performed all experimental procedures in strictly sanitized 
environments, from sample preparation to gene copy counting. The 
protocol used for the experiments is as follows: First, we processed 3 to 
5 mL of whole blood samples into plasma. Next, for RNA isolation, 
we processed 200 μL of participants’ plasma with the HYCEZMBIO 
Serum/Plasma RNA Kit (HuiYuCheng Biotechnology, China). 
We performed the optional centrifuge cycles; otherwise, we followed the 
manufacturer’s recommended protocol closely during the RNA isolation 
process. We performed reverse transcription with the HiScript III 1st 
Strand cDNA Synthesis Kit (Vazyme Biotechnology, China). We used 
6 μL of RNA suspended in nuclease-free water for each participant in the 
reverse transcription. We  closely followed the manufacturer’s 
recommended protocol throughout the reverse transcription procedure. 
Finally, we performed the rt-qPCR protocol with the Taq Pro Universal 
SYBR qPCR Master Mix (Vazyme Biotechnology, China) on the Roche 
Light Cycler 480 platform (Roche, United States). We closely followed the 
test kits’ recommended protocol. The program we  designed for the 
experiment included 40 cycles of denaturing at 95°C for 10 s and heating 
at 60°C for 30 s. The referent used for gene copy counting was β-actin; the 
primers corresponding to each gene and β-actin are presented in Table 3.

Analytical method

We summarize the model in this section, with detailed 
explanations in the Supplementary material. The AI-based analytical 

model employed in our study represents a generalized form of logistic 
linear models. The dependent variable is binary, taking the values: (1) 
“sepsis” or “healthy,” (2) “severe sepsis” or “sepsis,” and (3) “septic 
shock” or “sepsis.” The independent variables are risk factors 
represented by multiple genes.

The key innovation that distinguishes our model from many 
traditional ones is that the risk factors are not individual genes but 
linear combinations of several genes. This enhancement allows the 
model to capture gene interactions, with the signs (+/−) of these 
combinations providing insight into the regulatory relationships 
between genes. Additionally, we developed a framework, outlined by 
seven rules (found in the Supplementary material), to define critical 
differentially expressed genes (DEGs) that guide our model’s analysis. 
The model evaluates every possible linear combination of genes, 
ultimately identifying the combination of critical DEGs with the 
highest risk association to the “sepsis” outcome.

Given that our study spans 11 cohorts, including patients with 
sepsis, severe sepsis, septic shock, and healthy controls, several 
pertinent questions arise: (1) How to select control group? (2) How 
was the analytic process that identified the transcriptional profiles 
established? (3) Were the cohorts pooled? (4) Were the cohorts 
compared? (5) How was the initial model developed?

For question (1), controls in our analysis consist of either healthy 
individuals or sepsis patients, with the latter serving as controls when 
comparing severe sepsis and septic shock cases. In published studies, 
the primary focus is often distinguishing sepsis patients from healthy 
controls, with high diagnostic accuracy reported for specific genes. 
However, differentiating between healthy individuals and severe sepsis 
patients is not particularly challenging; a clinician with moderate 
expertise can easily recognize the difference. What is truly needed is 
the ability to identify distinct subsets within the sepsis population that 
may respond differently to targeted therapy. Although these 
observations hold generally true, our selection of healthy controls 
differs significantly from prior research. First, as discussed in the 

TABLE 1 Basic Information of public datasets and self-collected validation set.

Datasets Source Sample type Sample size Population

1 GSE65682 Whole blood 761 sepsis samples and 41 control samples US adult cohort

2 GSE28750 Whole blood 21 sepsis samples and 20 control samples Australian adult cohort

3 GSE57065 Whole blood 82 sepsis samples and 25 control samples French adult cohort

4 GSE95233 Whole blood 102 sepsis samples and 22 control samples French adult cohort

5 GSE69528 Whole blood 83 sepsis samples and 55 control samples US and Thai adult cohort

6 GSE131761 Whole blood 81 sepsis samples and 15 control samples Spanish adult cohort

7 GSE154918 Whole blood 65 sepsis samples and 40 control samples Australian and German adult 

cohort19 septic shock samples and 20 sepsis samples*

8 GSE13904 Pediatrics 209 sepsis samples and 18 control samples US children cohort

9 GSE9692 Pediatrics 45 sepsis samples and 15 control samples US children cohort

10 GSE49757 Plasma 37 sepsis samples and 19 control samples US adult cohort

20 severe sepsis and 15 sepsis samples*

11 Self-collected Plasma 32 sepsis samples and 18 control samples Chinese adult cohort

11 septic shock and 21 sepsis samples*

12 GSE9960 PBMC 54 sepsis samples and 16 control samples Australian cohort

Total 1,572 sepsis samples and 304 control samples

Repeated collection of the same patient is treated as separate samples in computation. The samples label with “*” are used in addition comparison study between different severity of sepsis.
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TABLE 2 Patient and control’s characteristics and gene expression values.

Gender Age Diagnosis Outcome Relative gene copy count

NONO FCAR CKAP4 PLEKHO1 BMP6 RNF4

Male 70 SEPSIS Partial 

recovery+ 

discharged

19.22617679 200.8535291 711.6381286 0.858565436 3.580100284 348.4964138

Female 69 SEPSIS + liver abscess Recovery 21.93252488 203.6573398 852.1715043 1.664397469 3.91768119 427.5650147

Male 78 SEPTIC SHOCK 

+MODS

Improvement 5.876674533 40.9275386 96.00249531 0.40332088 0.757858283 118.6032719

Female 42 SEPTIC SHOCK + 

staphylococcus

Partial 

recovery+ 

discharged

34.65520146 139.5849898 218.2745323 2.063366359 6.797479993 435.0387196

Male 76 SEPSIS + gastric track 

infection

Recovery 7.185058983 72.50456866 165.995463 0.664342907 1.536875181 251.6020732

Male 52 SEPSIS + gastric track 

infection

Recovery 26.81558831 205.0738887 544.9575334 0.299369676 5.296355642 459.8437749

Male 97 SEPTIC SHOCK + 

MODS

Death 132.055447 4344.576989 5693.105028 7.464263932 21.93252488 3269.830191

Female 58 SEPTIC SHOCK + 

urinary tract infection

Recovery 101.1252879 1991.997332 2926.579998 0.14309052 15.18947394 1494.036833

Female 58 SEPSIS + acute 

pancreatitis + MODS 

+ pneumonia + ARDS

Improvement 18.25221945 222.0899039 455.0874528 0.594603558 1.918528239 207.2172074

Female 71 SEPSIS Recovery 78.24897777 3125.77886 1601.269029 0.873572896 6.56593287 1034.702281

Female 59 SEPTIC SHOCK Improvement 38.45235358 704.2774109 2443.951602 3.986161051 9.9176616 2142.381957

Female 57 SEPSIS Improvement 23.02293728 926.0844826 932.5259096 1.765405993 4.438277888 438.0646531

Female 57 SEPSIS Refused further 

treatment+ 

discharged

32.55935015 456.6674019 861.0779292 1.366040257 1.337927555 376.1071701

Female 89 SEPSIS + 

gastrointestinal 

perforation + intra-

abdominal infections 

+ pneumonia

Recovery 13.73704698 78.24897777 176.0693527 0.664342907 2.084931522 109.8963759

Male 43 SEPSIS + gallbladder 

perforation

Recovery 2.353813474 2528762.297 82.71058116 0.556710809 0.526680518 23.10286713

Female 70 SEPTIC SHOCK + 

urinary tract infection

Improvement 3.655325801 20.32241572 48.84029469 0.216134308 0.469761375 45.72781247

Male 43 SEPSIS Improvement 23.50669813 86.52229331 639.145241 1.938579634 2.099433367 240.5178238

Female 56 SEPTIC SHOCK Recovery 20.32241572 20.96629446 1789.077291 0.539614118 2.128740365 455.0874528

Male 78 Severe pneumonia + 

COVID

Refused further 

treatment+ 

discharged

107.6347412 2012.816586 4938.988862 0.986232704 34.2967508 1398.825223

Male 78 SEPSIS + acute liver 

failure

Improvement 44.47738303 447.2693227 1443.144453 0.346277367 11.47164198 826.0011614

Female 83 SEPTIC SHOCK Recovery 6.844760205 102.1821935 272.4787667 0.079384436 1.735077374 142.0248924

Male 85 SEPSIS + gastric 

bleeding

Death 222.8609442 7281.399244 6338.826214 2.196185628 19.8353232 2702.352201

Male 74 SEPSIS + severe 

pneumonia

Improvement 10.92832205 182.278425 389.3705608 1.681792831 2.070529848 152.7469751

(Continued)
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Introduction, thousands of published genes from prior studies often 
fail to replicate across cohorts. Second, our identified gene set is the 
smallest, most informative group of biomarkers for sepsis. Third, their 
use in diagnosing sepsis is only a fraction of their potential utility. 
Fourth, this minimal gene set completely (100%) captures the genetic 
variability between sepsis patients and healthy controls. Fifth, it 
reflects genetic differences between sepsis, severe sepsis, and septic 
shock populations. Sixth, this set may respond uniquely to specific 
treatments, whereas larger gene sets may be too broad to offer focused 
therapeutic guidance.

For question (2), the analytical process is described in detail 
through the solution of the objective function (s5) outlined in the 
Supplementary material, followed by the corresponding procedures.

For question (3), the 11 cohorts were not pooled. Since the 
samples were derived from diverse ethnic groups, age categories, and 
experimental platforms, pooling would introduce batch effects, which 
could compromise the integrity of the inferences despite attempts at 
correction. Our max-logistic classifiers address batch effects by 
treating the cohorts independently in a cohort-to-cohort cross-
validation framework, a method far more advanced than traditional 
cross-validation approaches in the literature. Relevant details are 
provided in the Supplementary material and our prior 
publications (22).

For question (4), the cohorts were not directly compared. 
However, we applied the most rigorous critical gene rules available in 
the literature (22).

TABLE 2 (Continued)

Gender Age Diagnosis Outcome Relative gene copy count

NONO FCAR CKAP4 PLEKHO1 BMP6 RNF4

Female 60 SEPSIS + anemia Improvement 28.05138308 922.8804737 1413.44497 0.609205132 5.314743256 602.5762495

Female 74 SEPSIS + severe 

pneumonia

Improvement 136.2393834 2610.300165 9184.592511 4.331900182 37.27147477 4299.639536

Female 77 Severe fever with 

thrombocytopenia 

syndrome bunyavirus

Refused further 

treatment+ 

discharged

197.4029857 10960.30253 17991.15266 1.705269784 210.8393004 30152.70894

Male 21 SEPTIC SHOCK Improvement 38.58585049 436.5490646 999.456523 0.024433426 8.456144324 482.7056824

Female 49 SEPTIC SHOCK Improvement 47.17661495 1488.867858 2083.798409 2.173469725 5.917550037 903.8878682

Male 74 SEPSIS + severe 

pneumonia

Improvement 84.15633665 1239.033947 2460.950629 1.404444876 15.24220797 1305.150082

Female 82 SEPSIS + acute 

pulmonary edema

Improvement 504.9511447 4672.56818 8659.091788 0.43077308 48.00124766 4138.809125

Female 73 SEPTIC SHOCK Improvement 28.64080227 266.8712348 685.0189081 0.270743761 7.438439541 403.101684

Female 68 SEPSIS +MODS Death 285.0359343 6295.040743 9981.21688 0.311002913 60.54768939 4011.705539

Female 52 Healthy control N/A 0.444421341 0.755236293 1.140763716 0.323088208 0.359733395 1.105730653

Male 59 Healthy control N/A 0.697371833 0.526680518 2.531513188 0.47963206 0.170755032 1.536875181

Male 56 Healthy control N/A 1.01395948 0.029769937 4.377174805 0.888842681 0.24400794 1.613283518

Male 55 Healthy control N/A 0.615572207 2.203810232 5.296355642 1.117287138 0.519429552 4.531535541

Female 58 Healthy control N/A 1.301341855 0.765778999 6.844760205 0.803850991 0.484644908 1.500038989

Female 55 Healthy control N/A 1.853176124 3.363585661 24.00062383 1.494849249 1.32408891 6.190259974

Female 61 Healthy control N/A 2.703821666 5.333194708 6.498019171 1.226884977 1.771535038 2.289448321

Male 54 Healthy control N/A 8.0556444 10.41073484 15.03236399 0.942784536 1.409320755 10.51954208

Female 58 Healthy control N/A 50.91433496 319.5726205 290.0182746 1.542210825 2.419988178 197.4029857

Female 55 Healthy control N/A 35.50622311 363.2955792 344.8917957 0.117034031 4.823231311 188.7064598

Female 55 Healthy control N/A 48.33512274 223.6346614 692.1783465 0.22298213 4.141059695 120.6764206

Female 50 Healthy control N/A 57.08342524 256 238.8564458 2.74156561 3.434261746 19.09337189

Female 50 Healthy control N/A 26.90868529 143.509258 481.0356476 3.171136546 1.952063522 83.28587875

Male 56 Healthy control N/A 42.37084513 116.5657387 374.8059382 0.030395467 3.305801273 109.8963759

Male 60 Healthy control N/A 10.81528666 21.85664411 182.9112499 0.852634892 0.373712312 30.06472797

Male 59 Healthy control N/A 114.5632091 367.0925435 1584.706553 0.033377044 7.387058486 30.2738447

Male 54 Healthy control N/A 8.876555777 41.78751319 226.7564849 1.152686347 0.347479555 58.68825877

Female 65 Healthy control N/A 5.098242509 2.496661098 3.237768866 4.9588308 2.070529848 68.83164099
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For question (5), the computational procedure for model 
development is thoroughly documented in the Supplementary material 
and our previous publications (22).

Results

Identification of critical DEGs

After analyzing 11 datasets, we identified three panels with eight 
critical DEGs, all sharing a core set of CKAP4, FCAR, and RNF4. 
Panel one, which adds NONO, showed nearly perfect classification in 
seven datasets from sepsis patients’ whole blood samples, achieving 
100% accuracy, sensitivity, and specificity in five and over 95% in the 
other two. Notably, FCAR alone had perfect classification in three 
datasets. Panel two includes RNASE2 and OGFOD3 and performed 
flawlessly in two pediatric cohorts. Panel three adds PLEKHO1 and 
BMP6, showing perfect classification in two sepsis plasma datasets. 
While literature links NONO, FCAR, BMP6, RNF4, and RNASE2 to 
sepsis or Systemic Inflammatory Response Syndrome (SIRS), their 
interactions and the roles of PLEKHO1, OGFOD3, and CKAP4 in 
sepsis are less documented. Findings from our self-collected dataset 
reinforced these results.

Identification of classifiers based on DEGs: 
(1) sepsis versus healthy

The new AI-type models (max-logistic competing risk factors) 
were trained to identify classifiers that discriminate sepsis samples 
from healthy controls (Figure 2). In the max-logistic competing risk 
factor model, each competing factor ( =CF , 1,2,3i i ) is a linear 
combination of DEGs. The final classifiers that discriminate a sepsis 
sample from a control sample are presented in Table  4. The risk 
probability can be  calculated by applying the logistic function, as 
shown in Equation 1. Each CFi  represents a gene-sepsis association 
and reflects how genes interact. Individual samples may have multiple 
CFi s, representing the competing risk factors for that patient. The final 
model reports the maximum of all CFi  (CFmax = max(CFi)) for each 
sample. The risk probability estimated by the final model’s classifier of 
both sepsis and control groups is visualized in Figure 3. The model 
classifies samples with above 50% risk as “sepsis” (or “severe sepsis,” 
or “septic shock”), while those less than 50% as “healthy” (or “sepsis”), 
we can evaluate the model’s performance by comparing the model 
output with the sample’s original classification.

 
=

+

max

max

CF.

CF.Risk .
1
e
e  

(1)

Using CF2 in the 1st (GSE65682) dataset in Table  4 as an 
example, we have

∗ ∗ ∗= +2CF 8.8323 11.1401 CKAP4–8.24 RNF4–4.2700 NONO
and ( )=max 1 2CF max CF ,CF .
In the 2nd (GSE28750), 3rd (GSE57065), 4th (GSE95233), 5th 

(GSE69528), 6th (GSE131761) dataset, and the 11th (self-collected) 
dataset, a single classifier had sufficient high power (close to or 
reaching 100% accuracy, 100% sensitivity, and 100% specificity) to 
discriminate sepsis samples from healthy controls. We note that for 
the 2nd, 3rd, and 6th datasets, FCAR alone was enough to act as a 
classifier to discriminate sepsis samples and healthy controls. Two 
classifiers were needed to achieve similar high power for the 8th 
(GSE13904), 10th (GSE49757), and 1st (GSE65682) due to insufficient 
sensitivity of CF1 in those datasets. We note that for the 1st dataset, 
CF1 was created to adjust for a unique patient, and the result was that 
CF1 for the 1st dataset had poor overall sensitivity. We are unsure if 
this patient had a distinctly different genetic profile from other 
patients in the same cohort or if there was a recording error. The 8th 
(GSE9692) dataset showed three classifiers each to reach high 
classification power with 100% accuracy. All but two datasets (5th 
GSE69528 and 7th GSE154918) had a maximum classifier (CFmax) 
with 100% accuracy, 100% sensitivity, and 100% specificity.

Identification of classifiers based on DEGs: 
(2) severe sepsis versus sepsis

As discussed in the Introduction, numerous sepsis-related genes 
have been reported in the literature but often lack cohort-to-cohort 
cross-validation. Our study successfully cross-validated a miniature 
gene set across 11 cohorts using healthy populations as controls, 
demonstrating their high informativeness and reliability as 
sepsis biomarkers.

To test whether this gene set remains informative in the 
progression from sepsis to severe sepsis, we analyzed plasma data 
from GSE49757, comprising 20 severe sepsis samples and 15 sepsis 
samples. We found that a combination of four genes (NONO, CKAP4, 
PLEKHO1, and BMP6) achieved a differentiation accuracy of 97.14%, 
with a sensitivity of 100% and a specificity of 93.33%. This indicates 
that the miniature gene set retains its intrinsic value, regardless of the 
control used. These results further confirm that this gene set is 
applicable for studying sepsis progression.

TABLE 3 The primers used in RT-qPCR experiment.

Gene symbol Forward primer Reverse primer

CKAP4 GGAGATACAGACCTCAGCCAAGT GCGGACCTCGGTGTAGATGT

RNF4 TTAGAGCCTGTGGTGGTTGAT GCATTCCTCCTTGGTCTTCTTC

FCAR ACGACGCAGAACTTGATCCG ATGGCTGTGCCAATTTTCAAC

NONO GGCTCCTTCCTGCTAACCA GCTGCTCTCGTTCCTTGTG

PLEKHO1 GGGACCAGCTCTACATCTCTG TGGAGTGGGCAAGAGTAAACT

BMP6 GGTCTCCAGTGCTTCAGATTACAA CAATGATCCAGTCCTGCCATCC

β-actin CTGGCACCCAGCACAAT GGCCGGACTCGTCATACT
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FIGURE 2

Estimated risk probability based on the final classifiers for sepsis patients and control subjects in different cohorts. These plots describe the risk 
probability for each subject in a cohort based on their maximum competing risk factor. Sepsis patients and control subjects are represented by red and 
blue dots, respectively. The orange dash-line represent the p = 0.5 probability threshold for our classifiers to separate “septic” and “healthy” classes. 
We can observe that the final classifiers has excellent accuracy in most of the cohorts. GSE9692 is labeled with (A); GSE13904 is labeled with (B); 
GSE28750 is labeled with (C); GSE49757 is labeled with (D); GSE57065 is labeled with (E); GSE65682 is label with (F); GSE69528 is labeled with (G); 
GSE95233 is labeled with (H); GSE131761 is labeled with (I); GSE154918 is labeled with (J); and the self-collected cohort is labeled with (K).
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TABLE 4 The eight critical DEGs and the classifiers identified in 11 datasets.

Data Sepsis Healthy Region Type Classifier Intercept CKAP4 RNF4 FCAR NONO RNASE2 OGFOD3 PLEKHO1 BMP6 Accuracy Sensitivity Specificity

1 GSE65682 761 41 Malta Whole 

blood

CF1 −2.7350 2.3794 −8.07 0.0442 5.36% 0.13% 100.00%

CF2 8.8323 11.1401 −8.24 −4.2700 99.88% 99.87% 100.00%

Max 100.00% 100.00% 100.00%

2 GSE28750 21 20 Australia Whole 

blood

CF1 −17.7260 3.507 100.00% 100.00% 100.00%

3 GSE57065 82 25 France Whole 

blood

CF1 −23.9523 5.6255 100.00% 100.00% 100.00%

4 GSE95233 102 22 France Whole 

blood

CF1 −16.8988 0.6058 −4.828 6.4325 100.00% 100.00% 100.00%

5 GSE69528 83 55 United States/

Thai

Whole 

blood

CF1 −11.4506 6.3675 1.8438 −5.6657 97.10% 95.18% 100.00%

6 GSE131761 81 15 Spain Whole 

blood

CF1 −17.1026 2.0143 100.00% 100.00% 100.00%

7 GSE154918 65 40 Australia/

Germany

Whole 

blood

CF1 30.0238 8.0139 −14.7455 3.9406 95.24% 94.94% 96.15%

7* GSE154918 Septic 

shock

Sepsis Australia/

Germany

Whole 

blood

CF1 −25.8088 9.3795 −11.7651 2.0071 61.54% 21.05% 100.00%

CF2 21.8625 −6.1460 −2.5326 7.3024 82.05% 63.16% 100.00%

19 20 CF3 197.1369 −52.9581 2.5032 33.043 76.92% 63.16% 100.00%

Max 92.31% 94.74% 90.00%

8 GSE9692 45 15 United States Whole 

blood

CF1 1.7772 7.2055 −16.4062 100.00% 100.00% 100.00%

CF1 22.6871 1.9885 −28.0567 100.00% 100.00% 100.00%

CF1 −3.2680 5.7759 −8.34 100.00% 100.00% 100.00%

(Continued)
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TABLE 4 (Continued)

Data Sepsis Healthy Region Type Classifier Intercept CKAP4 RNF4 FCAR NONO RNASE2 OGFOD3 PLEKHO1 BMP6 Accuracy Sensitivity Specificity

9 GSE13904 209 18 United States Whole 

blood

CF1 8.3383 0.5639 0.9597 −11.1228 91.63% 90.75% 100.00%

CF2 4.5817 −10.46 8.5348 −9.2377 90.91% 89.95% 100.00%

Max 100.00% 100.00% 100.00%

10 GSE49757 37 19 United States Plasma CF1 64.0608 6.8444 −10.22 −4.7724 66.07% 48.65% 100.00%

CF2 −5.6928 −12.743 0.8999 14.5114 91.07% 86.49% 100.00%

Max 100.00% 100.00% 100.00%

10* GSE49757 Severe 

sepsis

Sepsis United States Plasma CF1 105.1717 −27.0928 14.1109 −56.3939 24.3984 97.14% 100.00% 93.33%

20 15

11 New Data 32 18 China Plasma CF1 −2.7514 1.0879 −6.5770 −9.6589 100.00% 100.00% 100.00%

11* New Data Septic 

shock

Sepsis China Plasma CF1 5.4025 −0.1555 −7.7554 5.3968 81.25% 45.45% 100.00%

CF2 −11.4285 7.0408 0.0029 −1.5894 71.88% 18.18% 100.00%

11 21 CF3 4.1299 −9.5293 1.6554 −0.0370 75.00% 27.27% 100.00%

Max 93.75% 81.82% 100.00%

Total 1,912 1,568 344 99.42% 99.49% 99.13%

The final classifiers are combined classifiers of individual competing factors. The gray-shaded genes and numbers are for pediatric septic cases. The green-colored genes and numbers are for plasma samples. Additionally, we compared patients with different sepsis 
severity in cohort GSE154918 and GSE49757, and we used sepsis as control to assess the gene signature of septic shock and severe sepsis in these patients. The results for the comparison are labeled with “*”.
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FIGURE 3

Diagnostic view of different competing risk factors. In this figure, we present the gene–gene interactions and signatures for different competing risk 
factors. Scatter plots labeled with the same letter contain patients from the same cohort. Subjects with a higher risk of a sepsis classification are in red, 
while subjects with a lower risk are in blue. We can see clear separation in all cohorts, indicating the high accuracy of our classifier model. For cohorts 
that required less than 3 genes in the competing risk factor classifiers, we used the 3-gene core to present the diagnostic view. GSE9692 is labeled 
with (A). (A-1) to (A-3) are Competing risk factor 1 (CF1), Competing risk factor 2 (CF2), and 3-gene-core (core), respectively. GSE13904 is labeled with 

(Continued)
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Identification of classifiers based on DEGs: 
(3) septic shock versus sepsis

We used 19 septic shock samples and 20 sepsis samples from 
whole blood data in GSE154918 to test the miniature gene set. The 
combination of four genes (NONO, CKAP4, RNF4, and FCAR) 
achieved a differentiation accuracy of 92.31%, with a sensitivity of 
94.74% and a specificity of 90.00%. Using our new plasma data (11 
septic shock samples and 21 sepsis samples), the combinations of five 
genes (NONO, CKAP4, FCAR, PLEKHO1, BMP6) reached an overall 
accuracy of 93.75%, with a sensitivity of 81.82% and a specificity of 
100.00%. Once again, these results demonstrate that the miniature 
gene set retains its intrinsic value, regardless of the control used. These 
findings further confirm the utility of this gene set for studying the 
progression of sepsis.

Interpretation of gene variations and the 
clinical syndrome of sepsis reflected by the 
classifiers

In the formulas for classifiers, we can observe + and – coefficient 
signs for different genes. For genes in a classifier, + indicates that 
upregulation of that gene increases the risk of that patient being 
classified as “sepsis,” while − indicates that downregulation of that gene 
increases the risk of that patient being classified as “sepsis.” We note that 
many published works did not discuss the fitted coefficient signs, so 
their corresponding genes’ actual functions remain unclear.

The whole blood samples of adult patients
We note that for the seven datasets (GSE65682, GSE28750, 

GSE57065, GSE95233, GSE69528, GSE131761, and GSE154918) 
that recorded RNA expression collected in whole blood samples, 
their classifiers shared the same panel of 4 genes (CKAP4, RNF4, 
FCAR, and NONO) with the same core of three genes: CKAP4, 
RNF4, and FCAR. We also note that the classifiers of all but one of 
1,413 these samples shared the same + or − signs for the core of 
three genes; the 1 sample that stood out was unique in its gene 
expression patterns (alternatively might be recording error), and a 
particular classifier was built to accommodate the difference. 
We argue that the consistency shown in the classifiers of different 
cohorts reflects an underlying pattern in the pathology of sepsis on 
the genomic level. In the case of these samples, a pattern consisting 
of upregulation of CKAP4 and FCAR along with downregulation of 
RNF4 decisively discriminates between sepsis patients and healthy 
samples. Such phenomena are also reflected in Figure  4 
(survival probabilities).

The plasma samples of adult patients
Furthermore, we  note that in 2 datasets (GSE49757 and self-

collected) that recorded RNA expression of sepsis plasma samples, an 

opposite/reversed pattern could be observed for the same core of three 
genes. In these samples, the downregulation of CKAP4 and FCAR and 
the upregulation of RNF4 increase the risk of a sample being classified 
as “sepsis.”

The whole blood samples of pediatric patients
Finally, in the two pediatric datasets (GSE9692 and GSE13904), 

where RNA expression data was recorded from whole blood samples, 
the same expression pattern was observed with adult counterparts in 
the core of three genes. Also, a uniform pattern of downregulation of 
gene OGFOD3 increases the risk of sepsis.

Homogeneities across whole blood, plasma, 
adult patients, and pediatric patients

Overall, we report that a change in CKAP4, FCAR, and RNF4 
expression patterns is a key feature of sepsis on the genomic level. In 
whole blood expression patterns, a consistent upregulation of CKAP4 
and FCAR with downregulation of RNF4 showed a remarkably strong 
association with sepsis, reaching 100% accuracy, 100% sensitivity, and 
100% specificity across different cohorts from a variety of 
socioeconomic backgrounds and ethnicity groups. The same pattern 
with the three genes (CKAP4, FCAR, and RNF4) could be extended 
to pediatric cohorts, while an opposite pattern was observed in adult 
plasma samples.

Heterogeneities between whole blood and 
plasma

We note that RNA expressions recorded from whole blood samples 
and plasma samples are expected to differ. They need to be balanced 
among cell-free RNAs and cell-led RNAs to remain healthy. We suspect 
that the opposite/reversed pattern may be attributed to the location 
where these genes are differentially expressed in a sepsis patient. We note 
that previous literature reported that CKAP4, RNF4, and FCAR had an 
association with immunity response. We hypothesize that the variations 
in gene expression in sepsis patients occur in specific cells in the blood 
and then reflect a pattern of upregulation of genes CKAP4 and FCAR in 
whole blood samples along with downregulation of RNF4. 
We  hypothesize that this pattern coincides with an overwhelmed 
immune system. On the contrary, these cells are removed in plasma, and 
we observe different gene–gene interactions compared to those in the 
whole blood, with some coefficient signs changing in opposite directions. 
In addition, two other genes, PLEKHO1 and BMP6, are identified to 
interact with the miniature three genes. Such a phenomenon reveals that 
these three genes are pivotal in the progression of sepsis. They need to 
be balanced among cell-free RNAs and cell-led RNAs to remain sepsis-
free. This finding is new in the literature and can potentially lead to new 
sepsis therapies.

Heterogeneities between adult and pediatric
Looking at GSE9692  in Table  4, we  can immediately see that 

pediatric sepsis patients have simpler gene–gene interactions in whole 

(B). (B-1) to (B-3) are CF1, CF2, and core, respectively. GSE49757 is labeled with (D). (D-1) to (D-3) are CF1, CF2, and core, respectively. GSE65682 is 
labeled with (F). (F-1) to (F-3) are CF1, CF2, and core, respectively. GSE69528 is labeled with (G). (G-1, G-2) are CF1 and core, respectively. GSE154928 
is labeled with (J). The self-collected cohort is labeled with (K). (K-1, K-2) are CF1 and core, respectively. GSE28750, GSE 57065, GSE95233, and 
GSE131761 only required 1 gene in their competing risk classifiers are labeled with (C,E,H,I) respectively.

FIGURE 3 (Continued)
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blood compared to those of adult sepsis patients. The pediatric 
patients’ gene–gene interactions are from a pair of genes, e.g., CKAP4 
and OGFOD3, RNF4 and OGFOD3, or CKAP4 and RNF4, to achieve 
100% accuracy, while the adult patients need three genes. This 
observation may coincide with pediatric patients being more 
vulnerable to infection. In GSE13904, another gene, RNASE2, shows 
its pivotal function in sepsis infection, although it was not critical in 
adult patients.

From sepsis to severe sepsis

We observe a clear relationship between gene expression and 
sepsis severity based on the plasma analysis from GSE49757 and the 
coefficient signs for the genes NONO, CKAP4, PLEKHO1, and BMP6 
(as shown in Table 4). Specifically, increased expression of NONO and 
BMP6 correlates with a greater likelihood of severe sepsis. Conversely, 
lower expression of CKAP4 and PLEKHO1 also associates with 
increased sepsis severity, suggesting a complex, possibly non-linear 
interaction in their regulatory role. Among all sepsis patients, the 

expression patterns of CKAP4 and PLEKHO1 do not show significant 
linearity, further supporting the idea that certain genes contribute 
uniquely to disease progression depending on their interaction 
networks and expression thresholds. These results underscore the 
importance of interpreting gene expression profiles contextually, as 
the same gene may exhibit varied impacts across different stages of 
sepsis, necessitating a deeper exploration into the roles of NONO and 
BMP6 in immune response and cellular stress mechanisms.

From sepsis to septic shock

The transition from sepsis to septic shock, as analyzed using 
GSE154918, highlights critical changes in the expression of the genes 
NONO, CKAP4, RNF4, and FCAR (refer to Table 4 for coefficients). 
Here, we observe that elevated expression of NONO, CKAP4, and FCAR 
strongly correlates with an increased risk of progression to septic shock. 
In contrast, RNF4 behaves inversely, where decreased expression is linked 
to heightened severity, suggesting a possible protective or compensatory 
role when downregulated. This gene signature, showing similarities to the 

FIGURE 4

Survival analysis for sepsis patients. These Kaplan–Meier plots are produced with survival data from GSE65682. The red curve and blue curve represent 
patients with high expression and low expression, respectively. We define high as greater than the 70th quantile, low as less than 30th quantile, in the 
final analysis we included 456 out of 760 patients in the cohort. The patterns are consistent with the fitted model coefficient signs for GSE65682 in 
Table 4. We see that the higher the NONO (RNF4) expression values are, the longer the survival time will be; the lower the CKAP4 expression values will 
be, the longer the survival time will be. Interestingly, FCAR does not lead to a significant pattern, which is also consistent with the model fitting as in 
Table 4 (GSE65682) CF2 does not contain FCAR in its gene–gene interactions. These observations may lead to clues about sepsis genetic treatments 
and drug developments.
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patterns seen from healthy control to sepsis, suggests shared molecular 
pathways between the early onset and the severe stages of the condition. 
Furthermore, this alignment emphasizes the potential for certain genes, 
like NONO and CKAP4, to serve as robust markers across the full 
spectrum of sepsis severity.

Interestingly, while the plasma sample analysis provides valuable 
insights, the whole blood analysis offers even greater biological relevance. 
Whole blood contains a more comprehensive representation of the 
immune response and inflammatory signaling, making it more 
informative than plasma alone. This enhanced depth of information may 
provide additional layers of understanding of the pathophysiological shifts 
occurring from sepsis to septic shock, enabling more precise biomarker 
identification and therapeutic targeting.

Peripheral blood mononuclear cells 
insights

In this section, we  extend our analysis to a gene expression 
profiling dataset of peripheral blood mononuclear cells (PBMCs), i.e., 
GSE9960 (27). This dataset includes 54 sepsis patients and 16 healthy 
controls. Among 54 sepsis patients, the distributions are: 9 sepsis from 
non-infectious causes of systemic inflammatory response syndrome, 
11 Gram-positive, 18 Gram-negative sepsis, and 10 mixed infections.

Using genes reported in Table 4, we can achieve ≥80% accuracy, 
sensitivity, and specificity. When including the core gene RNF4 in 
Table 4 and four additional genes (HTR2C, AC126474.2, CHCHD4, 
244479_at), we can achieve 95.71% accuracy, 96.30% sensitivity, and 
93.75% specificity using the following two max-logistic classifiers and 
their combination.

( )
( ) ( )

CF1: 40.9212 8.0182 LN RNF4 1
52.3501 LN HTR2C 1 36.7917 LN CHCHD4 1

∗

∗ ∗
− + +

+ + − +

( )
( ) ( )
CF2 : 25.4168 0.8774 LN RNF4 1 29.9838 LN
AC126474.2 1 56.5659 LN 244479 _at 1

∗ ∗

∗
− − + −

+ + +

Here, HTR2C (5-Hydroxytryptamine Receptor 2C) is a Protein 
Coding gene. CHCHD4 (Coiled-Coil-Helix-Coiled-Coil-Helix 
Domain Containing 4) is a Protein Coding gene. AC126474.2 is an 
lncRNA gene. The probe set ID 244479_at has not yet been associated 
with a gene symbol.

Our analysis shows that the gene expression values obtained from 
whole blood, plasma, and PBMC samples exhibit significant differences, 
primarily influenced by sample composition, cell type proportions, and 
RNA degradation. As a result, selecting the appropriate sampling method 
is crucial. PBMC is more suitable for immunological studies, plasma is 
ideal for cell-free RNA research, and whole blood provides a more 
comprehensive but noisier expression profile.

Discussion

Sepsis continues to be a major global health burden, with millions of 
cases each year and high mortality rates, particularly in intensive care 
units (ICUs) (1, 2). Although significant strides have been made in 
understanding the pathophysiology of sepsis, the long-term survival and 

quality of life of sepsis survivors remain critical challenges (3, 28, 29). 
Recent advances in transcriptomic profiling have provided a promising 
avenue for understanding the genomic underpinnings of sepsis and 
guiding the development of more targeted therapies (30). However, 
several inherent limitations in current transcriptomic studies of sepsis—
such as small sample sizes, gene–gene interaction complexities, and 
inadequate differentiation between disease stages—limit their clinical 
utility. Numerous studies have targeted these limitations. Still, critical 
genetic biomarkers for sepsis remain unidentified, largely due to flawed 
animal models and patient selection over the past 30 years (17). Our study 
seeks to address this gap. In the meantime, subgroups of sepsis can 
significantly impact analysis results (31). Unlike traditional classification 
approaches, the max-logistic classifier inherently accounts for subgroups 
by employing competing classifiers. This method has been mathematically 
proven to be robust against study population heterogeneity in previous 
research on lung and colorectal cancers (22, 23).

In response to these challenges, we developed an AI-driven model 
that bridges classical methods and advanced machine learning to 
identify key differentially expressed genes (DEGs) involved in sepsis 
progression. Our model addresses the limitations of existing AI 
approaches, including the “black box” nature of many machine 
learning algorithms and the biases inherent in training processes (18, 
20, 32). Unlike most AI models, which primarily emphasize inductive 
reasoning, our approach balances deductive, inductive, and abductive 
reasoning, allowing for more transparent and biologically interpretable 
results. This hybrid reasoning approach has been detailed in our 
previous work (21, 33), and the model has been validated in studies of 
various cancers and infectious diseases (22–25).

In our study, gene–gene interaction is not defined in the 
conventional biological sense, such as physical interaction, pathway 
co-membership, or co-expression. Instead, we  introduce a 
mathematically grounded definition rooted in the max-logistic 
competing factor model. In this framework, gene–gene interactions 
are interpreted through the lens of competing combinations of genes, 
where specific subsets work together within a mathematical structure 
to compete for predictive power in distinguishing sepsis states.

These interactions are characterized by their coefficients (signs 
and magnitudes), combinatorial grouping, and their ability to 
outcompete other gene combinations in classification tasks. The 
presence of a gene in a dominant competing factor, along with the sign 
and strength of its coefficient, reflects its functional role in synergy or 
antagonism with other genes within that factor. This approach 
resembles quantum models in physics—where the outcome is 
determined by the configuration and interaction of components 
within a complex system—not simply by pairwise association.

While this perspective may differ from classical biological interaction 
models, it provides a reproducible, interpretable, and high-accuracy 
framework for capturing functional relationships among genes in disease 
progression, especially across heterogeneous populations. We hope this 
mathematical view complements and inspires further biological 
investigation into the mechanisms underlying these interactions.

Key findings and control group 
considerations

One of the most important aspects of our study is the rigorous 
selection of control groups. Previous sepsis transcriptomic studies 
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have predominantly compared sepsis patients to healthy controls, 
often with high diagnostic accuracy for specific gene sets. However, 
distinguishing healthy individuals from critically ill patients admitted 
to the ICU is relatively straightforward from a clinical perspective. The 
real challenge lies in identifying subpopulations within sepsis 
patients—such as those with severe sepsis or septic shock—that may 
respond differently to targeted treatments. By including these more 
clinically relevant subsets in our analysis, we aimed to address this gap 
in the literature.

Our model identified a set of eight critical DEGs, divided into 
three panels, which exhibit consistent patterns across different stages 
of sepsis. These patterns are particularly informative when comparing 
sepsis to more advanced conditions such as severe sepsis and septic 
shock. The inclusion of patients with severe sepsis and septic shock 
allowed us to more finely tune the gene expression profiles associated 
with worsening disease. For instance, the gene NONO showed varying 
expression trends depending on disease severity, with upregulation 
correlating with increased severity in certain populations, while 
downregulation had a similar effect in others. This underscores this 
gene’s complex, context-dependent role in sepsis pathology (Table 4).

Analytic transparency and model 
development

Our AI model operates by systematically identifying linear 
combinations of genes that maximize the risk prediction of sepsis and 
its severe forms. Unlike traditional analyses, which often pool cohorts 
or fail to account for batch effects, we treated each of the 11 cohorts 
independently to avoid such issues. The diversity of the cohorts, which 
included over 1800 samples from different ethnic populations, age 
groups, and experimental platforms, presented a significant challenge. 
However, our max-logistic classifiers allowed for robust cohort-to-
cohort cross-validation without the need for data pooling, thereby 
reducing the risk of biases due to batch effects (22).

Furthermore, our model development process was guided by a set 
of seven rules designed to ensure the identification of concise, precise, 
and generalizable DEGs. These rules exceed previous standards in the 
literature by emphasizing the importance of gene–gene interactions 
and the biological relevance of identified DEGs. By defining critical 
DEGs based on these stringent criteria, we have identified eight genes 
that demonstrate high sensitivity and specificity across diverse cohorts 
(34, 35). These findings provide a strong foundation for future 
applications of our model in precision medicine and risk stratification 
for sepsis patients.

Biological relevance of identified DEGs

As discussed in the Introduction, the field of sepsis research has 
produced a vast array of published sepsis-related genes. This 
abundance of identified genes poses a significant challenge for 
precision medicine, as it complicates the development of targeted 
therapies. Our study addresses this issue by significantly reducing the 
gene set to a minimum single-digit level, which enhances the 
feasibility of precision therapeutic targeting. Importantly, 
we emphasize that the genes in our panel do not act in isolation; 

rather, they function interactively, demonstrating a synergistic 
relationship. This is a crucial advancement because while other 
researchers have observed the individual effects of some of these 
genes, our focus is on how their combined interactions drive sepsis 
pathophysiology. This gene–gene synergy underlines the novel 
approach of our research, offering a more comprehensive 
understanding of sepsis mechanisms and potential interventions. 
Below, we summarize the findings of the literature on the individual 
effects of three key genes in our set.

Each gene in our panels plays a critical role in sepsis 
pathophysiology. For example, FCAR encodes the Fc alpha receptor, 
which mediates immune responses by binding to immunoglobulin A 
(IgA) and promoting the release of pro-inflammatory cytokines (36–
39). This receptor is essential in the immune defense against bacterial 
infections, particularly in the early stages of sepsis, where the immune 
system oscillates between hyperactivation and immunosuppression 
(40–43). The upregulation of FCAR in certain cohorts strongly 
distinguished sepsis patients from healthy controls, highlighting its 
potential as both a diagnostic biomarker and a therapeutic target 
(44, 45).

Similarly, RNF4, a RING finger E3 ubiquitin ligase, plays a pivotal 
role in the ubiquitination and proteasomal degradation of 
polysumoylated proteins. This process is critical in regulating 
inflammation, metabolism, and cell death—key mechanisms involved 
in sepsis pathogenesis (46–49). The downregulation of RNF4  in 
patients with septic shock suggests a potential protective role, where 
reduced degradation of substrates like PARP1 might mitigate excessive 
inflammatory responses, a hypothesis that warrants 
further investigation.

CKAP4, another gene identified in our panels, is a type II 
transmembrane protein that has been implicated in various 
inflammatory diseases. Recent studies have also highlighted its role as 
a receptor for the SARS-CoV-2 spike protein, linking it to both viral 
pathogenesis and thrombosis (50–53). Given its interaction with 
NF-κB, a key regulator of inflammation, the upregulation of CKAP4 in 
sepsis patients could provide a novel link between inflammatory 
signaling pathways and the progression of sepsis.

Although the individual roles of these three genes have been 
acknowledged in the progression of sepsis, it is critical to stress that 
none of them should be examined in isolation. The defining feature of 
our work is the demonstration of synergistic effects among the genes 
in our set, distinguishing our findings from previous studies, which 
have largely concentrated on individual gene fold changes. This 
singular focus on individual changes can be misleading, as it fails to 
capture the dynamic interactions that occur at the gene network level. 
The strength of our work lies in its exploration of these interactions, 
providing a more accurate and holistic view of sepsis biology. Future 
research should explore whether the downstream protein levels and 
pathways regulated by these genes contribute to sepsis severity, 
opening new avenues for potential therapeutic strategies.

Ethnic variations and limitations

Our study also uncovered significant ethnic variations in gene 
expression patterns, further emphasizing sepsis pathophysiology’s 
complexity. For example, we observed that the downregulation of 
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the gene NONO was linked to an increased risk of sepsis in Thai 
and Chinese cohorts, whereas in Australian and German cohorts, 
the opposite was true—upregulation of NONO was associated with 
a heightened sepsis risk. These findings strongly suggest that 
genetic or environmental factors may shape the way sepsis 
manifests in different populations, and crucially, these variations 
are not isolated to individual genes but are evident in the 
synergistic gene–gene interactions we  have highlighted. The 
population-specific signatures of gene synergy warrant further 
investigation to deepen our understanding of the molecular 
mechanisms driving sepsis in diverse populations.

Additionally, our model provided indications of potential 
subtypes within the same cohort, potentially reflecting different 
infection sources or underlying biological mechanisms. While this 
is an intriguing finding, more data is necessary to fully confirm 
the subtypes and its implications for developing personalized 
treatment strategies. Identifying such subtypes could pave the way 
for more tailored approaches to sepsis care, accounting for both 
genetic background and the nature of the infection, thus 
enhancing the precision of medical interventions.

Despite the strengths of our model, several limitations must 
be acknowledged. The classification of sepsis has evolved over the past 
two decades, resulting in some inconsistencies in cohort 
categorization. Additionally, due to data availability, our study sourced 
data from the US, Europe, and China, which may limit the 
generalizability of our findings to much broader populations. Future 
studies should aim to include more diverse cohorts and explore the 
causality of gene expression changes in sepsis through longitudinal 
genomic analyses.

Conclusion

Our study provides a novel and stringent approach to identifying 
critical DEGs in sepsis, utilizing an AI-driven model that outperforms 
existing methods in terms of accuracy, sensitivity, and specificity. 
While further validation is necessary, particularly in the form of wet 
lab studies, our findings offer new insights into the molecular 
mechanisms underlying sepsis and lay the groundwork for the 
development of precision diagnostic tools and targeted therapies. 
Sepsis remains one of the most pressing challenges in global health, 
and our work represents an important step toward overcoming this 
formidable disease.
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