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Introduction: This study investigates the e�ects of polyphenol supplementation

on gut microbiome composition and cardiovascular health in patients with

ST-segment elevation myocardial infarction (STEMI).

Methods: Double-blind randomized control trial where participants received

either polyphenol supplementation or placebo for 3 months, after which

composition of the gut microbiome; clinical and laboratory parameters,

including TMAO levels and oxidative stress levels, were assessed.

Results: The stable TMAO levels (from 0.5 [0.2–0.9] to 0.4 [0.3–0.9] µmol,

p > 0.05) were observed in the polyphenol group, compared to the

increase observed in the placebo group (from 0.5 [0.3–0.6] to 0.7 [0.5–1.4]

µmol, p < 0.001). Polyphenol supplementation significantly decreased the

Firmicutes/Bacteroidetes ratio (p = 0.04) and increased beneficial bacteria such

as Roseburia (p = 0.01), Agathobaculum sp. (p = 0.004), Alistipes finegoldii (p =

0.04) and Sellimonas (p= 0.002). Predictedmetabolic pathways analysis supports

potential mechanisms linking polyphenol intake to microbiome modulation and

TMAO regulation.

Conclusion: Our findings demonstrate that polyphenol supplementation

maintains stable TMAO levels by restructuring gut microbiome composition

in STEMI patients, evidenced by a more focused microbiome with a

significant increase in beneficial butyrate-producing bacteria (Roseburia,

Agathobaculum sp., Alistipes finegoldii, and Sellimonas) and a decreased

Firmicutes/Bacteroidetes ratio, suggesting microbiome-mediated

cardioprotective e�ects. While promising,l our preliminary findings require

further studies with larger cohorts and more advanced sequencing methods to

establish their significance for cardiovascular health.

Clinical trial registration: ClinicalTrial.gov, identfier: NCT06573892.
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Introduction

The gut-heart axis is a new concept that offers fresh perspectives
in cardiology practice (1). The gut microbiome represents the most
diverse and elaborate collection of microorganisms in the human
body, and it plays a vital role in maintaining health and influencing
disease (1–3). The specific ways the microbiome is linked to
cardiovascular disease (CVD) development and progression are not
fully understood. Metabolites linked to gut microbiota contribute
to the development of CVD (4), including ST-segment elevation
myocardial infarction (STEMI) (5–8), one of the most frequent
cardiovascular disorders with a marginally surging morbidity and
mortality rate on a global scale (9). Specifically, TMAO is a liver-
derived metabolite formed from trimethylamine (TMA), which
is produced by gut microbes from dietary precursors such as L-
carnitine, substrate for microbial metabolism. TMA is absorbed
into the bloodstream and oxidized by hepatic flavin-containing
monooxygenases (primarily FMO3) to form TMAO (2). According
to existent data, TMAO can be used to predict major adverse
cardiac events (MACE) in the short and long term (10, 11) and
is suggested as a prognostic biomarker in STEMI patients (8,
12). TMAO disrupts reverse cholesterol transport and cholesterol
breakdown, which leads to an increase in foam cell formation (13).
Furthermore, it also impairs cholesterol clearance by suppressing
bile acid synthesis (14). Notably, gut bacteria capable of producing
TMAO are mainly from the Firmicutes phyla (15, 16) and the
Firmicutes/Bacteroidetes ratio is being proposed as a predictor of
TMAO concentration (17).

Plant-derived polyphenols interact bidirectionally with a
gut microbiome, influencing their composition while being
transformed into bioactive metabolites (13, 18). The gut-heart
axis concept suggests gut dysbiosis contributes to cardiovascular
pathogenesis, with polyphenols potentially restoring microbial
balance (13). These compounds exhibit antioxidant, anti-
inflammatory, and anti-diabetic properties, potentially reducing
cardiovascular event risk (19–25), including myocardial infarction
(26). Accumulating evidence indicates that polyphenols can
positively modulate the gut microbiome in atherosclerosis by
enhancing bacterial diversity, promoting the growth of beneficial
genera such as Akkermansia, Parabacteroides, Ruminococcus,
Anaerostipes, Anaerotruncus, Bacteroides, Lactobacillus, and
Bifidobacterium, which collectively contribute to improved
intestinal barrier function and reduced systemic inflammation
(27). Polyphenols demonstrate promising potential in managing
cardiovascular disease risk through TMAO reduction by
modulating gut microbiota and metabolic pathways. These
compounds can modify bacterial populations, inhibiting bacterial
strains responsible for TMAO precursor metabolism, potentially
improving lipid profiles, blood pressure and endothelial function,
enhancing nitric oxide production, reducing platelet aggregation,
slowing atherosclerosis progression and reducing stenosis severity
(2, 28–31). However, evidence from existing clinical trials studying
polyphenol’s cardiovascular effects varies across different studies.
There is also a discrepancy between low-dose alcohol-containing
wine studies and high-dose supplement trials, which creates
inconsistency (32), warranting further investigations.

Molecular pathways and biochemical processes through which
polyphenols modulate gut microbial populations in CVD need

to be understood. Thus, the current study aims to examine
polyphenol-induced changes in the gut microbiome and their
relationship with STEMI. This will improve our understanding of
polyphenols’ potential to improve cardiovascular health.

Methods

Ethical approval

The present study was approved by the Local Ethical
Commission of the National Laboratory Astana- Nazarbayev
University on 24/09/2020, Approval No. 05-2020. The study aims,
objectives, risks, and protocols were meticulously explained to
all participants, and they were provided with leaflets containing
relevant information before signing the informed consent form.

Recruitment

Patients were recruited through Karaganda Cardiac Hospital,
“Multidisciplinary Hospital No. 2” in Kazakhstan, based on their
medical diagnosis and patient profile, during the period from
May 2022 to September 2023. The study was registered on
ClinicalTrial.gov, ID: NCT06573892.

Inclusion criteria

The inclusion criteria were patients (males and females)
over 18 years of age, diagnosed with STEMI, who underwent
primary percutaneous coronary intervention within 12 h after the
onset of the disease. The diagnosis of STEMI was established
based on clinical symptoms—chest pain lasting more than 20min
in combination with electrocardiographic changes (ST-segment
elevation ≥ 1mV in at least two adjacent leads (or a blockage of
the left leg of the Gis bundle for the first time) and an increase in
Creatine kinase and troponin levels.

Exclusion criteria

The exclusion criteria were patients with cardiogenic shock,
ineffective results of stenting of infarct-dependent arteries (weak
filling or lack of filling of arteries), chronic intestinal diseases,
or acute intestinal diseases at the screening time. Also excluded
patients were those with dietary restrictions such as allergies
or intolerance to grapes and those with clinically significant
infections in the 6 months prior to the start of the study.
For example, patients with infections requiring hospitalization
or parenteral antimicrobial therapy, opportunistic infections or
the presence of anamnesis of any disease for which (according
to the researcher’s assessment) an exacerbation is possible due
to participation in the study. Other exclusion criteria include
a history of oncological or lymphoproliferative disease 5 years
before the baseline visit, psychiatric disorders, including recent
(within the last year) or active suicidal thoughts, or patients who
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require additional coronary artery revascularization [Coronary
Artery Bypass Grafting(CABG) or stenting].

Randomization

Patients were randomized according to the type of dietary
intervention by an independent research assistant who was not
involved in any other aspect of the study. Participants were
randomly assigned to one of the experimental groups (1:1) in
sets of 6, utilizing the resource at https://www.sealedenvelope.com/
simple-randomiser/v1/lists. The packets, which included either
a polyphenol or a placebo, were pre-packaged based on the
randomization scheme. As a result, participants, medical staff, and
evaluators did not know which group each participant was in until
the data was examined and the database was accessed.

Polyphenol supplement

Dietary intervention was carried out on the background
of standard therapy after the acute phase of STEMI. The
first group was prescribed daily for 3 months, no later than
30 minutes before meals, 15ml of a concentrate of grape-
extracted polyphenols, and the second group was prescribed
a placebo. The polyphenol supplement used in this study
has an established favorable safety profile. It conforms to all
applicable state standards and regulations (Eurasian Economic
Union Committee for Sanitary and Epidemiological Control
Certificate No KZ.16.01.98.003.R.001043.11.21). Safety testing
was conducted in an accredited laboratory for food product
analysis (Nutritest No KZ.T.02.E0177). The only potential side
effect of concern is a reaction to grape components, which
was considered in the exclusion criteria. The placebo consisted
of water with grape aromatizer and caramel coloring (E150)
added at a low concentration to match the appearance of the
polyphenol concentrate.

Examination

Participants were assessed at baseline (M0) and after 3 months
of polyphenol intake (M3). Blood plasma and stool samples were
collected from all study participants during hospitalization after
primary percutaneous coronary intervention upon discharge from
the hospital and after 3 months of intervention. In addition,
clinical parameters were analyzed, including complete blood count
(CBC); plasma lipid profile (including low-density lipoproteins
(LDL); cholesterol (TC) and triglyceride (TG) levels; cardiac
troponin I (cTnI); kidney function, including plasma creatinine;
blood urea nitrogen (BUN); glucose (GLU); total protein (TPro);
alanine transaminase (ALT); aspartate transferase AST; total
bilirubin (TBil); creatine kinase-myocardial band (CK); urine test;
electrocardiography and echocardiography.

Synergy between percutaneous coronary intervention with
TAXus and cardiac surgery (SYNTAX) evaluation was conducted
on all participants at the beginning of the study. Two interventional
cardiologists (unaware of the TMAO results and clinical outcomes)

evaluated the SYNTAX score using an online calculator (https://
www.syntaxscore.com, version 2.28). The SYNTAX index was
defined as the SYNTAX of the acute phase—the residual SYNTAX
of the chronic phase, and the plaque progression group was
defined as the highest tertile on the SYNTAX scale (≥3). For
long-term risk prediction after percutaneous coronary intervention
(PCI), the Logistic Clinical SYNTAX Score (LCSS) was assessed
at the beginning of the study (33). All participants underwent
an evaluation of the risk of developing CVD using Systematic
Coronary Risk Evaluation 2 (SCORE2) at the M0 and M3. The
risk was assessed as low, moderate and high (34). All participants
received dietary guidance in accordance with Mediterranean diet
and Dietary Approaches to Stop Hypertension (DASH) nutritional
recommendations in accordance with the Republic of Kazakhstan’s
clinical protocol for STEMI patient management (35).

TMAO measurement

Quantitative determination of TMAO concentration in
plasma samples was conducted utilizing a combination of
high-performance liquid chromatography and tandem mass
spectrometry (HPLC-MS/MS). The analytical instrumentation
consisted of an Agilent 1260 Infinity chromatographic system
coupled with a G6130A quadrupole mass spectrometer (both
manufactured by Agilent Technologies, Santa Clara, CA, USA).

Blood specimens were collected in ethylenediaminetetraacetic
acid (EDTA)—containing tubes and underwent immediate
centrifugation (3,000 rpm, 15min) to isolate plasma, which
was subsequently cryopreserved at −80◦C until analysis. The
analytical protocol employed several high-purity reagents: 95%
trimethylamine N-oxide standard, 95% formic acid, and 99.9%
acetonitrile (all sourced from Sigma-Aldrich, St. Louis, MO, USA),
along with ultrapure water (18.2 mg/L resistivity) generated using
the Milli-Q purification system (Millipore, Burlington, MA, USA).

The sample preparation protocol involved protein precipitation
by combining 100 µL of thawed plasma with 600 µL acetonitrile,
followed by high-speed centrifugation (20,000×g, 10min) at 4◦C.
The resulting supernatant (100 µL) was diluted with an equal
volume of water, and 10 µL of this preparation was injected into
the HPLC-MS/MS system.

Chromatographic separation was achieved using a ZORBAX
Eclipse XDB C-18 analytical column (2.1× 75mm, 3.5µm particle
diameter) with a corresponding guard column (12.5 × 4.6mm,
3.5µm) maintained at 80◦C. The separation employed an isocratic
elution method using a binary mobile phase system: solution
A (0.125% formic acid in a 1:1 acetonitrile-water mixture) and
solution B (0.125% formic acid in a 1:1 water mixture). The
chromatographic conditions included a constant flow rate of 0.250
mL/min at a column temperature of 30◦C. TMAO concentrations
were determined by integrating the chromatographic peak areas
from the resulting analytical curves.

Oxidative stress measurement

The oxidant status (the potential of the body’s antioxidant
systems) was determined in blood plasma samples by a rapid
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test using the e-BQC apparatus (BioQuoChem-BQC redox
technologies, Oviedo, Spain) with an assessment of the total
antioxidant potential and the antioxidant capacity of fast and slow
antioxidants (24). We immediately received results of fast (Q1)
and slow (Q2) active antioxidants, as well as total charge (QT).
According to standard curves, this data is further translated into
CEAC (equivalent to vitamin C antioxidant capacity).

Microbiome examination

The composition of the gut microbiome was determined from
stool samples. The collection of biomaterial (stool) for the gut
microbiome analysis was carried out in DNA/RNA ShieldTM test
tubes, catalog number R1101 (Zymo Research). DNA extraction
was performed using the ZymoBIOMICSTM DNA extraction kit
according to the recommended protocol.

Sequencing data

The 16S locus libraries were prepared using NEXTflex R©

16S V1-V3 Amplicon-SeqKit (Perkin Elmer, catalog number
NOVA-4202-04). Amplicons were sequenced on the MiSeq device
(Illumina). Analysis: Demultiplexing, filtering, and determination
of amplicon sequence variant (ASV) and taxonomic identification
were performed using the LotuS program. After the abundance
filtering at M0, the polyphenol group remained 36, in the
placebo group 41 samples, respectively; at M3, the polyphenol
group remained 25, and in the placebo group 25 samples.
The 16S amplicon sequencing data, starting from raw reads,
underwent taxon density tables processing using the Less OTU
Scripts 2 (LotuS2) pipeline. Critical steps in this process
included demultiplexing, quality filtering, and dereplication
of reads, which were carried out with the assistance of
a straightforward demultiplexer (sdm). Additionally, chimeric
sequences were identified and eliminated using UCHI Marker
Examiner (UCHIME) algorithms. Taxonomic postprocessing and
sequence clustering, employing the combined databases such as
SILVA, Greengenes 2 (GG2), and Human Intestinal Tract database
(HITdb), were performed using Lowest Common Ancestor (LCA)
and Divisive Amplicon Denoising Algorithm 2 (DADA2) sequence
clustering algorithms, respectively (36). The total number of reads
accounted for 28,147,916, employing a similarity threshold of
97% for distance comparison. After filtering, the sequences were
categorized into 7754 ASVs and were attributed to the bacterial
domain, with 25,637,043 reads remaining in the matrix.

Metabolic pathways

To further investigate the functional potential of the microbial
community, metabolic pathway analysis was performed using
Phylogenetic Investigation of Communities by Reconstruction of
Unobserved States (PICRUSt2) version 2.5.0. Following default
settings, PICRUSt2 predicted functional metagenomic profiles
based on the 16S rRNA sequencing data. To determine the gene

family copy numbers for each amplicon sequence variant (ASV),
a reference tree with a Nearest Sequenced Taxon Index (NSTI)
threshold of 2 was used.

Statistical methods

Statistical analysis of results was performed on R v4.4.1
and Python v3.9.14. Independent T-test and Mann–Whitney U-

test were used to compare groups. Tests were automatically
selected based on normality and homoscedasticity criteria. The
Shapiro and Levene tests were used to test these criteria. α and
β diversity were evaluated using vegan v2.6.1 and OTUtable
v1.1.2. Within-sample diversity was assessed using Shannon and
Chao1 indices. Between-sample diversity was evaluated using Bray-
Curtis metrics on Hellinger-transformed data. Differential analysis
on taxonomic data was performed using Linear discriminant
analysis Effect Size (LEfSe) v1.10.0 (LDA > 2 and p ≤ 0.05)
from the microbiome Marker package and STAMP v2.1.3 on
functional data. Only features with at least 30% prevalence were
retained for the analysis. The correlation was computed using
Pearson’s r coefficient from SciPy v1.10.1. Right-hand outliers in
the clinical data were replaced by 95%. Compositional data was
transformed using the centered log-ratio (clr) method, and all
other variables were standard scaled. All multiple comparisons
were adjusted using the False Discovery Rate with Benjamini–
Hochberg (FDR BH) method, and the significance level was
set at 0.05. No numerous comparison adjustments were applied
when comparing significantly differentially abundant parameters.
Visualization was performed with ggplot2 v3.5.1, Matplotlib v3.7.1
and seaborn v0.11.2. The two-sided value of p < 0.05 was
considered statistically significant.

Results

Randomization

In total, 132 patients were identified and invited to participate
in the study; 12 declined to participate, and 10 did not respond. The
remaining 110 patients underwent initial screening, after which
three refused to continue in the study, and seven failed the inclusion
criteria. The included patients were randomized into two groups
of 50 each; the first group received polyphenol concentrate and
the second placebo, respectively. However, five more patients in
each group were lost as they either declined to continue or did
not comply (Figure 1). A total of 45 participants from both study
groups completed all study visits through month 3 (M3).

Demographic data

There was no significant difference in the average age of
each group, with 64.0 [55.0–66.0] and 61.0 [55.0–68.0], p =

0.83, respectively. Similarly, there were no significant differences
in gender, ethnicity, social status, and other disease-related
characteristics such as smoking, BMI, SYNTAX Score I, LCSS,
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FIGURE 1

The scheme of the study designed by CONSORT. PCI, percutaneous coronary intervention; STEMI, ST-elevation myocardial infarction; TMAO,

Trimethylamine N-oxide; M0-baseline; M3-after 3 months polyphenol intake. *Additional information.

Score 2, cTnL, andMain diagnosis and accompanied comorbidities,
p > 0.05 (Table 1).

Biochemical analyses

Intergroup comparative analysis of clinical and laboratory
characteristics at baseline (M0) and 3-month (M3) follow-up
demonstrated statistically significant differences in TMAO levels
that were reduced by half after 3 months in the polyphenol group,

p < 0.01 compared to placebo (Table 2). The LDL level was high
in the polyphenol group compared to placebo at the start of the
experiment, p = 0.005 and remained unchanged (Table 2 and
Supplementary Table S1).

Analysis of clinical and laboratory parameters from baseline
(M0) to 3 months (M3) revealed a significant two-fold increase in
TMAO levels in the placebo group (from 0.5 [0.3–0.6] to 0.7 [0.5–
1.4], p < 0.001; Table 3), while TMAO levels remained stable in the
polyphenol group (from 0.5 [0.2–0.9] to 0.4 [0.3–0.9], p > 0.05).
Interestingly, the AST and ALT levels decreased in the polyphenol
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TABLE 1 Clinical-demographic data of study groups at the baseline.

Parameters Placebo (n = 45) Polyphenol (n = 45) p

Gender, n 32/13 25/20 0.19a

BMI, M [IQR] 30.1 [26.1–32.7] 28.4 [25.1–31.0] 0.10b

Weight, kg, M [IQR] 87.0 [74.0–95.0] 77.0 [70.0–90.0] 0.06b

Height, cm, M [IQR] 168.0 [165.0–176.0] 165.0 [160.0–174.0] 0.36b

cTnI, ng/ml, M [IQR] 1.1 [0.11–3.1] 0.3 [0.07–1.47] 0.11c

CRCL, ml/min, M [IQR] 91.0 [83.0–103.0] 90.0 [82.0–97.0] 0.41c

SYNTAX_Score_I, M [IQR] 11.0 [8.0–20.5] 11.0 [8.0–17.0] 0.56c

LCSS, %, M [IQR] 1.8 [1.1–3.2] 1.7 [1.1–3.0] 0.97c

Non Smoking/Smoking, n 31/14 29/15 0.94d

Race Mongoloid/Europioid, n 15/30 16/29 1.0d

Social_status: Disabled/Disabled gr2/Disabled gr3/Employed/Retired/Unemployed, n 0/1/1/20/20/3 1/0/2/22/15/5 0.60d

Main.Diagnosis, STEMI LAD/RCA/CX, n 18/23/3 19/20/5 0.69d

Comorbidities/No comorbidities, n 27/18 24/21 0.67d

DM, n 8/37 5/40 0.55a

Arrhythmia, n 3/42 3/42 1.0a

AH_III, n 14/31 15/30 1.0a

COPD 3/42 1/44 0.62a

Anemia 2/43 2/43 1.0a

SCORE 2, %, M [IQR] 24.2± 11.2 24.3± 11.4 0.96b

aFisher’s exact test, bInd. T-test, cMann–Whitney U-test, dChi2 .

BMI, BodyMass Index; cTnI, Cardiac Troponin I; CRCL, Creatinine Clearance; SYNTAX_Score_I, Synergy between Percutaneous Coronary Intervention with Taxus and Cardiac Surgery Score;

LCSS, Left ventricular Circumferential Systolic Strain; STEMI, ST-ElevationMyocardial Infarction; LAD, Left Anterior Descending coronary artery; RCA, Right Coronary Artery; CX, Circumflex

coronary artery; DM, Diabetes Mellitus; AH_III, n-Arterial Hypertension stage III; COPD, Chronic Obstructive Pulmonary Disease; SCORE 2, Systematic Coronary Risk Evaluation 2.

group from M0 to M3, p = 0.007 and p = 0.03, respectively. The
LDL level was elevated in the placebo group from M0 to M3, p =

0.004. The ejection fraction slightly increased in both study groups,
p ≤ 0.05 (Table 3).

There were significant differences in blood and urine tests;
monocyte levels in blood and leucocytes in urine decreased in both
study groups over the period, p ≤ 0.05. The urine pH decreased
in the polyphenol group at M3 compared to M0, p = 0.007. Other
parameters did not demonstrate any differences at the baseline and
after 3 months (Supplementary Table S3).

Microbiome analysis

Analysis of α diversity showed no significant differences
between the study groups at baseline (M0) and 3-month (M3)
follow-up (p > 0.05) (Figure 2A). Yet, significant differences were
found in both Shannon and Chao1 indexes during intragroup
analysis (baseline M0 vs. 3-month M3 comparison) in both
Polyphenol and Placebo groups, with α diversity decreased at 3
months compared to baseline (Shannon index: p = 0.0002 and p

= 0.021; Chao1 index: p ≤ 0.0001 and p = 0.0007, respectively),
(Figure 2B).

Similarly, analysis of β diversity by the Bray-Curtis index
did not reveal any compositional differences between the study

groups at baseline (M0) and 3-month (M3) follow-up (p >

0.05, (Figure 2C). Meanwhile, significant intragroup differences

(baseline M0 vs. 3-month M3 comparison) were observed, with

distinct clusters formed by PCoA using Bray-Curtis dissimilarity

(ANOSIM: R = 0.27, p ≤ 0.0001 for the Polyphenol group; R

= 0.23, p ≤ 0.001 for Placebo group). The first two principal

coordinates explained 30.7% of the total variance (PCoA1: 19.56%,
PCoA2: 11.14%) in the Polyphenol group and 30.4% (PCoA1:

19.35%, PCoA2: 11.05%) in the Placebo group (Figure 2D). The

Firmicutes/Bacteroidetes (F/B) ratio did not experience statistically

significant shifts in the placebo group between M0 and M3, p =

0.826, and between two study groups at M0, p = 0.6540, and M3, p

= 0.141. However, there was a significant decrease in the F/B ratio

in the polyphenol group betweenM0 andM3, p= 0.04 (Figure 2E).
Most statistically significant changes in relative abundance

were observed at the species level: Bacteroides dorei (polyphenol
group p = 0.001, placebo group p = 0.007), Bacteroides eggerthii
(polyphenol group p = 0.03, placebo group p = 0.002), and
Parabacteroides merdae (polyphenol group p= 0.04, placebo group
p = 0.02), decreased significantly in both study groups, between
M0 and M3, while the abundance Bacteroides plebeius (p =

0.03) and Bacteroides vulgatus (p = 0.001) noticeably decreased
in placebo group between M0 and M3. Roseburia significantly
increased in the polyphenol group betweenM0 andM3 at the genus
level, p = 0.01 (Figure 3A). At the family level, Akkermansiaceae
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TABLE 2 Intergroup analysis of clinical and laboratory parameters: polyphenol vs. placebo comparison at baseline (M0) and 3-month (M3) follow-up.

Parameters Timepoint Placebo Polyphenol p

TMAO, mol, M [IQR] M0 0.5 [0.3–0.6] 0.5 [0.2–0.9] 0.7b

M3 0.7 [0.5–1.4] 0.4 [0.3–0.9] <0.01b

AST, U, M [IQR] M0 31.0 [23.0–56.0] 32.0 [25.0–44.0] 0.93b

M3 27.0 [21.0–42.0] 25.0 [20.0–32.0] 0.15b

ALT, U, M [IQR] M0 35.0 [20.0–54.0] 36.0 [23.0–62.0] 0.35b

M3 28.0 [20.0–44.0] 27.0 [21.0–38.0] 0.49b

GLU, mol, M [IQR] M0 6.5 [5.3–7.7] 6.0 [5.5–8.3] 0.89b

M3 5.7 [4.9–7.0] 5.9 [5.1–7.1] 0.41b

TC, mol, M [IQR] M0 4.5 [3.6–5.23] 4.5 [3.9–5.4] 0.94a

M3 4.3 [3.2–4.9] 4.4 [3.9–5.1] 0.22a

TG, mol, M [IQR] M0 1.0 [1.0–1.5] 1.1 [1.1–1.3] 0.15b

M3 1.1 [0.8–1.5] 1.3 [1.1–1.3] 0.20b

LDL, mol, M [IQR] M0 0.36 [0.36–0.4] 0.41 [0.38–0.54] <0.01b

M3 0.4 [0.39–0.5] 0.41 [0.38–0.6] 0.34b

CK, U, M [IQR] M0 112.0 [89.0–248.0] 115.0 [84.0–156.0] 0.22b

M3 106.0 [80.0–187.0] 92.0 [73.0–128.0] 0.12b

Q1.C, mC, M [IQR] M0 11.7 [10.1–14.2] 11.6 [10.0–13.3] 0.64b

M3 10.9 [9.0–14.2] 11.4 [10.2–13.4] 0.25b

Q2.C, mC, M [IQR] M0 8.2 [7.3–9.2] 8.0 [7.5–10.2] 0.68b

M3 7.9 [6.9–8.8] 8.0 [7.5–9.4] 0.11b

QT.C, mC, M [IQR] M0 19.0 [16.8–23.4] 19.4 [17.4–22.2] 0.90a

M3 18.6 [16.0–23.3] 20.1 [17.9–23.0] 0.09b

Echo. F, %, M [IQR] M0 48.0 [44.0–53.0] 46.0 [44.0–52.0] 0.86b

M3 50.0 [46.0–56.0] 50.0 [45.0–56.0] 0.61a

SCORE 2, %, M [IQR] M0 22.0 [16.0–33.0] 22.0 [17.0–33.0] 0.96a

M3 14.0 [9.0–21.0] 12.0 [9.0–19.0] 0.37b

aInd. T-test, bMann–Whitney U-test.

TMAO, Trimethylamine N-oxide; AST, Aspartate Aminotransferase; ALT, Alanine Aminotransferase; GLU, Glucose; TC, Total Cholesterol; TG, Triglycerides; LDL, Low-Density Lipoprotein;

CK, Creatine Kinase; Q1, C-Q wave duration corrected; Q2, C-Q wave amplitude corrected; QT.C, QT interval corrected; Echo. F, Ejection Fraction; SCORE 2, Systematic Coronary Risk

Evaluation 2.

significantly decreased in the Placebo group, between M0 and
M3, p = 0.03, and at the order level, Lachnospirales were
elevated in the Polyphenol group between M0 and M3, p =

0.01, and Oscillospirales was significantly higher in Placebo group
compared to Polyphenol group at M3, p = 0.002 (Figures 3B–D).
Refer to Supplementary Tables S3–S5 for p-values corresponding to
these differences.

Linear discriminant analysis effect size analysis (LefSe)
indicating significant taxonomic changes (LDA > 2, p ≤ 0.05)
identified several discrepant microbial taxa in the polyphenol and
placebo groups at M3 point (Figures 4A, B).

Specific taxa dominated in the polyphenol group compared
to the placebo group: species Agathobaculum sp., p = 0.004,
effect size = 2.97; Alistipes finegoldii, p = 0.04, effect size =

2.44; and genus Sellimonas, p = 0.002., effect size = 2.35. On
the contrary, species Alistipes timonensis, p = 0.003, effect size

= 2.28; Coprobacter secundus, p = 0.006, effect size = 2.37;
Lactobacillus salivarius, p = 0.01, effect size 2.6; Parabacteroides
goldsteinii, p = 0.04, effect size = 2.9; Prevotella timonensis, p =

0.02, effect size =2.11; Bifidobacterium dentium, p = 0.02, effect
size = 2.09; Sanguibacteroides justesenii, p = 0.03, effect size 2.2;
Bacteroides pectinophilus, p= 0.04, effect size 2.1; Ruminococcaceae

bacterium, p = 0.04, effect size = 2.1; genera Prevotella, p =

0.01, effect size 3.4, Ligilactobacillus, p = 0.04, effect size 2.7;
Sanguibacteroides, p = 0.03, effect size = 2.2; Coprobacter, p =

0.01, effect size = 2.7 etc. were enriched in the placebo group,
and depleted in polyphenol group, respectively (Figures 4A, B).
The specific bacterial taxa identified by LefSe analysis showed
significant differences not only between study groups but also
within each group (polyphenol or placebo) from baseline to 3
months, highlighting distinct patterns of microbial changes (p
≤ 0.05) (Figure 4C). Overall, our LEfSe analysis demonstrated
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TABLE 3 Intragroup analysis of clinical and laboratory parameters: baseline (M0) vs. 3-month (M3) comparison in polyphenol and placebo groups.

Parameters Group M0 M3 p

TMAO, mol, M [IQR] Placebo 0.5 [0.3–0.6] 0.7 [0.5–1.4] <0.001b

Polyphenol 0.5 [0.2–0.9] 0.4 [0.3–0.9] 0.97b

AST, U, M [IQR] Placebo 31.0 [23.0–56.0] 27.0 [21.0–42.0] 0.27b

Polyphenol 32.0 [25.0–44.0] 25.0 [20.0–32.0] <0.01b

ALT, U, M [IQR] Placebo 35.0 [20.0–54.0] 28.0 [20.0–44.0] 0.70b

Polyphenol 36.0 [23.0–62.0] 27.0 [21.0–38.0] <0.05b

GLU, mol, M [IQR] Placebo 6.5 [5.3–7.7] 5.7 [4.9–7.0] 0.08b

Polyphenol 6.0 [5.5–8.3] 5.9 [5.1–7.1] 0.24b

TC, mol, M [IQR] Placebo 4.5 [3.6–5.2] 4.3 [3.2–4.9] 0.15a

Polyphenol 4.5 [3.9–5.4] 4.4 [3.9–5.1] 0.59a

TG, mol, M [IQR] Placebo 1.0 [1.0–1.5] 1.1 [0.8–1.5] 0.36c

Polyphenol 1.1 [1.1–1.3] 1.3 [1.1–1.3] 0.17b

LDL, mol, M [IQR] Placebo 0.4 [0.3–0.4] 0.4 [0.3–0.5] <0.01b

Polyphenol 0.4 [0.3–0.5] 0.4 [0.3–0.6] 0.64b

CK, U, M [IQR] Placebo 112.0 [89.0–248.0] 106.0 [80.0–187.0] 0.31b

Polyphenol 115.0 [84.0–156.0] 92.0 [73.0–128.0] 0.10b

Q1, C, M [IQR] Placebo 11.7 [10.1–14.2] 10.9 [9.0–14.2] 0.13a

Polyphenol 11.6 [10.0–13.3] 11.4 [10.2–13.4] 0.95b

Q2, C, M [IQR] Placebo 8.2 [7.3–9.2] 7.9 [6.9–8.8] 0.24b

Polyphenol 8.0 [7.5–10.2] 8.0 [7.5–9.4] 0.91b

QT, C, M [IQR] Placebo 19.0 [16.8–23.4] 18.6 [16.0–23.3] 0.21b

Polyphenol 19.4 [17.4–22.2] 20.1 [17.9–23.0] 0.45b

Echo. F, %, M [IQR] Placebo 48.0 [44.0–53.0] 50.0 [46.0–56.0] <0.05a

Polyphenol 46.0 [44.0–52.0] 50.0 [45.0–56.0] <0.05a

SCORE 2, %, M [IQR] Placebo 22.0 [16.0–33.0] 14.0 [9.0–21.0] 0.51b

Polyphenol 22.0 [17.0–33.0] 12.0 [9.0–19.0] 0.66b

aInd. T-test, bMann–Whitney U-test.

TMAO, Trimethylamine N-oxide; AST, Aspartate Aminotransferase; ALT, Alanine Aminotransferase; GLU, Glucose; TC, Total Cholesterol; TG, Triglycerides; LDL, Low-Density Lipoprotein;

CK, Creatine Kinase; Q1, C-Q wave duration corrected; Q2, C-Q wave amplitude corrected; QT, C-QT interval corrected; Echo. F, Ejection Fraction; SCORE 2, Systematic Coronary Risk

Evaluation 2.

domination of various taxa from the Firmicutes, Bacteroidetes,
Cyanobacteriota and Actinobacteria phyla in the placebo group,
while only a few taxa in the Polyphenol group. The remaining Lefse
results are presented in Supplementary Tables S3–S5.

Correlation analysis between microbiome
and clinical parameters

Correlation analysis between the taxa and clinical-laboratory
parameters demonstrated significant relationships, thus negative
correlations of s. Alistipes finegoldy (p = 0.04), s. B. pectinophilus
(p= 0.01) with TMAOwere observed, whilst s. Alistipes timonensis

demonstrated a positive correlation with TMAO (p = 0.01).
Regarding the rest of the positive correlations, s. Lactobacillus

salivarius positively correlated with AST (p = 0.009) and TC
(p = 0.03), s. B. pectinophilus with CK (p = 0.05), s. A.

finegoldy with SCORE 2 (p = 0.003), respectively. s. S. justesenii
negatively correlated with TPro (p = 0.02) (Figure 5A and
Supplementary Table S6).

In addition, analysis of the predicted correlation between
metabolic pathways and clinical-laboratory parameters
demonstrated a few significant relationships. In contrast, P125-
PWY-super pathway of (R, R)-butanediol biosynthesis, p= 0.0002,
P161-PWY-acetylene degradation, p = 0.02, UDPNAGSYN-
PWY-UDP-N-acetyl-D-glucosamine biosynthesis I, p = 0.02,
demonstrated a significant negative correlation with EchoEF,
PWY-6588-pyruvate fermentation to acetone demonstrated
positive correlation with TMAO, p = 0.04 (Figure 5B and
Supplementary Table S7).
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FIGURE 2

Changes in gut microbiome diversity and composition following polyphenol supplementation in STEMI patients. (A) α diversity measures: Shannon

index (left) and Chao1 index (right) at baseline (M0) and after 3 months (M3) comparing Polyphenol and Placebo groups. (B) α diversity measures:

Shannon index (left) and Chao1 index (right) at baseline (M0) and after 3 months (M3) for Placebo (left) and Polyphenol (right) groups separately. (C) β

diversity analysis: Bray-Curtis PCoA plot comparing Polyphenol and Placebo groups at baseline (M0) and after 3 months (M3). (D) β diversity analysis:

Bray-Curtis PCoA plots showing changes in microbial communities from baseline (M0) to 3 months (M3) for Polyphenol and Placebo groups

separately. (E) Firmicutes/Bacteroidetes ratio comparison between Polyphenol and Placebo groups at baseline (M0) and after 3 months (M3). The

significance of grouping for beta diversity measures is tested using ANOSIM with 999 permutations. The significance level for all tests is set at p ≤ 0.05.
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FIGURE 3

Gut microbiome composition changes following polyphenol supplementation in STEMI patients. (A) Relative abundance (%) of the top 10 bacterial

genera at baseline (M0) and after 3 months (M3) in both Polyphenol and Placebo groups. Stacked bar plots show the distribution of genera. (B)

Relative abundance of the top 10 bacterial species at M0 and M3 in both groups. Stacked bar plots display the distribution of species. (C) Relative

abundance (%) of the top 10 bacterial orders at M0 and M3 in both groups. Stacked bar plots show the distribution of orders. (D) Relative abundance

(%) of the top 10 bacterial families at M0 and M3 in both groups. Stacked bar plots display the distribution of families. The figure also includes a note

about di�erential changes identified using LEfSe analysis (Linear discriminant analysis E�ect Size) with LDA > 2 and p ≤ 0.05. These changes are

categorized into three groups: Changes within the Placebo group between M0 and M3, Changes within the Polyphenol group between M0 and M3,

and Di�erences between Placebo and Polyphenol groups at M3.

Metabolic pathway analysis

Further, the Sankey plot illustrating the networks between
LEfSe markers, metabolic pathways, and TMAO levels showed
that specific taxa nodes demonstrated various flows to nodes
of metabolic pathways and connected to TMAO in two study
groups. s_Parabacteroides_goldsteinii increased in the placebo
group and decreased in the polyphenol group, respectively,
appears to have strong positive correlations with several metabolic
pathways (K01035, PWY-6588, K00563) and with TMAO in
the placebo group, as well as negative correlations with K03628
and TMAO, particularly under the polyphenol condition.
s_Alistipes_timonensis showed a mix of positive with K00563 and
negative correlations with B09108, K03628, and K02190 metabolic
pathways; a notable one is complex negative connections with
B09108 and with TMAO under the polyphenol condition. s. S.
justesenii also demonstrated complex relationships, a remarkable
negative correlation with K02190 and TMAO level under
the polyphenol condition (Figure 5C). Alistipes finegoldii and
Prevotella timonensis demonstrated opposite correlations with
K02190, positive and negative, respectively, and Coprobacter

secundus positively correlated with K00563 (Figure 5C). Although
the observed correlations were relatively weak and moderate

(Pearson’s r ranging from −0.18 to 0.36), they were statistically
significant and can be associated with the biological complexity of
microbial-metabolite interactions.

Thus, the analysis of metabolic pathways between two
study groups at M3 was conducted. Three pathways, PWY-6588
pyruvate fermentation to acetone (p= 0.027), P161-PWY-acetylene
degradation (anaerobic), (p = 0.028), UDPNAGSYN-PWY-UDP-
N-acetyl-D-glucosamine biosynthesis (p= 0.029) were significantly
lower in polyphenol group comparing to the placebo group. In
contrast, PWY-5005 biotin biosynthesis biotin was higher in the
polyphenol group compared to the placebo group (p = 0.02)
(Figure 5D).

Discussion

The gut-heart axis introduces perspectives in cardiology and
suggests potential treatment approaches for CVD, including STEMI
(37). Recent scientific directions focus on understanding the
interaction between diet, gut microbiome, and cardiovascular
disease (2, 3, 8, 27, 32, 38). Our study performed a randomized,
placebo-controlled design to investigate how polyphenols may
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FIGURE 4

Gut microbiome composition changes based on LEfSe analysis following polyphenol supplementation in STEMI patients. (A) LEfSe analysis highlights

di�erences in gut microbiota between the Placebo and Polyphenol groups 3 months after treatment. Biomarkers were identified using an LDA score

> 2 at the species level, indicating significant taxa contributing to group di�erences. (B) The cladogram visually represents the di�erentially abundant

bacterial species across various taxonomic levels. The root of the cladogram corresponds to the kingdom Bacteria, with concentric circles

representing the hierarchical taxonomic levels from phylum to species. (C) Pairwise comparisons of six selected taxa between the groups and time

points illustrate specific changes in microbial abundance due to the intervention. The p-value ≤0.05 indicates a significant di�erence.

influence the gut microbiome and their potential association
with STEMI.

Our findings suggest beneficial effects of polyphenol
supplementation on gut microbiome composition in STEMI
patients. The observation that TMAO levels remained stable in the
polyphenol group while increasing in the placebo group appears
consistent with previous research examining polyphenols in CVD
management (19, 21, 22, 38) and MI (26). These observations
correspond with several studies that reported possible polyphenol-
mediated microbiome alterations that may affect TMAO levels
(3, 39–42). A review by Leng et al. examining TMAO research
highlights three main areas, such as TMAO’s role in atherosclerosis
mechanisms, its potential as a cardiovascular risk marker, and
treatment approaches for TMAO reduction (3). Lombardo et al.
found that diets rich in polyphenols may be associated with
lower TMAO concentrations in blood and urine (42). Animal
research indicates that plant-derived polyphenols might help
reduce atherosclerosis by affecting gut microbiota composition
and TMAO levels (30). We also observed improvement in liver
function in the form of ALT decrease following polyphenol
supplementation, which is notable considering the role of reduced
FMO3 activity in the liver attenuating TMAO production from

dietary precursors (43). While these data appear to be in line
with our observations, larger studies are needed to confirm these
preliminary results.

Further, we observed a decrease in the Firmicutes/Bacteroidetes
ratio in the polyphenol group (p = 0.04), which may be of interest
since TMAO-producing bacteria are often found within Firmicutes,

Proteobacteria andActinobacteria phyla (15, 16). Our findings align
with studies proposing F/B as a potential indicator of gut dysbiosis
(44) with some studies suggesting associations between higher F/B
ratio and atherosclerosis (45), coronary artery disease (46), STEMI
(47) and lower ratio with reduced cardiovascular risk factors (24,
48). According to a study by Cho et al., individuals with a higher
F/B ratio showed greater TMAO production from precursors (49).
While our findings appear consistent with a previous animal study
showing a decreased F/B ratio after polyphenol administration (50)
and human studies of the gut microbiome in metabolic syndrome
after red wine consumption (51), the clinical relevance of these
changes requires validation in more extensive studies.

Next, our study showed a decrease in microbiome diversity
within both polyphenol and placebo groups between baseline and
three-month time points, which appears to coordinate with studies
on metabolic diseases and CVD (24) but differs from findings by
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FIGURE 5

Association between clinical, taxonomic and functional markers at timepoint M3. (A) Correlation heatmap. Correlation between LEfSe markers and

clinical parameters. (B) Correlation between STAMP markers and clinical parameters. (C) Sankey diagram. Correlation between significant

features—LEfSe, STAMP markers and clinical parameters. KEGG and MetaCys functional data. (A–C) Pearson’s r, FDR for all comparisons, no FDR

when comparing between significant markers. Both baseline M0 and M3 data were used for correlation analysis. PWY-6588:pyruvate fermentation to

acetone | MetaCys (r = 18, p = 0.0474); B09108 Metabolism of cofactors and vitamins | KEGG B (r = −19, p = 0.0314); K00563 rlmA1; 23S rRNA

(guanine745-N1)-methyltransferase [EC:2.1.1.187] | KEGG D (r = 19, p = 0.03); K03628 rho; transcription termination factor Rho | KEGG D (r = −19,

p = 0.034); K02190 cbiK; sirohydrochlorin cobaltochelatase [EC:4.99.1.3] | KEGG D (r = −18, p = 0.0477); K01035 atoA; acetate CoA/acetoacetate

CoA-transferase beta subunit [EC:2.8.3.8 2.8.3.9] | KEGG D (r = 0.17, p = 0.0543); K01034 atoD; acetate CoA/acetoacetate CoA-transferase alfa

subunit [EC:2.8.3.8 2.8.3.9] | KEGG D (r = 18, p = 0.0391); (D) STAMP functional markers at M3. MetaCys data. STAMP, p ≤ 0.05, non-overlapping

95CI. * <0.05, ** <0.01, *** <0.001.

Istas et al. focused on polyphenols and vascular function, which did
not identify significant changes after polyphenol intake (23).

Regarding microbial abundance, we observed a decrease
in Bacteroides in both groups over the study period, which
differs from some previous studies (52, 53). Most et al. found
that polyphenol supplementation decreased the abundance of
Bacteroidetes in men (54), which parallels our observation in both
groups, though our results suggest this may be independent of
polyphenol intervention.We also observed an increase inRoseburia
abundance in the polyphenol group after 3 months of polyphenol
intake, a bacterium known for its butyrate-producing ability and
anti-inflammatory, probiotic properties (55–57).

The LEfSe analysis in our study demonstrated enrichment
of Agathobaculum sp., Alistipes finegoldii and Sellimonas in
the polyphenol group, compared to the placebo group at M3.
Agathobaculum produces butyrate and has been associated with
gut homeostasis and barrier function (58, 59) and potentially
with cognitive function (59, 60). These findings correspond
to research on STEMI patients, and animal models revealed

enrichment of butyrate-producing bacteria within the first 3 days
after the injury as a compensatory adaptive response. However,
this trend was not preserved after 28 days. Regarding specific
butyrate-producing taxa, this study reports that Butyricimonas

virosa, Anaerotruncus, Alistipes, Holdemanella, Subdoligranulum,
Butyricicoccus were enriched after injury in human STEMI patient
samples, and Faecalibacterium, Roseburia enriched in the non-
human primate model (47), which partially corresponds with our
findings. Moreover, butyrate administration and colonization with
butyrate-producing bacteria improved cardiac function, reduced
inflammation, and inhibited sympathetic neural remodeling after
MI in animal studies (47, 61).

Intriguing results were obtained from representatives of the
genus Alistipes; we found that Alistipes finegoldii increased in
the polyphenol group, while Alistipes timonensis increased in the
placebo group. This observation aligns with previous research
suggesting different beneficial effects of these bacteria in CVD (62),
while other research has associated Alistipes with various disorders
(63). Additionally, some species of Alistipes are known as butyrate
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producers, with increased levels upon probiotics intake, proposing
its anti-inflammatory benefits (64). Our results of correlation
analysis demonstrate opposite relationships; precisely, a negative
correlation of A. finegoldy and a positive correlation of Alistipes
timonensis with TMAO corresponds to the information above.
Sellimonas demonstrated a protective role in endocarditis (65)
and is proposed as a possible indicator of gut homeostasis. It
is also known for its involvement in butyric acid production
(66). In line with our observations, previous animal studies have
shown that polyphenol supplementation is linked to alterations
in microbial communities, specifically showing elevated levels
of butyrate-producing bacteria from the Lachnospiraceae family
(Agathobaculum and Roseburia) (67). Although we did not observe
significant increases in Bacteroides, Lactobacillus, Bifidobacterium
from Verrucomicrobia phylum, and bacteria from Akkermansia

genus as was previously reported (68), our results align with
the general effect of polyphenol increasing abundance of SCFA-
producing bacteria (32). The enrichment of short-chain fatty acid
(SCFA)-producing bacteria observed in our polyphenol group
likely plays a significant role in maintaining stable TMAO
levels. Chen et al. described how various butyrate-producing
bacteria contribute to cardiovascular health by mediating the gut-
heart axis (69). According to existing data butyrate functions
as both a primary energy source for intestinal epithelial cells
and a critical regulator of gut barrier integrity, limiting the
translocation of harmful metabolites like TMA into bloodstream
(69). Our observation of increased Roseburia, Agathobaculum,

Alistipes finegoldii, and Sellimonas populations correlates with the
beneficial bacteria Chen et al. identified as protective against
atherosclerosis. These bacteria can competitively exclude TMAO-
producing bacteria in the gut ecosystem (70), influence lipid
metabolism through multiple mechanisms, including enhanced
ABCA1 expression via GPR109A activation and HDAC inhibition,
leading to improved cholesterol efflux from macrophages (69),
improved hepatic metabolic condition via the Free Fatty Acid
Receptors 3 (FFAR3) affecting lipids synthesis (71), as evidenced
in our study by reduced ALT and AST levels in polyphenol
group, and stable LDL levels in polyphenol group compared to
increased LDL in placebo group. These cardioprotective effects
are further supported by Avendano-Ortiz et al.’s findings that
butyrate levels are significantly decreased during acute myocardial
infarction but normalize during recovery (72). Recent study
by Cheng et al. demonstrates that butyrate directly ameliorates
TMAO-induced cardiac effects (73). Collectively, these studies
suggest that polyphenol supplementation maintains a favorable gut
microbiome profile that supports cardiovascular health through
enhanced butyrate production.

Our LEfSe analysis also revealed a distinctive microbial
signature in the Placebo group, characterized by the enrichment
of various bacterial taxa predominantly from Firmicutes,
Bacteroidetes, and Cyanobacteria phyla, respectively demonstrating
the depletion of these bacteria in the polyphenol group.
Interestingly, according to available data, certain representatives of
these phyla utilize enzymes (CutC/D and YeaW/X) to metabolize
dietary choline and carnitine, converting them to TMA as part
of their energy-generating metabolic pathways (74, 75). The
most significantly enriched species included P. goldsteinii and

various members of Bacteroidales and Oscillospirales orders.
Interestingly, this microbial pattern differs from previously
reported signatures in STEMI patients. Kwun et al. described
increased abundance of Proteobacteria and Enterobacteriaceae

in STEMI patients (76), while Prins et al. identified positive
associations between cardiovascular risk and species such as
Collinsella stercoris and Flavonifractor plautii (77). These species
were not significantly enriched in our Placebo group. Notably,
P. goldsteinii has shown associations with high-fat diet feeding
and obesity-related parameters in some studies (78, 79), showing
a probable link of this bacteria to lipids metabolism, possibly
contributing to growth TMAO production’s precursors. Among
other dominant taxa in the placebo group, Coprobacter secundus
has been previously associated with various diseases (80). Our
finding of lower Lactobacillus abundance in the polyphenol group
differs from some previous studies (52, 81). While this genus is
generally considered beneficial, it has been associated with certain
conditions when underlying factors are present (82); for instance,
an increased abundance of some Lactobacillus species has been
reported in rheumatoid arthritis (83). Our results show a positive
correlation between Lactobacillus salivarius and TC level. Overall,
the polyphenol group demonstrates a more selective microbiome
profile with a few dominated beneficial bacteria, in contrast to
the placebo group’s more diverse dominant bacterial distribution
with multiple phyla, including Firmicutes and Actinobacteria

representatives, which corresponds with previous studies related
to TMAO-producing bacteria and polyphenol effects (2). The
distinct microbiome profiles between polyphenol and placebo
groups in our study suggest that polyphenols may selectively
modulate bacterial composition, potentially creating a more
focused microbiome environment. Nevertheless, the functional
consequences of these changes require additional metabolic,
functional, or metagenomic analyses.

Further, our predicted pathway analysis suggests potential
mechanisms that might contribute to the observed differences
in TMAO levels between groups. We hypothesize that the
polyphenol group’s reduced representation of several metabolic
pathways compared to placebo—such as PWY-6588 (pyruvate
fermentation to acetone), P161-PWY (acetylene degradation),
and UDPNAGSYN-PWY (UDP-N-acetyl-D-glucosamine
biosynthesis)—may reflect alterations in bacterial metabolism
that could influence TMA production. PWY-6588 (pyruvate
fermentation to acetone), which produces ketone bodies that,
while essential for normal cardiac energy metabolism (84, 85),
have been associated with certain cardiovascular conditions in
several studies (84, 86–88). De Koning et al. observed that elevated
ketone body levels in STEMI patients at 24 h were linked to worse
outcomes, including more considerable heart damage and lower
left ventricular function, and these levels remained high for up to 4
months (89). Moreover, acetone produced via this pathway could
serve as a carbon source for bacteria and influence gut pH (90).

According to some research, P161-PWY (acetylene
degradation) produces acetate that may affect myocardial
function, inhibiting myocardial contraction and precisely affecting
the SCFA receptor GPR43 (91, 92). UDPNAGSYN-PWY (UDP-
N-acetyl-D-glucosamine biosynthesis), a component in bacterial
cell walls, including Escherichia coli (93), may be indirectly linked
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to a previous study by Yoo et al., suggesting that high-fat diets
can modify the gut environment, facilitating E. coli growth and
its respiratory-dependent choline catabolism, leading to TMAO
increase (94). However, our study did not observe significant
changes in E. coli abundance, indicating that the relationship
between dietary interventions, bacterial metabolism, and TMAO
production may be more complex than previously hypothesized.
The observed decreases in energy metabolism pathways negatively
correlating with ejection fraction can be hypothesized as a
beneficial adaptive response after STEMI, as reduced myocardial
energy metabolism decreases oxygen demand, limits injury,
prevents adverse remodeling, and reduces mechanical stress on
the healing myocardium. Conversely, the elevated PWY-5005
(biotin biosynthesis) in the polyphenol group might be relevant
to epithelial health and barrier function (95, 96), host lipid
metabolism, and gene expression (97), potentially affecting the
absorption of TMA or its precursors. However, we acknowledge
that these proposed mechanisms are preliminary and require
further investigation to establish causal relationships.

Our Sankey plot analysis supports the complex interplay
between these mechanisms and TMAO levels. For instance, we
observed a decrease in Parabacteroides goldsteinii abundance in the
polyphenol group and its positive correlation with the PWY-6588
pathway and TMAO levels. Yet, our analysis suggests potential
relationships between specific bacteria, metabolic pathways, and
TMAO levels, though these mechanisms need further clarification,
warranting further research.

Based on our preliminary findings and existing literature,
polyphenols demonstrate a targeted approach to TMAO
metabolism by restructuring gut microbiota and reducing the
Firmicutes/Bacteroidetes ratio, probably targeting bacteria involved
in TMAO production. This microbial shift resulted in decreased
abundance of bacterial taxa utilizing specific enzymes converting
dietary precursors to TMA. Moreover, butyrate-producing bacteria
increased in the polyphenol group, can competitively inhibit
TMAO-producers, strengthen intestinal barrier function and
reduce the transfer of TMA into the circulation, additionally,
demonstrating protective effects against TMAO-induced cardiac
damage, impacting liver and lipids metabolism.

While our observations suggest that polyphenols may help
maintain stable TMAO levels in patients with STEMI through
potential microbiome modulation, these findings should be
considered preliminary. Further extended research with larger
sample sizes is needed to confirm these results and determine their
clinical significance.

Conclusion

Our study suggests a beneficial association between polyphenol
supplementation, gut microbiome composition, and stable TMAO
levels in STEMI patients. We observed significant changes in
bacterial diversity, F/B ratio, and specific taxa, particularly
butyrate-producing bacteria. These microbiome alterations may
contribute to the stability of the TMAO level seen in the
polyphenol compared to the increase observed in the placebo
group. Obtained results support potential mechanisms linking

polyphenol intake to microbiome modulation and cardioprotective
effect. While promising, these preliminary findings require further
validation to establish their significance for cardiovascular health
through clinical trials with larger sample sizes, longer study
durations, and more advanced sequencing methods, such as
shotgun, metatranscriptomics, and metabolomics.

Limitations

This study has several limitations. First, the sample size
was relatively small, which may affect the generalizability of
the findings. Future studies with larger cohorts must validate
the findings and ensure they can be applied broadly across
different demographics. Second, we used 16S rRNA sequencing,
limiting microbial identification and functional analysis depth. A
more comprehensive approach, such as shotgun metagenomics,
metatranscriptomics, and metabolomics, would provide a deeper
understanding of the microbial community and the specific
gene functions involved, enabling more accurate data into the
mechanisms by which polyphenols influence the gut microbiome
and cardiovascular health. Third, the duration of the polyphenol
supplementation was limited to 3 months. This may not have
been long enough to capture the full extent of the long-term
effects of polyphenol intake on the gut microbiome or its sustained
impact on the cardiovascular system. Longer-term studies are
required to assess whether the observed changes in microbiome
composition and TMAO levels are maintained over time and
whether they translate into continuing cardiovascular benefits.
Lastly, we acknowledge that one of the study limitations was
the lack of dietary control, as the research extended beyond the
hospitalization period. While baseline homogeneity in laboratory
parameters and microbiome diversity demonstrates the absence
of significant dietary differences between groups that could have
confounded our results, our study did not fully account for
potential lifestyle and dietary variations among participants that
could independently affect gut microbiome composition beyond
the polyphenol intervention. Future research should control for
these variables to establish more definitive conclusions about
polyphenol supplementation effects.
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