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Purpose: The retinal pigment epithelium (RPE) transmits growth signals from the

neural retina to the choroid in the emmetropization pathway, but the underlying

molecular mechanisms remain poorly understood. Here, we compared the

proteomic profiles of RPE-derived exosomes between myopic and non-myopic

eyes of tree shrews, dichromatic mammals closely related to primates.

Methods: Four myopic (159–210 days of visual experience, DVE) and seven

non-myopic eyes (156–210 DVE) of tree shrewswere included. Non-cycloplegic

refractive error was measured with Nidek autorefractor, and axial ocular

component dimensions were recorded with LenStar. Tissue was collected,

yielding RPE-lined eyecups, which were subsequently incubated in L-15 culture

media for 2 h. The RPE-derived exosomes were then enriched and purified from

the incubationmedia by double ultracentrifugation and characterized by imaging

and molecular methods. Exosomal proteins were identified and quantified with

mass spectrometry, examined using GO and KEGG analyses, and compared

between myopic and non-myopic samples.

Results: Out of 506 RPE exosomal proteins identified, 48 and 41 were unique to

the myopic and non-myopic samples, respectively. There were 286 di�erentially

expressed proteins in the myopic samples, including 79 upregulated and 70

downregulated. The top three upregulated proteins were Histone H4 (Fold

Change, FC = 3.04, p = 0.09), PTB 1 (FC = 2.59, p = 0.08) and Histone H3.1

(FC = 2.59, p = 0.13), while the top three downregulated proteins were RPS5

(FC = −2.41, p=0.004), ACOT7 (FC=-2.15, p = 0.04) and CRYBB2 (FC = −2.14,

p = 0.05). Other di�erentially expressed proteins included LUM, VCL, SEPTIN11,

GPX3, SPTBN1, SEPTIN7, RPL10A, KCTD12, FGG, and FMOD. Proteomic analysis

revealed a low abundance of ATP6V1B2 and crystallin beta B2, and a significant

depletion of the crystallin protein family (crystallin A2, A3, and B3 subunits)

in the myopic samples. The enrichment analyses showed extracellular matrix,

cytoskeletal dynamic, and cell-matrix adhesion as the primary components

associated with the RPE exosomal proteins in myopic eyes.

Conclusion: Using standard molecular and imaging techniques, this study

provides the first demonstration of the ex-vivo RPE exosome biogenesis from

tree shrew eyes. The results showed distinct di�erential expressions of the

RPE exosomal proteins between the myopic and non-myopic eyes, with

several proteins unique to each group. Future targeted proteomic studies of

identified candidate exosomal protein signatures could elucidate the molecular
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mechanism of RPE exosome-mediated growth signal transmission in the

emmetropization pathway.
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Introduction

In postnatally developing eyes, a visually guided
emmetropization mechanism uses visual cues to control the
rate of axial eye growth to achieve and maintain a good focus on
the retina (emmetropia). Experimental alterations of visual cues,
for example, by imposing defocus (1, 2) or changing the spectral
composition of light (3–6), produce a compensatory modulation
of eye growth, causing the eye to deviate from emmetropia. These
vision-dependent changes in eye growth can occur in a regionally
selective manner (7, 8) and without the need for accommodation
(9, 10) or central connections to the brain (11), suggesting that the
emmetropization mechanism is local to the eye and operates along
the retina-choroid-sclera pathway, whereby the neurosensory
retina [likely amacrine cells (12, 13)] produces a cascade of growth
stimulatory (GO) or inhibitory (STOP) signals that trigger changes
in choroidal thickness and scleral remodeling to control eye size
and refractive state (14, 15). In the past few decades, certain
environmental factors, likely related to the modern world, have led
to a failure in emmetropization in an increasingly large number of
individuals, causing a rapid rise in myopia prevalence worldwide
(16). The mechanistic basis of this failure is not fully understood
due largely to an incomplete understanding of the molecular
mechanisms involved in the early retinal growth signaling pathway
of emmetropization (17).

There is growing evidence that the retinal pigment epithelium
(RPE) plays a critical role in the emmetropization mechanism (18).
The anatomical location of the RPE—with the neurosensory retina
on the apical side and the choroid on the basal side—allows it
to serve as a conduit for growth signals between the retina and
the choroid (15, 19, 20). During experimental manipulations of
image focus, the RPE secretes growth-regulatory factors and shows
bi-directional changes in gene expressions (18). For instance, eye
growth-promoting stimuli cause downregulation of the BMP2 (21–
25), while growth-inhibiting stimuli cause upregulation (21, 23,
25). These results provide compelling evidence for RPE-mediated
control of eye growth, although how the RPE transmits signaling
information related to eye growth remains unknown.

Exosomes are nano-sized extracellular membrane-bound
vesicles (30–100 nm) that could be involved in growth signal
transmission across the RPE. All eukaryotic cells release exosomes
from their endosomal compartments, except perhaps the mature
erythrocytes (26). Studies have reported exosome biogenesis in a
variety of bodily fluids (27), including tears and aqueous humor
(28, 29). Although previously thought of as a means of cellular
waste disposal, recent evidence points to the major physiological
function of exosomes in mediating intercellular communication
through the delivery of cargo to neighboring or distant cells
(30, 31). Their cargo contains proteins, nucleic acids, and lipids

unique to the cell of origin and can readily cross RPE tight
junctions and retinal blood barriers (32), making them candidate
growth signaling molecules. Proteomic evidence supports the
biogenesis of exosomes from the RPE (33, 34), likely occurring
on the apical side and mediated by the inhibition of G-protein
coupled receptor (GPR)143 (35), which acts as a direct competitive
antagonist receptor of dopamine—a potent myopia-protective
neurotransmitter molecule (35, 36). Interestingly, the apical surface
of the RPE also contains Na+/K+/ATPase, a known exosomal
marker (37) whose expression levels have been linked to myopia
(38, 39). In addition, the RPE apical surface is known to release
several neurotransmitters, such as epidermal growth factor (40) and
αβ crystalline (41, 42) that are implicated in the regulation of eye
growth and refractive state.

These results lead to our hypothesis that exosomes released
by the RPE may serve as candidate messengers to facilitate
communication of growth signals from the neurosensory retina
to the choroid. In this study, we provide preliminary evidence
of ex-vivo RPE exosome biogenesis from the myopic and non-
myopic tree shrew eyes. In addition, we demonstrate differential
expression patterns of several RPE exosomal proteins in myopic
eyes and highlight major cellular pathways by which RPE
exosomes may facilitate growth signal transmission in the
emmetropization mechanism.

Methods

Animals

Tree shrews (Tupaia belangeri) used in this study were raised by
their mothers in the Tree Shrew Core at the University of Alabama
at Birmingham. The colony is maintained on a 14-h light-on/10-
h light-off cycle. Since tree shrews are born with their eyes closed,
we designate the day of eye-opening (∼3 weeks after birth) as the
first day of visual experience (DVE). The age range of animals in
this study was 156 to 210 DVE. All procedures were performed
in adherence with the ARVO Statement for the Use of Animals
in Ophthalmic and Vision Research and were approved by the
Institutional Animal Care and Use Committee of the University of
Alabama at Birmingham.

Experimental groups

Nine tree shrews (five males/four females) were the subjects
in this study. All animals within a group came from a different
litter and were 156 to 210 DVE at the time of tissue collection.
Individual eyes were categorized into myopic (n = 4 eyes) and
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TABLE 1 Characteristics of the experimental groups.

Myopic
(n = 4)

Non-myopic
(n = 7)

p-value∗

Days of Visual
Experience (DVE,
range)

159–210 156–210

Right eye: left eye 3:1 4:3

Male: female 3:1 3:4

Spherical equivalent
refractive error
{D, mean [Sphere
+(Cylinder/2)]±
SD}

−9.26± 5.98 0.45± 0.64 0.002

Vitreous chamber
depth (mm)

3.05± 0.05 2.37± 0.10 0.0003

∗Two sample t-test.

non-myopic (control, n = 7 eyes) groups based on their non-
cycloplegic refractive error. In myopic eyes, myopia was previously
induced either by a −5 D lens or narrow-band cyan light, stimuli
that are known to induce myopia in these animals (3, 43, 44).
Non-myopic eyes were from animals raised in standard colony
lighting who were near emmetropic after having completed their
initial emmetropization process or had recovered from previous
treatments to become near emmetropic. The average (mean ± SD)
spherical equivalent refractive error (SER) was −9.26 ± 5.98 D for
the myopic group and 0.45 ± 0.64 D for the non-myopic group
(Table 1). The difference in SER between the groups was consistent
with the difference in vitreous chamber depth (myopic: 3.05 ±

0.05mm; non-myopic: 2.37± 1.04 mm).

Measurements of refractive error and
ocular component dimensions

Non-cycloplegic refractive error was measured in awake and
gently restrained animals in a dimly illuminated room using
the Nidek infrared autorefractor (ARK-700A, Marco Ophthalmic,
Jacksonville, FL, www.marco.com). To record these measurements,
animals were aligned with the instrument using a pedestal
installed on their skull, as described previously (45). A set of 10
measurements was taken, out of which five measurements with
the highest quality scores were averaged to obtain the final SER.
All refractive values were corrected for the “small eye artifact”
(46) previously shown to be about +4 D in tree shrews (47). As
with previous studies, we used non-cycloplegic data to quantify the
SER because they have been shown to provide a valid estimate of
refractive error in these species (48).

Following the measurement of refractive errors, axial ocular
component dimensions were measured in awake and gently
restrained animals with the LenStar (LS-900, Haag-Streit,
www.haag-streit.com) using tree shrew-specific refractive indices
(49). This optical biometer uses low-coherence interferometry
to measure the dimensions of axial components. From these
components, one can also calculate the vitreous chamber depth
as the distance between the posterior lens surface and the internal

limiting membrane of the retina. Three measurements were
averaged to obtain the final measurement of axial components.

RPE tissue preparation

After the animals were terminally anesthetized (17.5mg
ketamine and 1.2mg xylazine, followed by 50mg xylazine,
intramuscular injection), eyes were enucleated and immediately
put into a 10 cm Petri dish with sterile phosphate-buffered saline
(PBS) for washing (Figure 1). Eyes were then transferred to a 6-
well plate containing 4mL of fresh PBS solution and dissected
into an eyecup using a dissecting microscope and an 18G needle.
An incision was made in the sclera, ∼1.0mm behind the limbal
boundary. Then, the anterior segment, including the cornea, iris,
ciliary body, and crystalline lens, was removed. The retina was
then detached from the remaining posterior segment eyecup, gently
tugging on the zonule of Zinn, and then progressively peeled
away, avoiding fragmentation. The eyecup with only RPE-choroid-
sclera complex (RPE-lined eyecup) was washed twice with PBS
and transferred to the upper chamber of 0.4µm transwell insert
of a 24-well plate (Corning, Cat# 3450, USA). Approximately 200
µl of L-15 media was added on top of the eyecup located in the
upper chamber and 500 µl of media in the lower chamber of the
insert. This allowed the eyecup to immerse in media, maintaining
a normal flow of fluids on the RPE monolayer during incubation.
The eyecup with media was then incubated at 37◦C for 2 h, using
a protocol modified from a previous report (35). After 2 h, the
conditioning media was collected and centrifuged at 800 × g for
5min at 4◦C. The supernatant was then transferred to a new tube
and stored at−80◦C before enriching exosomes.

Exosome enrichment and characterization

The RPE exosomes were isolated and purified using the double
ultracentrifugation method (50). First, the eyecup conditioning
media (∼200 µl) was thawed and centrifuged at 1,000 × g
for 10min at 4◦C. The supernatant was then transferred to an
ultracentrifuge tube (#361623, for fixed angle rotor) and diluted
to a volume of 4.5mL using PBS before centrifuging the diluted
sample at 10,000 × g for 30min at 4◦C using a fixed angle rotor.
The supernatant was collected in an ultra-clear ultracentrifuge
tube (#344057, for a swinging bucket rotor) and centrifuged in
a swinging bucket rotor at 100,000 × g for 60min at 4◦C. After
ultracentrifugation, the pellets were washed twice with 4.5mL
of PBS and briefly air-dried by flipping tubes upside down on
Kimwipe (1–3min). The excess PBS on the tube wall was wiped off
using Kimwipe without disturbing the pellet/bottom of the tube.
The pellet was then reconstituted in 40 µl of PBS by pipetting
up and down ∼20 times gently, and resuspended samples were
prepared for quality checks and proteomic analysis.

Three phenotyping methods were used to characterize the
enriched exosomes: transmission electron microscopy (TEM,
Tecnai Spirit T12), CD63 enzyme-linked immunoassay, and
nanoparticle tracking analysis (NTA), as recommended by
the International Society for Extracellular Vesicles (51). The
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FIGURE 1

Graphical illustration of experimental methodology showing sample preparation, protein digestion and extraction, and data analysis. Created with

BioRender.com.

morphology of particles in the samples was visualized with
transmission electron microscopy (TEM, Tecnai Spirit T12) after
preparing the samples according to a previously published protocol
(27). We also evaluated CD63 expression [a molecular marker of
exosomes (27)] in the samples using ExoELISA-ULTRA CD63 Kit
(#EXEL-ULTRA-CD63-1, System Biosciences, SBI) following the
manufacturer’s instructions.

Nanoparticle tracking analysis

The size and concentration of exosomes released from RPE-
lined eyecups were measured with NTA using NanoSight NS300
(Malvern Instruments Inc., Westborough, MA) equipped with a
488nm laser and integrated automated fluidics. Five 60-s videos
were recorded of each sample with the camera level set at 13 and
the detection threshold set at 5. The temperature was set at 25◦C
and monitored throughout the measurements. Videos recorded for
each sample were analyzed with NTA software version 3.4.4 to
determine the concentration and size of measured particles with
corresponding standard errors. For analysis, auto settings were

used for blur, minimum track length, and minimum expected
particle size. The NanoSight system was calibrated with polystyrene
latex microbeads of 50, 100, and 200 nm (Thermo Scientific Inc.)
before analysis. Exosome samples were diluted at 1:50 in PBS
and 1mL was used for NanoSight analysis. Sterile PBS (Gibco
#20012-027) was used as a diluent to avoid contaminating particles.
Five measurement runs were performed for each sample and
averaged to obtain the final data. Results of NTA were displayed
as frequency distribution graphs showing the number of particles
per milliliter. The concentration of particles was calculated to
determine the mean ± SD number of exosomes in the myopic and
non-myopic samples.

Mass spectrometry

Sample preparation
Proteomics analysis was carried out as previously referenced

with minor changes (52) under section 2.5 nLC-ESI-MS2 under
Protein IDs for GeLC. All protein extracts were attained using M-
PERTM Mammalian Protein Extraction Reagent (Thermo Fisher
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Scientific, Cat. # 78501) and quantified using Pierce BCA
Protein Assay Kit (Thermo Fisher Scientific, Cat.# PI23225).
As was experimentally determined, a set amount of protein
per sample was diluted to 35 µL using NuPAGE LDS sample
buffer (1× final conc., Invitrogen, Cat.# NP0007). Proteins
were reduced with DTT and denatured at 70◦C for 10min
prior to loading everything onto Novex NuPAGE 10% Bis-Tris
Protein gels (Invitrogen, Cat.# NP0315BOX) and separated (35min
at 200 constant V). The gels were stained overnight with a
Novex Colloidal Blue Staining kit (Invitrogen, Cat.# LC6025).
Following de-staining, each entire lane was cut into multiple
MW fractions (3–8 fractions, as is experimentally determined to
be optimal) and equilibrated in 100mM ammonium bicarbonate
(AmBc), each gel plug was digested overnight with Trypsin
Gold, Mass Spectrometry Grade (Promega, Cat.# V5280) following
manufacturer’s instruction. Peptide extracts were reconstituted in
0.1% Formic Acid (FA)/ddH2O at 0.1 µg/µL.

Protein quantification
Peptide digests (8 µL each) were injected onto a 1,260 Infinity

nHPLC stack (Agilent Technologies) and separated using a 75-
micron I.D. × 15 cm pulled tip C-18 column (Jupiter C-18 300
Å, 5 microns, Phenomenex). This system ran in line with a
Thermo Q Exactive HFx mass spectrometer, equipped with a
Nanospray FlexTM ion source (Thermo Fisher Scientific), and all
data was collected in CID mode. The nHPLC was configured with
binary mobile phases that included solvent A (0.1%FA in ddH2O),
and solvent B [0.1%FA in 15% ddH2O/85% Acetonitrile (ACN)],
programmed as follows; 10min at 5%B (2 µL/min, load), 90min at
5%-40%B (linear: 0.5 nL/min, analyze), 5min at 70%B (2 µL/min,
wash), 10min at 0%B (2 µL/min, equilibrate). Following each
parent ion scan (300–1,200 m/z at 60k resolution), fragmentation
data (MS2) was collected on the topmost intense 10 ions at 7.5K
resolution. For data-dependent scans, charge state screening and
dynamic exclusion were enabled with a repeat count of 2, repeat
duration of 30 s, and exclusion duration of 90 s.

MS data conversion and searches
The XCalibur RAW files were collected in profile mode,

centroided, and converted to MzXML using ReAdW v. 3.5.1. The
mgf files were created using MzXML2Search (included in TPP v.
3.5) for all scans. The data were searched using SEQUEST (Thermo
Fisher Scientific), which is set for three maximummissed cleavages,
a precursor mass window of 20 ppm, trypsin digestion, variable
modification C at 57.0293, and M at 15.9949 as a base setting, with
additional post-translational modifications (ex: Phos, Ox, GlcNAc,
etc.) that may be applied later as determined to be of importance
experimentally. Searches were performed with a species-specific
subset of the UniProtKB database.

Peptide filtering, grouping, and quantification
The list of peptide IDs generated based on SEQUEST search

results was filtered using Scaffold (Protein Sciences, Portland
Oregon). Scaffold filters and groups all peptides to generate
and retain only high-confidence IDs while also generating

normalized spectral counts (N-SCs) across all samples for relative
quantification. The filter cut-off values were set with a minimum
peptide length of >5 AAs, with no MH+1 charge states, with
peptide probabilities of>80%C.I., and with the number of peptides
per protein ≥2. The protein probabilities were set to a >99.0%
C.I., and an false discovery rate (FDR) < 1.0. Scaffold incorporates
the two most common methods for statistical validation of large
proteome datasets, the FDR and protein probability (53–55).
Relative quantification across experiments was performed via
spectral counting (56, 57), and when relevant, spectral count
abundances were normalized between samples (58).

Data and statistical analysis

Proteomic data analysis
For proteomic data generated, two separate non-parametric

statistical analyses were performed between each pair-wise
comparison. These non-parametric analyses include 1) the
calculation of weight values by significance analysis of microarray
(SAM; cut off >|0.8| combined with, 2) T-Test (single tail, unequal
variance, cut off p < 0.05), which are then sorted according to the
highest statistical relevance in each comparison. For SAM (59, 60),
whereby the weight value (W) is a statistically derived function that
approaches significance as the distance between the means (µ1-
µ2) for each group increases, and the SD (δ1-δ2) decreases using
the formula, W=(µ1-µ2)/(δ1-δ2). For protein abundance ratios
determined with N-SCs, we set a 1.5–2.0-fold change (FC) as the
threshold for significance, determined empirically by analyzing the
inner-quartile data from the control experiments using ln-ln plots,
where the Pearson’s correlation coefficient (R) is 0.98, and >99%
of the normalized intensities fell between the set fold change. In
each case, all three tests (SAM, T-test, or FC) needed to pass to be
considered significant.

Systems analysis
The Gene Ontology (GO) assignments and pathway analysis

were performed using the ShinyGO 0.77 online tool (61). The
results were verified with other online tools: Database for
Annotation, Visualization, and Integrated Discovery and g: Profiler
online tool (62). In addition, functional annotation clustering and
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
mapping were performed. Protein networks and interactomes were
analyzed with the STRING 9.1 public database (63).

Results

Characterization of exosomes released by
RPE-lined eyecups

Figure 2 illustrates the phenotypic characterization of exosomes
isolated from the RPE-lined eyecups of myopic and non-myopic
tree shrew eyes. The TEM images of the samples showed
homogeneous round-shaped membraned vesicles on exosome-
enriched samples (Figure 2A). The particle size was in the range
expected for exosomes (64) and peaked at 72.3 ± 2.3 nm for
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FIGURE 2

The phenotypic characterization of exosomes released by RPE-lined eyecups. (A) Homogeneous round-shaped membraned vesicles with diameters

of 30–150nm characteristic of exosomes were observed in transmission electron microscopy (scale: 200nm). (B) Concentration of particles as a

function of their size on Nanoparticle Tracking Analysis (NTA) of exosomes enriched samples: non-myopic (black line) and myopic (red line). The

peak size of particles was 72.3 nm for non-myopic samples and 67.6 nm for myopic samples.

the non-myopic sample and 67.6 ± 2.3 for the myopic sample
(Figure 2B). The size heterogeneity between the myopic and non-
myopic samples may be related to biological roles, such as cellular
processes, disease mechanisms, or cargo content and delivery (65,
66). The mean ± SD concentration of particles was 1.43 ± 0.06 ×

108 particles/mL in the non-myopic sample and 9.4 ± 0.37 × 107

particles/mL in the myopic sample. The presence of the CD63, a
molecular marker of exosomes (51), was measured by ExoELISA-
ULTRA CD63 Kit (#EXEL-ULTRA-CD63-1, System Biosciences,
SBI). The samples were positive for CD63, with a range of exosome
abundance from 4× 108 to 7× 108 across samples.

Proteomic profile of RPE exosomes from
myopic and non-myopic eyes

A total of 506 proteins were identified across the myopic
and non-myopic RPE exosome samples. Out of these, 417
were common, 48 were uniquely expressed in the myopic
samples and 41 were uniquely expressed in the non-myopic
samples (Figure 3A; Supplementary Tables S1, S2). The enrichment
analysis for KEGG, GO cellular components, and GO molecular
functions performed on ShinyGO 0.77 for uniquely expressed
proteins are shown in Figures 3B–D for myopic samples and
Figures 4A–C for non-myopic samples. The RPE exosomal
proteins uniquely expressed in myopic samples were linked
to the metabolism of carbohydrates and amino sugars with
phosphoglucomutase and phosphotransferase molecular activity
which contribute to the upregulation of glycolysis pathway in
target cells (Supplementary Table S1). Other notable GO cellular
components associated with myopic RPE exosomal proteins were
extracellular matrix, intracellular vesicles, and focal adhesion
and paracrine factors related to extracellular matrix remodeling.
Examples of identified proteins in these categories were Heat
shock protein family B (small) member 1(HSPB1), Transforming
growth factor-beta-induced protein (TGFBI), Myocilin (MYOC),
Apolipoprotein A-IV (APOA4), Thrombospondin-1 (THBS1),
protein phosphatase 1 catalytic subunit beta (PPP1CB), Myosin
binding protein C2 (MYBPC2), Phosphoglucomutase-like protein

5 (PGM5), and Collagen type VI alpha 3 chain (COL6A3;
Supplementary Tables S1, S2).

In the non-myopic samples, the uniquely expressed proteins
were involved in the metabolism of tricarboxylic acid and
pyruvate (Figure 4A). In addition, mitochondrial components with
pyruvate dehydrogenase enzymatic activity, chaperone complex,
and tricarboxylic acid cycle (TCA) enzymes were the most enriched
cellular components (Figures 4B, C). Examples of identified
proteins in these categories were Dihydrolipoyl dehydrogenase,
mitochondrial (DLD), Pyruvate dehydrogenase E1 component
subunit alpha (PDHA1), Succinyl-CoA ligase [ADP-forming]
(SUCLA2), T-complex protein 1 subunit beta (TCPB), Beta-
crystallin A2, A3, B1, B3 (CRYBA2, CRYBA3, CRYB1 and CRYB3;
Supplementary Tables S3, S4). These analyses suggest that the
proteomic profile of RPE exosomes from myopic eyes shows
a differential expression pattern, which likely supports altered
metabolic requirements of the myopic retina and extracellular
matrix remodeling process.

Identification of proteins di�erentially
expressed in RPE exosomes from myopic
eyes

The comparison of proteomic profiles of RPE exosomes
between myopic and non-myopic eyes exhibited 286 differentially
expressed proteins. Out of these, 79 were significantly upregulated
and 70 were significantly downregulated (Supplementary Tables S5,
S6). Table 2 summarizes the top 41 differential expressed
proteins, including 21 upregulated, 16 downregulated, and 3
undetected in myopic samples. The heatmap of these proteins
showed several protein clusters that were upregulated and
downregulated in myopic samples compared with non-myopic
samples (Figure 5A).

A volcano plot was constructed to display the top 41
differentially expressed proteins (Figure 5B). Above the horizontal
threshold line (p = 0.05), the significantly upregulated proteins
(≥1.5 FC, myopic/non-myopic) are shown as red dots and the
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FIGURE 3

Proteomic profiles of RPE exosomes from myopic samples. (A) Venn diagram displaying all identified RPE exosomal proteins across the myopic and

non-myopic samples. Enrichment analysis from KEGG (B), GO cellular components (C) and GO molecular functions (D) for 48 unique RPE exosomal

proteins identified in myopic samples. All enrichment analysis were performed with ShinyGo 0.77 online tool.

FIGURE 4

Proteomic profiles of RPE exosomes from non-myopic samples. Enrichment analysis from KEGG (A), GO cellular components (B) and GO molecular

functions (C) for 41 unique RPE exosomal proteins identified in non-myopic samples. All enrichment analysis were performed with ShinyGo 0.77

online tool.
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TABLE 2 Di�erentially expressed RPE exosomal proteins in myopic eyes.

Protein names Accession
number

Gene
symbol

SAM T-test Fold Change
(Myopic/

Non-myopic)

Expression level
in myopic eyes

Histone H4 P62805 H4C9 0.686 0.098 3.04 Upregulated

PTB domain-containing
engulfment adapter protein
1

Q9UBP9 GULP1 1.036 0.076 2.59

Histone H3.1 P68431 H3C10 0.626 0.137 2.59

AP-2 complex subunit
alpha-1

O95782 AP2A1 0.863 0.107 2.43

Lumican P51884 LUM 1.445 0.014 2.27

Vinculin P18206 VCL 0.693 0.092 2.22

Septin 11, isoform CRA_b D6RGI3 SEPTIN11 0.937 0.036 2.19

Glutathione peroxidase 3 P22352 GPX3 0.921 0.058 2.12

Spectrin beta chain,
non-erythrocytic 1

Q01082 SPTBN1 0.730 0.030 1.94

Septin-7 Q16181 SEPTIN7 0.882 0.014 1.91

60S ribosomal protein L10a P62906 RPL10A 0.579 0.090 1.84

BTB/POZ
domain-containing protein
KCTD12

Q96CX2 KCTD12 0.715 0.070 1.82

Fibrinogen gamma chain P02679 FGG 0.828 0.014 1.80

Osteoglycin OG Q7Z532 OGN 0.498 0.094 1.79

Fibromodulin Q06828 FMOD 0.580 0.100 1.73

Phosphoglycerate kinase 1 P00558 PGK1 0.683 0.032 1.70

Septin-2 Q15019 SEPTIN2 0.780 0.038 1.70

Alpha-actinin-4 O43707 ACTN4 0.491 0.097 1.65

Glutathione S-transferase
Mu 3

P21266 GSTM3 0.875 0.018 1.64

Gelsolin P06396 GSN 0.793 0.034 1.57

Myomesin-1 P52179 MYOM1 0.918 0.007 1.50

Cell growth-inhibiting
protein 34

Q08ES8 RPL11 −0.677 0.048 −1.53 Downregulated

Arrestin-C P36575 ARR3 −0.487 0.100 −1.57

V-type proton ATPase
subunit B, brain isoform

P21281 ATP6V1B2 −0.452 0.087 −1.59

Alpha-crystallin A chain P02489 CRYAA −0.644 0.031 −1.61

CDC37 protein Q6FG59 CDC37 −0.810 0.042 −1.64

Phosphoserine
aminotransferase

Q9Y617 PSAT1 −0.581 0.072 −1.70

Alpha-crystallin B chain P02511 CRYAB −0.529 0.071 −1.75

6-phosphogluconate
dehydrogenase,
decarboxylating

P52209 PGD −0.625 0.042 −1.79

Phosphatidylethanolamine-
binding protein
1

P30086 PEBP1 −0.525 0.069 −1.80

Opsin 1 (Cone pigments),
medium-wave-sensitive

B7ZLG5 OPN1MW −0.526 0.067 −1.81

(Continued)
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TABLE 2 (Continued)

Protein names Accession
number

Gene
symbol

SAM T-test Fold Change
(Myopic/

Non-myopic)

Expression level
in myopic eyes

Histidine triad
nucleotide-binding protein
1

P49773 HINT1 −0.530 0.060 −1.83

Retinol dehydrogenase 10 Q8IZV5 RDH10 −0.487 0.078 −1.86

Poly(rC)-binding protein 2 Q15366 PCBP2 −1.174 0.006 −2.10

ADP-ribosylation factor 3 P61204 ARF3 −0.661 0.073 −2.12

Beta-crystallin B2 P43320 CRYBB2 −0.628 0.051 −2.14

Cytosolic acyl coenzyme A
thioester hydrolase

O00154 ACOT7 −0.745 0.045 −2.15

40S ribosomal protein S5 P46782 RPS5 −1.246 0.004 −2.41

Beta-crystallin A2 P53672 CRYBA2 Undetectable

Beta-crystallin A3 P05813 CRYBA1

Beta-crystallin B3 P26998 CRYBB3

FIGURE 5

Di�erential expression patterns of top 38 RPE exosomal proteins in myopic eyes. (A) Heatmap of these proteins comparing expression levels

between myopic and non-myopic (control) eyes. The box color indicates log2 fold changes showing upregulation in red and downregulation in

green. (B) Volcano plot illustrating top 40 significantly di�erentially abundant proteins selected by Qlucore Stats. The –log10 (Benjamini–Hochberg

corrected P-value) is plotted against the log2 (fold change, FC: myopic/non-myopic). The non-axial vertical lines denote ±1.5-fold change while the

non-axial horizontal line denotes p = 0.05, which is the significance threshold (prior to logarithmic transformation). Volcano plot shows significantly

upregulated proteins with red dots (FC≥1.5) into the right of the non-axial vertical right line and significantly downregulated proteins as green dots

(FC≤-1.5) into the left of the non-axial vertical line. (C) 3D Principal component analysis (PCA) shows that myopic (red) and non-myopic (control,

blue) samples are well distinguished by two defined clusters.

significantly downregulated proteins (≤-1.5 FC, myopic/non-
myopic) are shown as blue dots. Out of the differentially expressed
proteins, the most abundant proteins in the myopic samples
were Histone H4 (H4C9, FC = 3.04), PTB domain containing

engulfment adaptor protein 1 (GULP1, FC = 2.59), Histone H3.1
(H3C10, FC = 2.59), Lumican (LUM, FC = 2.27), Vinculin
(VSL, FC = 2.2), Septin-2,7,11 (SEPTIN 2,7,11, FC = 1.70 to
2.19), Gelsolin (GSN, FC = 1.57), Alpha-actin 4 (ACTN4, FC
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= 1.65), Fribomodulin (FMOD, FC = 1.73), and Fibrinogen
gamma chain (FGG, FC = 1.80). Similarly, the least abundant
proteins were Cell growth-inhibiting protein 34 (FC = 1.53),
Arrestin-C (FC = −1.57), Alpha-crystallin A and B chains
(FC = −1.61 to −1.75), Opsin 1 medium-wave-sensitive (FC
= −1.81), Retinol dehydrogenase 10 (FC = −1.86), Poly(rC)-
binding protein 2 (FC = −2.10), 40S ribosomal protein S5
(RPS5, FC = −2.41), Cytosolic acyl coenzyme A thioester
hydrolase (ACOT7, FC = −2.15) and Beta-crystallin B2 protein
(CRYBB2, FC = −2.14) (Figure 5B and Table 2). The principal
component analysis of the exosome protein data showed two
well-defined clusters for the myopic and non-myopic groups
(Figure 5C).

Functional analysis of the top 41
di�erentially expressed RPE exosome
proteins in the myopic eyes

The functional GO analysis of the top 41 differentially
expressed proteins showed that the upregulated RPE exosomal
proteins in myopic eyes were closely related to cytokinesis, glycan
metabolism, and nucleosome activation pathways, including some
previously reported in eye growth regulation, such as oxidative

stress (67), TGF-β receptor signaling (68), and plasminogen
activation (69) (Figure 6A). The most significant biological
process was the response to lipid hydroperoxide. The results
suggested that the upregulated protein groups could be involved
in the cytoskeleton organization mediated by SEPTIN proteins
and increased resistance to remodel the extracellular matrix
(Supplementary Figure S1B). On the contrary, the downregulated
RPE exosomal proteins in myopic eyes were mostly related to lens
development, visual perception, sensory system development, and
nucleotide catabolism (Figure 6B). Although the KEGG and GO
analyses for the downregulated proteins in myopia did not show
results in ShinyGO sorting for cellular components, these proteins
were found to be related to the structure of the eye lens when they
were sorted by molecular functions (Supplementary Figure S1D).

The ingenuity pathway analysis by category of diseases
and biomarkers of 41 differentially expressed RPE exosomal
proteins in myopic samples showed 35 members altered in
cancer, organismal injury, and abnormalities, 23 in neurological
diseases, and 13 members involved in ophthalmic diseases
including conditions related to abnormal morphology of the
eye (Supplementary Table S7). The top canonical pathways for
differentially expressed RPE exosomal proteins in myopia were
related to integrin signaling, Ras homolog family member A
(RHOA) signaling, cell junction signaling, and phototransduction
pathway (Supplementary Table S8).

FIGURE 6

Enrichment analyses and networks interactions of top 41 di�erentially expressed RPE exosomal proteins in the myopic eyes. GO analysis for

biological processes of 21 significantly upregulated proteins (A) and 17 significantly downregulated proteins and 3 undetected proteins (B) in myopic

samples performed with the ShinyGO 0.77 online tool. (C) Protein–protein interaction network on STRING database of top 41 di�erentially expressed

proteins. Fold changes are in border color of the circles: upregulated proteins in blue and downregulated proteins in red.
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FIGURE 7

Profile of RPE exosomal proteomics compared with published data. (A) Venn diagram showing significantly downregulated RPE exosomal proteins in

myopic samples (blue), significantly upregulated RPE exosomal proteins in myopic samples (red), and all identified RPE exosomal proteins (green) in

this study compared with all myopia monarch proteins listed on STRING database (yellow). (B) Common proteins between the current study and

published data: all myopia monarch and high myopia proteins listed on STRING database, and RPE apical side-released proteins reported previously

(33).

An interaction network model for
di�erentially expressed RPE exosomal
proteins in myopia eyes

To identify the candidate protein networks involved in myopia,
we used the top 41 differentially expressed RPE exosomal proteins
to construct a protein-protein interaction (PPI) network model
using the STRING database where nodes were defined with a
score ≥ 0.4 (Figure 6C). The border color indicates fold change
of differentially expressed proteins in myopic samples compared
with non-myopic samples: upregulated proteins in blue and
downregulated proteins in red. Closer connectivity between each
node was represented by shorter distances and the number of
connective lines that joined each circle. The connectivity was
the most pronounced in the SEPTIN and Beta-crystalline protein
interaction groups (Figure 6C).

Identification of potential RPE exosome
protein biomarkers of myopia

We also compared the proteomic profile of RPE exosomes
from myopic eyes with data deposited on the STRING database for
myopia (448 genes), high myopia (41 genes) (63), and previously
reported proteomic data from the apical side of the RPE (55
proteins) (33). We found 23 common proteins with the STRING
database (Figure 7A), although these proteins did not show
significant expressions on myopic samples. Three significantly

downregulated RPE exosomal proteins in our myopic samples
were common with the previous reports: ATPase H+ transporting
V1 subunit B2 (ATP6V1B2), Crystallin beta B2 (CRYBB2),
and Arrestin 3 (ARR3) (Figure 7A). Proteins ATP6V1B2 (70),
CRYBB2 (68), and ARR3 (71) have been previously associated
with myopia and/or high myopia (Figure 7B), suggesting that
myopia could be linked with reduced expression levels of these
RPE exosomal proteins. Two other previously reported RPE-
derived apical exosomal proteins (33), Phosphatidylethanolamine
binding protein 1 (PEPB1) and Crystallin alpha B (CRYAB)
(72), were significantly downregulated in our myopic samples
(Figure 7B and Supplementary Figure S2B). Protein CRYAB was
also downregulated in an animal model of myopia induced by form
deprivation (72).

Discussion

In this preliminary study, we provided the first demonstration
of RPE exosome biogenesis in tree shrew eyes using an
innovative ex vivo model. By characterizing the proteomic
profiles of exosomes released by the RPE in myopic and non-
myopic eyes, we further showed that myopia is associated with
proteomic alterations in RPE-derived exosomes. Additionally,
we identified several RPE exosomal proteins as candidate
biomarkers that could play a role in mediating growth signal
communication across the RPE in the control of eye growth and
refractive state.
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There is prior evidence that proteomic profiles of exosomes are
altered in myopia (28, 73, 74). However, these studies quantified
protein expression levels in exosomes derived from ocular fluids
such as aqueous or vitreous humor, so they are unlikely to represent
exosomal characteristics and changes involved in the retina-
choroid-sclera growth signaling pathway of emmetropization.
The RPE is a critical mediator of growth signals between the
neurosensory retina and the choroid (18, 20). It has been shown
that exosomes derived from the RPE contain numerous signaling
proteins in normal physiological conditions (33) including
oxidative stress-induced signaling phosphoproteins (34). The
RPE monolayer can potentially serve as receptors of putative
signaling molecules like dopamine, retinoic acid, and adenosine
and mediators of associated growth signals into the choroid
(15, 36). Therefore, the mechanistic investigation of RPE-derived
exosomes and exosomal proteomic profiles could provide insights
into potential protein biomarkers involved in intracellular signaling
of growth information in the emmetropization mechanism.

Exosomal proteins secreted by the RPE
exclusively in myopic eyes

Among the 48 RPE exosomal proteins uniquely expressed in
myopic eyes, we identified several family members of previously
reported cytoskeletal and structural proteins related to myopia:
Myosin-binding protein C (MYBPC) and Tropomyosin 1α4
(TPM4) (76), extracellular matrix proteins like Collagen alpha
3(VI) chain (COL6A3) (75), and Apolipoproteins A-IV and
B (APOA4 and APOB) (74, 76). Additionally, this group of
uniquely expressed RPE exosomal proteins in myopia included
Thrombospondin 1 (THBS1), Keratocan (KERA), and Myocilin
(MYOC) that were reportedly downregulated in the sclera of
myopic tree shrew eyes (70). Considering that the same set of
proteins was observed both in the RPE and sclera, the translocation
of these proteins might facilitate growth signal transmission to
affect the extracellular matrix remodeling in the sclera (77).
Indeed, the cellular components of uniquely expressed myopic RPE
exosomal proteins were primarily related to extracellular matrix,
intracellular vesicles, and focal adhesion, indicating a potential role
in extracellular matrix remodeling. These results suggest that the
RPE exosomes likely serve as a facilitator of cellular communication
to trigger morphological changes in the sclera.

Exosomal proteins secreted by the RPE
exclusively in non-myopic eyes

The proteomic analysis revealed 41 RPE exosomal proteins
uniquely expressed in non-myopic eyes. These proteins may have
a role in the homeostatic maintenance of growth inhibitory STOP
signals to produce optimal “physiological” eye growth (78, 79). For
example, the unique expression of Beta-arrestin-2 (ARRB2) in non-
myopic eyes is consistent with its role in the regulation of dopamine
D2 receptor activity. It has been shown that ARRB2 is involved in
the desensitization and internalization of dopamine D2 receptors
(137) and that the activation and inactivation of these receptors

could lead to myopia development and inhibition, respectively
(138, 139).

Three members of the crystallin β family—CRYBB3, CRYBA2,
and CRYBA1—were exclusively expressed in the non-myopic
samples. These crystallin proteins are part of the α, β, and γ

crystallin superfamily, which plays a crucial role in maintaining the
transparency of the crystalline lens. Interestingly, members of this
protein superfamily are also found in posterior ocular structures,
such as the RPE, photoreceptor inner and outer segments, and the
outer nuclear layer of the retina (140, 141). Studies have shown
that these crystallin proteins in the RPE respond to light intensity
(142) and oxidative stress (143), similar to the αβ crystallins in
the lens. Furthermore, the presence of these crystallin proteins in
non-myopic eyes aligns with previous findings of αβ crystallins
in exosomes derived from the apical surface of human RPE cells
(42). These crystallins were also localized in the interphotoreceptor
matrix, suggesting their uptake from the extracellular space as
part of a protective response to oxidative damage and neural
stress (42). Additionally, there is evidence of signaling interactions
between the lens and the posterior segment (80–82). Collectively,
these findings imply that the crystallins observed could play a
role in exosome-mediated intercellular communication between
photoreceptors and the RPE within the emmetropization pathway.

Upregulation of RPE exosomal proteins in
myopic eyes

In myopic eyes, the RPE exosomes exhibited higher levels of
PTB domain-containing engulfment adapter protein 1 (GULP1)
and Adaptor-related protein complex 2 (AP2A1) compared to non-
myopic eyes. GULP1 is essential for phagocytosis of apoptotic cells,
transport of glycosphingolipids and cholesterols, and endosomal
trafficking of various low-density lipoprotein receptor-related
protein 1 (LRP1) ligands (83). In contrast, AP2A1, a subunit of
the adaptor protein complex 2 (AP-2), plays a role in clathrin-
mediated endocytosis and helps facilitate the internalization of
LRP1 and its ligands by promoting the formation of clathrin-coated
vesicles (84). LRP1 functions as a scavenger of tissue inhibitors of
metalloproteinases (TIMP), both of which are found in the RPE
(144, 145). The upregulation of GULP1 and AP2A1 could lead to
greater removal of TIMP by LRP1 in the RPE cells (85), promoting
transforming growth factor (TGF)-β activation and oxidative stress
and potentially contributing to myopia development (146). LRP1
deficiency has been shown to be associated with myopia phenotype
through TGF-β activity (86, 87).

The RPE exosomes of myopic eyes showed upregulation of
several structural proteins: actin filament binding protein, Vinculin
(VCL); a filament-forming cytoskeletal GTPase, Septin family
proteins (SEPTIN2, SEPTIN 7, and SEPTIN11); and focal adhesion
cytoskeleton protein, βII spectrin (SPTBN1). Vinculin and βII
spectrin proteins are known to be involved in cell-cell adhesion
(88, 89). Additionally, Vinculin regulates cell-matrix adhesion
and E-cadherin expression on cellular surfaces and potentiates
mechanosensing by the E-cadherin complex (88). SEPTIN11
promotes cell motility and cell adhesion by activating the RhoA
protein (90) and the Septin protein family plays a potential role
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in cytokinesis (91). Other upregulated RPE exosomal proteins in
myopic eyes were Lumican (LUM) and Fibromodulin (FMOD),
closely related members of the extracellular matrix leucine-
rich repeat glycoprotein/proteoglycan family. These proteins bind
to fibrils allowing assembly of the collagen network in the
extracellularmatrix (92). LUM is a keratan sulfate proteoglycan that
promotes fibroblast-myofibroblast transition. It has been reported
to increase transcription of alpha-smooth muscle actin, matrix
metallopeptidase 9, Collagen I, plasminogen activator inhibitor
1, and TGF-β in vitro (93), and play several roles in ocular
diseases (94). LUM helps to maintain stability and tension of
the extracellular matrix in the sclera by interacting with collagen
fibers (95). This interaction of LUM with collagen fibers could be
involved in myopiagenesis as its gene mutation and polymorphism
have been associated with myopia in humans (96) and animal
models (97). For example, LUM mutant zebrafish eyes exhibited
ocular enlargement primarily due to disruption of collagen fibril
arrangement leading to scleral thinning and reduced stiffness (97).
Additionally, double knockouts of LUM and FMOD were found to
cause axial eye elongation, retinal detachment, and scleral thinning,
suggesting that both proteins are critical for scleral ensemble
and functioning and may underlie morphological changes in the
sclera of myopic eyes (98). The proteoglycans discussed in this
section have also been identified in various retinal layers, including
the RPE and interphotoreceptor matrix (147). Therefore, the
increased levels of these proteins in RPE exosomes from myopic
eyes may indicate a compensatory response to the heightened
potency of GO signals in the early emmetropization pathway, or
a protective mechanism aimed at maintaining the integrity of RPE,
interphotoreceptor matrix, and other retinal layers.

Proteomic analyses of RPE exosomes in myopic eyes also
showed an upregulation of Alpha Actinin-4 (ACTN4) and Gelsolin
(GSN), proteins previously linked with the biological basis of
myopia (76). These results suggest that cytoskeletal structural
proteins and coagulation pathways may have a role in myopia
development. Another highly expressed exosomal protein in the
myopic eyes was glutathione S-transferase mu 3 (GSTM3), a
potent antioxidant enzyme that reduces glutathione and prevents
neurotoxicity by cellular oxidative stress (99). It has been found
that the suppression of the GSTM3 gene is associated with age-
related cataract formation by oxidative stress in the lens (100). An
overexpression of GSTM3 onmyopic exosomes could be part of the
neuroprotective response of RPE cells to counter feedback from the
oxidative stress loop triggered by TGF-β (101), which is a known
growth factor involved in myopiagenesis (68).

The upregulated RPE exosomal proteins were mainly involved
in keratan sulfate catabolism, plasminogen activation, cytokinesis,
and glycosaminoglycan and aminoglycan metabolism. The
enhancement of these metabolic pathways is consistent with the
reduced expression of glycosaminoglycans and proteoglycans
in the sclera of myopic eyes (102, 103). Moreover, plasminogen
protein has been proposed as a molecular marker of high myopia
in humans (69). Proteins Fibromodulin (FMOD), Fibrinogen
beta chain (FGB), and Fibrinogen gamma chain (FGG), which
were upregulated in myopic eyes in this study, have also been
reported to be upregulated in the retina of myopic rabbits (104).
Since fibrinogen stimulates tissue plasminogen activators against
plasminogen, (105) and plasminogen activators, like matrix

metalloproteases, are mediators of extracellular proteolysis (106),
they could act in similar ways to produce extracellular matrix
remodeling in myopia.

Downregulation of RPE exosomal proteins
in myopic eyes

The RPE of myopic eyes released exosomes with lower levels
of proteins encoded by genes whose mutations are reportedly
linked with myopia, such as Opsin 1 medium-wave-sensitive
(OPN1MW) (107–109), Arrestin-C (ARR3) (71), α crystallin A and
B (72, 110), and Retinol dehydrogenase 10 (RDH10) (111). Opsins
are light-activated G-protein coupled transmembrane receptors
that allow activation of the phototransduction pathway (112).
These visual pigments contribute to human color vision (113).
Opsin gene deficiency is related to color blindness (114) and its
protein dysfunction is associated with cone dystrophy and myopia
(108, 115, 116). ARR3 or cone-arrestin is a G-protein-coupled
receptor that binds to phosphorylated opsins, after activation of
the phototransduction pathway (117). ARR3 gene mutations are
associated with high myopia (118). While the lower abundances
of OPN1MW and ARR3 proteins in RPE exosomes of myopic
eyes could indicate potential retinal dysfunction in myopia (119),
it is unlikely that these proteins are packaged by the RPE
cells into exosomes. Rather, exosomes that originate from cone
photoreceptors are the likely source of these proteins. Presumably,
the photoreceptor-derived exosomes were attached to the apical
surface of the RPE and were harvested with RPE-derived exosomes.

α crystallin proteins were also downregulated in RPE exosomes
of myopic eyes. These proteins belong to the small heat
shock protein (HSP20) family and act as molecular chaperones.
Downregulation of CRYAA mRNA and protein has been reported
in high-myopic patients (110). CRYAB is known to be secreted
by exosome-dependent pathways from polarized human RPE cells;
they play a protective function in the interphotoreceptor matrix
and confer resistance to heat and oxidative stress in cells (120, 121).
Oxidative stress of retinal cells associated with myopia may initiate
a downregulation of CRYAA and CRYAB secretion in the RPE
exosomes. Similar results have been reported in the retina of an
experimental glaucoma model, which showed significantly reduced
expression of CRYAB (122). Another member of the crystallin
protein family, CRYBB2, was found to be downregulated in our
myopic samples. Notably, CRYBB2 has also been previously shown
to be secreted in exosomes from the apical side of the RPE (33).
Like other crystallin proteins, CRYBB2 has been demonstrated to
help protect the RPE against oxidative stress (141). The reduced
levels of crystallin proteins in RPE exosomes from myopic eyes
may suggest a diminished capacity to respond to oxidative stress,
potentially contributing to the dysregulation of eye growth and the
development of myopia.

Another downregulated exosomal protein, RDH10, is a
member of the retinol dehydrogenases family. RDH10 is mainly
expressed in photoreceptors and RPE cells and reduces all-trans-
retinal to all-trans-retinol during phototransduction (123). The
RPE contains metabolic enzymes required for retinal signaling
and metabolites like 11-cis-retinal that play a key role in the
retinoid visual cycle (124). Retinoic acid, a metabolic precursor

Frontiers inMedicine 13 frontiersin.org

https://doi.org/10.3389/fmed.2025.1523211
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Sanchez et al. 10.3389/fmed.2025.1523211

of vitamin A, has been implicated in ocular growth (15, 125)
and is highly expressed in the myopic retina (126–128). It has
also been shown that the extracellular matrix remodeling process
in myopia could be regulated by the cell differentiation function
of retinoic acid (129). Furthermore, mutations in genes related
to retinoic acid metabolism like RDH5 have been found to be
associated with refractive errors and myopia (111, 130, 131).
Deficiency of RDH5 also results in upregulation of MMP-2 and
TGF-β2, promoting the epithelial-mesenchymal transition of RPE
cells and myopia development (132). These findings are consistent
with our observation of reduced expression levels of RDH10 in
RPE exosomes of myopic eyes, indicating their role in extracellular
matrix remodeling inmyopia.We found that the downregulation of
these RPE exosomal proteins inhibited signaling pathways related
to lens development, eyes and sensory system development, visual
perception, and sensory perception of the light stimulus and was
associated with processes related to purine, nucleotide/nucleoside
catabolism, and carboxylic acid biosynthesis, suggesting possible
metabolic alterations in myopia.

Candidate RPE exosomal signaling
pathways and protein biomarkers in myopia

A comparison of our proteomics data set with published
literature and the String database (63) revealed two potential
exosomal protein biomarkers that were downregulated in myopic
eyes: ATP6V1B2 and CRYBB2. The former has been associated
with early-onset high myopia (133), while the latter has been
associated with induced myopia (72). As stated previously, lower
levels of CRYBB2 could be due to the oxidative stress environment
of myopia eyes, enhanced by the downregulation of antioxidant
genes (67) by TGF-β signaling (68). Another potential biomarker
is phosphatidylethanolamine binding protein 1 (PEBP1), a Raf
kinase inhibitor protein, which plays a role in cell cycle, growth,
and proliferation (148). PEPB1 has been previously reported in
exosomes released by the apical side of the RPE in normal
physiological conditions (33) and was significantly downregulated
in our myopic samples. Apart from these proteins, several other
downregulated proteins in our dataset were consistently associated
with myopia in the literature, providing an indirect validation of
the proteomic analysis of myopic eyes (63, 76). These proteins
were MYOC, ATP6V1A, RHOA, SAG, GNAT2, GNB3, COL12A1
and TGFBI.

The ingenuity pathway analysis illustrated that the differentially
expressed RPE exosomal proteins of myopic eyes were involved
in pathways related to phototransduction, neurotransmitters,
and signal transduction, all of which are implicated in the
emmetropization mechanism (15). The top canonical signaling
pathways relevant to RPE exosomal proteins in myopic eyes were
integrin signaling, RHOA, and cell junction pathways. Although
protein RHOA was reported to be upregulated in the sclera of
myopic eyes (134), it was not differentially expressed in RPE
exosomes of myopic eyes in this study. Since activation of integrins
and cell-cell junctions promote cell cycle progression and cell
proliferation (135), these pathways likely produce changes in
extracellular matrix remodeling leading to myopia (77, 136).

Ex-vivo ocular assay: an innovative method
with significant implications for ocular
biology research

A recent comprehensive report on the causes, prevention,
and treatment of myopia, released by The National Academies of
Sciences, Engineering, and Medicine, highlighted the need for the
development of in vitro experimental models that can accelerate
understanding of the mechanisms of emmetropization and myopia
as well as identification of candidate messengers involved in the
retinoscleral signaling process (17). By successfully implementing
an innovative ex vivo assay to explore the pathogenesis of myopia,
the present study has established a model that is as simple as an
in vitro assay but with the potential to yield more robust and
physiologically relevant findings. This ex vivo assay model should
facilitate high-impact studies of ocular mechanisms (for example,
pharmacological manipulation experiments) and significantly aid
in advancing the understanding of and future discoveries in ocular
biology (35).

This study has several limitations, including small sample
size, two different experimental myopia paradigms, and few
control eyes that had recovered from prior treatments. In
addition, while the neurosensory retina was carefully separated
from the RPE to isolate RPE-derived exosomes, it is likely
that exosomes from non-RPE cells, such as photoreceptors,
were also enriched in the conditioning media. Consequently,
the enriched sample was likely composed primarily, but not
exclusively, of RPE exosomes. Nevertheless, the findings provide
original evidence for the potential role of RPE exosomes in
myopiagenesis, opening up a new avenue for understanding the
molecular mechanisms behind emmetropization and myopia.
Further targeted experiments are necessary to validate candidate
RPE exosomal protein biomarkers and pathways identified in this
study and test these proteomic signatures across different
growth-modulatory conditions (e.g., induced myopia vs.
recovery from myopia) and experimental models (e.g., form-
deprivation, lens-induced, and limited-bandwidth). Ultimately,
a thorough proteomic characterization of RPE exosomes in
myopia could provide key insights into the molecular mechanism
of RPE exosome-mediated growth signal transmission in the
emmetropization pathway.
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