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Background: Skin cancer is one of the most prevalent cancers worldwide.

In the clinical domain, skin lesions such as melanoma detection are still a

challenge due to occlusions, poor contrast, poor image quality, and similarities

between skin lesions. Deep-/machine-learning methods are used for the early,

accurate, and efficient detection of skin lesions. Therefore, we propose a

boundary-aware segmentation network (BASNet) model comprising prediction

and residual refinement modules.

Materials and methods: The prediction module works like a U-Net and is

densely supervised by an encoder and decoder. A hybrid loss function is used,

which has the potential to help in the clinical domain of dermatology. BASNet

handles these challenges by providing robust outcomes, even in suboptimal

imaging environments. This leads to accurate early diagnosis, improved

treatment outcomes, and efficient clinical workflows. We further propose a

compact convolutional transformer model (CCTM) based on convolution and

transformers for classification. This was designed on a selected number of layers

and hyperparameters having two convolutions, two transformers, 64 projection

dimensions, tokenizer, position embedding, sequence pooling, MLP, 64 batch

size, two heads, 0.1 stochastic depth, 0.001 learning rate, 0.0001 weight decay,

and 100 epochs.

Results: The CCTM model was evaluated on six skin-lesion datasets, namely

MED-NODE, PH2, ISIC-2019, ISIC-2020, HAM10000, and DermNet datasets,

achieving over 98% accuracy.

Conclusion: The proposed model holds significant potential in the clinical

domain. Its ability to combine local feature extraction and global context

understanding makes it ideal for tasks like medical image analysis and

disease diagnosis.

KEYWORDS

skin lesion, compact convolution transformer, tokenizer, dermoscopy, hybrid loss,
ResNet-34
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1 Introduction

The skin is a major part of the human body and consists of
the epidermis, dermis, lymphatic vessels, muscles, blood vessels,
subcutaneous tissue, and nerves (1). Apart from protecting the
whole body and various organs against external invasions such as
chemical damage, the skin can also prevent adventitious viruses
(2). Regardless of its protective and barrier functions, the skin
is destructible; it tends to be affected by a diversity of genetic
and external factors. Deterioration of lipids in the epidermis can
be prevented by using liquids to improve the barrier features
of the skin. Fungal development on the skin owing to allergic
reactions, hidden bacteria, degradation of skin texture due to
microbial reactions, and pigment creation can lead to various
skin diseases (3). Skin diseases are considered chronic and may
infrequently propagate into malicious tissues. Skin diseases must
be treated promptly to restrict their growth and propagation (4).
In recent years, imaging-technology-based research to identify
the effects of various skin diseases has been in high demand. In
most cases, different skin diseases may have similar appearances,
making early detection of skin diseases difficult. Owing to the
lack of contrast between adjacent tissues, predicting the type
of skin lesion is also challenging. Other systems are unable to
manage environmental- and texture-based variations in the input
image, which is a significant concern because environmental
and lighting conditions cannot always be controlled. The sheer
number of skin diseases, combined with the difficulties caused
by diverse environments and limited datasets, make skin disease
classification a significant challenge (5). Computer-aided diagnostic
techniques are preferred to classify skin diseases reliably and
efficiently, assisting in medication prescription (6). Diseased
growth propagation is assessed using a grey-level co-occurrence
vector. To improve medication and minimize treatment costs,
accurate diagnosis is essential to thoroughly assess abnormalities.

Owing to the limited and false distribution of experienced
dermatologists, effective and efficient diagnosis using data-driven
approaches is required as skin diseases are spreading in various
shapes. The growing trend towards photonics-based and laser
medical technology has made accurate and robust diagnosis of
skin diseases feasible. However, these treatments are expensive
and have limited applications. To address this issue, researchers
are in search of more robust solutions, and convolutional neural
networks (CNN) have been considered (7, 8). The major constraint
in detecting skin diseases using CNNs is that they tend to learn and
represent the bias inherent in the training data (9). For instance,
the diagnostic accuracy of lesions on light skin is higher than on
dark skin. This is because there may have been insufficient dark
skin samples with the same lesion in the training set, or the image
markers of protective factors and disease-affected regions may have
an inherent correlation.

Abbreviations: BASNet, Boundary-aware segmentation Net; CCTM,
Compact Convolutional Transformer Model; WALNN, Wolf Ant Loin Neural
Network; HorUNet, High; CFF, Contextual Feature Fusion; SSD-KD, Self-
supervised diverse knowledge distillation; SC, Skin Cancer; SOO, Sum of
Outputs; BCE, Binary Cross-Entropy; SSIM, Structural Similarity Index; IoU,
Intersection over Union; ViT Model, Vision Transformers; CCT, Compact
Convolutional Transformer; XAI, Explainable Artificial Intelligence; GSO,
Golden Search Optimization.

Approaches based on deep learning (DL) are considered
more efficient than these techniques in classifying diseased
parts from images in a dataset (6, 10–12). The growing need
in healthcare diagnosis is to detect abnormalities precisely
and to classify the category of disease from various types of
biomedical images, such as magnetic resonance imaging, positron
emission tomography, X-ray, and computed tomography scan
data in the form of signals, that is, electroencephalogram (EEG),
electrocardiogram (ECG), and electromyography (EMG) (13–19).
Better treatment of patients according to the type of disease
can be achieved by precisely identifying the disease category.
Critical problems can be solved using DL models, enabling
them to automatically detect input features. The inferred data
can be obtained through deep-learning-based models that use
unexposed data patterns to identify data features. Even DL
models with low computational costs can result in optimal
efficiency.

Owing to the challenges in previous studies, the key objectives
of the proposed methodology are as follows:

• To develop an optimized deep-learning model for skin
lesion segmentation by integrating prediction and refinement
modules for enhanced accuracy.
• To utilize a hybrid loss function (SSIM, IoU, BCE) for

improved segmentation performance by preserving structural
details and optimizing overlap measures.
• To propose a compact convolutional transformer model

(CCTM) with optimized layers and hyperparameters for
efficient and accurate classification of skin lesions.
• To evaluate the performance of the proposed model against

existing state-of-the-art methods in terms of segmentation
accuracy, computational efficiency, and classification
effectiveness.

To achieve the abovementioned objectives, a deep learning-
based solution is proposed, whose major contributions are as
follows:

• The proposed BASNet model comprises prediction and
refinement modules for skin-lesion segmentation. It is trained
from scratch on hybrid loss, which is a fusion of structural
similarity, intersection over union, and binary cross-entropy.
• The prediction module works like a U-Net and is densely

supervised by the encoder and the decoder. The encoder
contains an input convolution layer and six stages. Four stages
were adopted from ResNet-34 and retained from the basic
residual block. The bridge and decoder use three convolution
layers and side outputs, respectively. This module generates
seven probability maps for segmentation, of which the last
map is considered the final output.
• The module of residual refinement is used to further refine

the map of the final output through residual learning among
ground truth courses and maps.
• A compact convolutional transformer model (CCTM) is

proposed for a selected number of layers and hyperparameters
with two convolutional transformers, two transformers,
64 projection dimensions, 64 batch sizes, two heads,
0.1 stochastic depth, 0.001 learning rates, 0.0001 weight
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TABLE 1 Existing methods for skin-lesion detection.

References Methods Findings Limitations

Khan et al. (23) Mobile health units for data collection;
multiple modal data fusion approach

Effective segmentation and classification of
skin lesions with improved results

Requires mobile data collection;
complex feature selection and fusion

Wu et al. (24) HorUNet with multilevel dimensional fusion
mechanism

Improved segmentation accuracy for skin
lesions using ISIC2017, ISIC2018, PH datasets

High computational requirements for
large datasets

Rahman et al. (25) Features fusion method 98.3% accuracy and 95.7% AUC score on
ISIC-2020 dataset

Limited exploration of concurrent
multi-image comparison methods
beyond melanoma

Akilandasowmya et al.
(26)

Deep hidden features, ensemble classifier Improved early detection results using
ISIC-2019 and Kaggle skin-lesion data

Harmony search method complexity
for feature optimization

Vidhyalakshmi and
Kanchana (48)

Binary butterfly optimization algorithm
(BBOA) and DCNN for skin disease
categorization

Automated categorization with high prognosis
accuracy

Limited applicability beyond specific
skin disease types

ul haq et al. (27) Hybrid equilibrium Aquila optimization with
random forests and ensemble support vector
kernels

Achieved approximately 97.4% accuracy for
skin disease categorization using HAM10000
dataset

Dataset quality dependent due to
requirement for enhanced image
resolution

Kalpana et al. (28) Combination of CNN and U-Net models for
lesion segmentation and classification

Effective and fast recognition of skin lesions Optimization complexity with two
distinct batch size optimizers

Anand et al. (29) SSD-KD integrating knowledge distillation
(KD) for skin disease classification

85% accuracy for eight skin illnesses with
condensed MobileNetV2 using ISIC-2019

Limited generalizability of KD
technique for diverse datasets

TABLE 2 Overview of datasets.

Dataset name Images Class names Resolution of images

PH2 200 Atypical Nevi, Common Nevi, Melanoma 768× 560

MED-NODE 170 Benign Nevus, Melanoma Not specified

ISIC 2016 1,279 Background, Skin Lesion 576× 786 to 2,848× 4,288

ISIC 2017 2,750 Nevus, Seborrheic Keratosis, Melanoma 556× 679 to 4,499× 6,748

ISIC 2018 10,015 Skin Cancer, Pigment Network, Globule, Milia-like Cyst, Negative Network,
Streaks

Not specified

DermNet 19,500 23 Categories (e.g., Eczema, Seborrheic Keratoses, Poison Ivy, Acne, etc.) Varies, generally low resolution

decays, and 100 epochs that provide excellent outcomes for
classification.

The remainder of the paper is organized as follows. Related
work is described in Section 2. The proposed methodology, with
its various steps for identifying and classifying skin diseases, is
discussed in Section 3. In Section 4, the quantitative and qualitative
results are discussed, and Section 5 provides a brief conclusion of
the proposed research work and its future perspectives.

2 Related work

Recently, researchers have introduced extensive methods to
detect and classify skin diseases in their early stages using
computer vision, machine learning, pattern recognition, deep CNN
models, and artificial intelligence (20, 21). Rajeswar et al. (22)
used the wolf antlion neural network (WALNN) to classify skin
melanomas using magnetic resonance imaging data. A hybrid
algorithm was introduced for feature selection. WALNN was
compared with established methodologies, such as Cuckoo search-
based SVM, decision tree, and CNN on the ISIC skin-lesion
dataset. It improved sensitivity, specificity, recall, accuracy, and

precision, and accurately identified skin melanoma. Khan et al.
(23) presented a method that uses mobile health units to collect
skin data using a multimodal data fusion for skin-lesion detection.
This system uses a hybrid approach for lesion segmentation by
combining two CNN models. The HAM10000 dataset was used
to train the CNN model for lesion classification. A summation
discriminant correlation testing approach was applied to combine
features from the two connected layers. A feature selection
method was introduced to prevent feature redundancy. An ultimate
machine-learning classifier was applied to classify the selected
features with remarkable outcomes, in contrast to those of the
traditional methods. Renkai et al. (24) suggested that dermoscopy
is highly useful in diagnosing skin diseases, particularly skin
lesions. Automatic skin-lesion segmentation is crucial for accurate
diagnoses. Although U-Net models are commonly used for
segmentation tasks, they have limitations in terms of spatial
dependence and remote interactions. Transformers are emerging
as alternatives; however, they require large amounts of data
and significant computational resources. To address these issues,
HorUNet, along with a multilevel dimensional fusion mechanism,
was introduced. Extensive experiments were performed using
private and publicly available ISIC2017, ISIC2018, and PH datasets.
Ordinary convolution, which fails to exhibit spatial dependence or
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FIGURE 1

Proposed method for skin lesions detection.

remote interaction, was used in the U-Net model. Transformers
are becoming a popular alternative. They require large amounts of
data and huge computational resources, making them less practical
for clinical medical problems. Rahman et al. (25) suggested that
existing deep-learning-based schemes do not explore concurrent
multi-image comparative methods. To improve the diagnosis of
melanoma, a feature fusion method that integrates patient-related
information was proposed. The introduced multiple-kernel self-
attention segment provides an optimal overview of the extracted
features, which are combined using a contextual feature fusion
approach from various images into a distinct feature matrix.
The introduced contextual-learning scheme significantly improved
performance. Akilandasowmya et al. (26) split the deep hidden
features to ensure accurate predictions and, applied a harmony
search technique to optimize the features (25) and reduce data
size. They also used ensemble classifiers for early disease diagnosis.
Results on ISIC-2019 and Kaggle skin-lesion datasets showed
considerable improvement compared with traditional methods. ul
haq et al. (27) introduced a hybrid-equilibrium Aquila optimization
method using random forests and ensemble support vector kernels.
The HAM10000 dataset, with enhanced image resolution after

removing intrusions and noise, was used to test the model.
The framework subcategorized the segmented images into five
classes based on the feature properties. This approach achieved a
high performance rate with an accuracy of approximately 97.4%.
Kalpana et al. (28) suggested a combination model combining
CNN and U-Net models to create an automated system capable
of recognizing skin lesions in biomedical dermoscopic images.
CNN was used to classify segmented images into multiple classes.
The system was designed to handle biomedical image data,
ensuring accurate and fast recognition of skin lesions to enhance
the effectiveness of the DL-based approach in treating various
illnesses. Two optimizers with distinct batch sizes were used to
optimize the proposed scheme. Anand et al. (29) presented a
cutting-edge technique called SSD-KD that integrates disparate
information into a general knowledge distillation technique for
skin disease classification. This methodology combined the current
knowledge distillation research by developing intra-instances to
represent relational features. The apprentice model captured more
information than the instructor model using weighted softened
outputs. The condensed MobileNetV2 classified eight distinct
skin illnesses with an accuracy of up to 85%. This is the
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FIGURE 2

Flowchart of proposed models for segmenting and classifying skin lesions

FIGURE 3

Proposed segmentation model of the skin lesions.

first application of deep knowledge distillation to a large-scale
dermoscopy database for multidisease categorization. The SSD-
KD method for skin disease classification, although effective, is
computationally intensive and may not be suitable for all portable
devices. However, its performance depends on the training data
quality, which can limit its generalizability. The complexity of
the dual relational knowledge distillation architecture adds to

implementation challenges. Table 1 provides a summary of existing
techniques.

Table 2 summarizes the datasets used in the proposed method.
To overcome the existing challenges, the proposed BASNet

effectively generalizes features learned in a multiscale and
dense supervision module, allowing the capture of fine-grained
and global contexts regarding the details of the boundary.
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FIGURE 4

Proposed classification model.

FIGURE 5

Training and validation losses of the proposed BASNet: (A) PH2, (B) ISIC 2016, (C) ISIC 2017, and (D) ISIC 2018.

A residual network was combined to extract semantic high-level
features with boundary refinement to improve the accuracy of
boundary predictions. Hybrid loss includes structural similarity
and boundary-aware losses, which aid the model in focusing on
fine boundaries and shapes to improve performance on unseen
and diverse data. By combining the advantages of transformers
with those of convolutional layers, the proposed CCTM performed
well in terms of generalization. Convolutional layers are prone
to significant inductive biases when learning local patterns,
such as edges and textures. This improves the generalization
of the model on small datasets or sparse data. The model can

comprehend complicated spatial linkages successfully with small
amounts of data, which enhances the performance of various
applications and datasets.

3 Materials and methods

In this study, two novel models are proposed for the
segmentation and classification of skin lesions. BASNet is fine-
tuned to segment skin lesions in poorly contrasted, illuminated,
and hair dermoscopy images of the skin. The compact transformer

Frontiers in Medicine 06 frontiersin.org

https://doi.org/10.3389/fmed.2025.1524146
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-12-1524146 March 5, 2025 Time: 18:16 # 7

Amin et al. 10.3389/fmed.2025.1524146

FIGURE 6

Predicted segmentation outcomes from ISIC-2017: (A) input (B) predicted masks, and (C) overlapped predicted output.

FIGURE 7

Predicted segmentation outcomes from PH2: (A) input, (B) predicted masks, and (C) overlapped predicted output.

model, which is a mixture of convolutional and transformer
models, is proposed for classification. The proposed method steps
are illustrated in Figure 1.

The classification model comprises compact convolutional and
transformer models (Figure 1), consisting of a tokenizer, position
embedding, sequence pooling, stochastic depth, and MLP to classify
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FIGURE 8

Predicted segmentation outcomes from ISIC-2018: (A) input, (B) predicted masks, and (C) overlapped predicted output.

SL. Figure 2 shows the segmentation and classification model
architectures in detail.

3.1 Proposed boundary-aware
segmentation model

BASNet contains prediction and residual multiscale refinement
modules and a refined network for prediction and hybrid
losses (30). The refined prediction model comprises a dense
encoder/decoder supervised model. The prediction module
consists of an encoder and decoder similar to that of U-Net. The
encoder section contains an input layer of convolutional layers
and six stages, where the first four are taken from the ResNet-34
and the remaining are from the primary residual blocks. The
first convolution layer and pool of ResNet-34 are skipped, and
four blocks are extracted. The decoder and bridge use three
convolutional layers with side outputs. This module generated
seven probability maps for segmentation during training, the last of

which is the output layer. The objective of the refinement module—
based on a residual block—is to refine noisy and blurry boundaries
on the segmentation maps produced through prediction. This
model comprises four stages, each consisting of a convolutional
block. Finally, the coarse and residual maps produce a more refined
output map, as shown in Figure 3.

Hybrid loss helps the network learn in a hierarchy, such as the
patch, pixel, and map levels, as defined in Equation 1 (31).

Sum of output (SOO) =

N∑
n = 1

αnl(n) (1)

where SOO is the sum of the outputs, N is the total output, n is a
single instance of outputs, l(n) is a loss of n outputs, and αn is the
weight of each loss. This model has eight outputs: seven related to
the prediction model and one for refinement.

Clearer and higher-quality segmentation boundaries were
obtained using hybrid loss, expressed as Equation 2.

l(n)
= l(n)

bce+l(n)
ssim+l(n)

iou (2)
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FIGURE 9

Predicted segmentation results from ISIC-2016: (A) input, (B) predicted masks, and (C) overlapped predicted output.

FIGURE 10

Segmentation results of BASNet: (A) input, (B) segmentation, and (C) skin-lesion boundaries.
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TABLE 3 Segmentation outcomes of the proposed BASNet model.

Segmentation
datasets

Testing Validation Training Average (%) Confidence
interval

IoU Dice score

PH2 � 0.96 0.98 [0.9383–0.9817]

� 0.96 0.98 [0.9383–0.9817]

� 0.95 0.98 [0.9283–0.9717]

ISIC 2016 � 0.89 0.96 [0.8683–0.9117]

� 0.87 0.95 [0.8483–0.8917]

� 0.88 0.97 [0.8583–0.9017]

ISIC 2018 � 0.94 0.97 [0.9183–0.9617]

� 0.93 0.96 [0.9083–0.9517]

� 0.96 0.98 [0.9383–0.9817]

ISIC 2017 � 0.97 0.98 [0.9483–0.9917]

� 0.95 0.97 [0.9283–0.9717]

� 0.94 0.96 [0.9183–0.9617]

TABLE 4 Comparison of training time on HAM-10000 dataset.

Model Total epochs Time of each epoch

BASNet model 50 4 min

Yaseliani et al. (49) 17.46 s

where l(n)
bce, l(n)

ssim, l(n)
iou are the BCE, SSIM, and IoU losses,

respectively. Mathematically, the BCE is defined as Equation 3.

lbce = −
∑

(r,c) [M(r,c)log(P(r,c))+(1−M(r,c))log(1−P(r,c))] (3)

where M (r, c)∈0, 1 is the pixel (r, c) of the annotated mask, and P
(r, c) is the probability of the predicted pixel. SSIM loss captures the
structural information of the image. Let x = xj: j = 1,..., N2 and
y = yj: j = 1,..., N2 represent the pixel values of the patch size
in N = N region cropped from p probability map and m mask,
respectively. The SSIM of x and y are expressed as Equation 4.

lSSIM = 1−
(2mxmy+Cov1)(2σxy+Cov2)

(m2x+m2y+Cov1)(σ2x+σ2y+Cov2)
(4)

where mx, my, σx, and σy represent the mean and standard
deviation of x and y, respectively. σxy denotes covariance. The
values of the Cov1 and Cov2 (0.012 and 0.032) were used to
prevent division by 0.

The intersection over union (IoU) matrix was used to compute
the similarity using Equation 5.

lIoU = 1−
∑H

r = 1
∑W

c = 1 p (r, c) M (r, c)∑H
r = 1

∑W
c = 1

[
p (r, c)+M (r, c)−p (r, c) M (r, c)

]
(5)

where M (r, c) ε0, 1 is pixel (r, c) and p (r, c) is predicted
pixel probability.

The BCE loss was used to compute pixel-level values. The
neighborhood of the labels was not considered, and foreground
and background pixels were equally weighted, which helps with
convergence points on pixels and guarantees the best local optima.
The SSIM loss was used for patch-level information around the

TABLE 5 Results of proposed BASNet model compared to the
existing approaches.

References Year Datasets Results
(%)

Giotis et al. (38) 2024 PH2 0.96

Hong et al. (42) 2023 0.96

Srikanteswara and
Ramachandra (41)

2023 0.82

Nampalle et al. (40) 2022 0.92

Mustafa et al. (50) 2025 0.93

Proposed model 0.98

Giotis et al. (38) 2024 ISIC-2018 0.96

Nampalle et al. (40) 2022 0.89

Venugopal et al. (51) 2023 0.97

Proposed model 0.97

Hong et al. (42) 2023 ISIC-2017 0.94

Srikanteswara and
Ramachandra (41)

2023 0.89

Rajendran and Shanmugam (52) 2024 0.97

Proposed model 0.98

pixels of the local neighborhood. Higher weight values were
assigned to the pixels located in the region of the transitional buffer
between the foreground and background pixels that are similar or
higher than the region of the foreground. The background loss was
not applied in training until the background pixels were closer to
the mask, where the loss dropped rapidly to 1–0.

The values of mx, σxy, mxmy, and σ2
y in SSIMloss in Equation 4

were 0 in the region of the background. Therefore, the SSIM value
was computed using Equation 6.

lbackground
SSIM = 1−

Cov1Cov2

(mx2+Cov1)(σx2+Cov2)
(6)
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TABLE 6 Proposed classification results on the HAM-10000 dataset.

Akiec Bcc Bkl Df Mel Nv Vl Precision (P) Recall (R) F1-score (F)

� 0.96 0.96 0.96

� 0.96 0.97 0.96

� 0.95 0.95 0.95

� 0.98 1.00 0.99

� 0.96 0.93 0.95

� 0.95 0.96 0.96

� 1.00 1.00 1.00

� � � � � � � 0.97 Accuracy (A)

� � � � � � � 0.97 0.97 0.97

� � � � � � � 0.97 0.97 0.97

FIGURE 11

Features vector visualization for the PH2 dataset.

where Cov1 = 0.012 and Cov2 = 0.032, when the prediction of x
was close to zero.

IoU was used to compute map-level information. If a large
region is included in the IoU, the model trained on the IoU
loss emphasizes a large region of the foreground and generates
homogeneous and whiter probabilities in these areas. However,
this model produced a false-negative region in finer structures.
To obtain the advantages of the three losses—BCE, IoU, and
SSIM—the hybrid loss was formulated. BCE was used to maintain
the gradient among all pixel values, and IoU focused on the
foreground pixels.

3.2 Classification of the skin lesions
based on the proposed mixture of
convolutional and transformer mode

The proposed CCTM model for skin-lesion classification
is shown in Figure 4. The model uses a tokenizer to process
input images. The vision-transformer (ViT) model was applied
to organize all images into a uniform non-overlapping patch,
removing information related to the boundaries between
distinct patches, which is vital for effectively exploiting the
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FIGURE 12

Confusion chart of the proposed CCTM for skin-lesion classification: (A) HAM-10000, (B) ISIC-2019, (C) ISIC-2020, (D) Med-node (E) PH2, and
(F) DermNet.

local information. Convolution works well in extracting local
information. The input images were processed using a tokenizer.
The ViT model divided images into non-overlapping uniform
patches to reduce the information at the boundaries between
different types of patches. This is vital for neural networks to
effectively exploit local information. The convolution kernel
effectively exploits the local information; thus, the convolution in
the mini-model generates patches. Positional embedding in CCT
is optional, and sequence or attention pooling was added. In the

ViT model, the mapping of features related to the token of the
class is pooled and used subsequently for skin-lesion classification.
Stochastic depth is a regularization method of randomly dropping
a set of layers. This is similar to dropout but operates on a block
of layers as compared to separate nodes that are included in the
layer. Stochastic depth is used before the residual blocks of the
transformer section of the encoder. Finally, the encoder section of
the transformer is weighted and fed to the final specific layer for
skin-lesion classification.
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FIGURE 13

LIME results of the dark skin lesions: (A) input and (B) LIME.

4 Experimental results and
discussion

To evaluate the effectiveness of the segmentation method, four
publicly available datasets were used: PH2 (32), ISIC 2016 (32),
2017 (33), and 2018 (34). Five publicly available datasets were
used to evaluate the performance of the classification method:
PH2 (32), HAM10000 (35), ISIC 2019 (36), MED-NODE (37), and
DermNet (accessed on 9 November 2022).1 The entire datasets
were divided into 0.4 hold-out validation, in which 60% of the
data was used for training, 20% for validation, and 20% for testing.
The proposed method was implemented on a Desktop-T20JD6R,
12th Generation, Core i7-12700K, processor 3.60 GHz, RAM
32.0 GB, graphics card NVIDIA RTX A4000 with a Windows-11
operating system.

4.1 Segmentation and classification
datasets

In this section, the datasets used for segmentation and
classification are discussed. The details of the segmentation
datasets are as follows.

PH2: The PH2 dataset contained 200 images of melanocytic
lesions categorized as atypical nevi, common nevi, and
melanomas. Each image was verified by expert dermatologists

1 https://www.kaggle.com/datasets/shubhamgoel27/dermnet

TABLE 7 Elapsed time on benchmark datasets.

Datasets Execution time

HAM-10000 28 min 4 s

MED-NODE 15 min 2 s

ISIC-2019 23 min 1 s

ISIC-2020 21 min 0 s

PH2 16 min 0 s

DermNet 29 min 3 s

TABLE 8 Execution time comparison of the proposed CCTM model with
the existing method.

Ref Dataset Running/execution time

Araújo et al. (43) HAM-10000 1 h 30 min

Proposed Model HAM-10000 28 min 4 s

who manually segmented skin lesions for clinical analysis.
This database is valuable for evaluating and validating
computer-based segmentation and classification algorithms
for melanoma diagnosis.

ISIC 2016: This dermoscopy dataset is categorized into two
classes named “background” and “skin lesion.” The anatomical
region “full body” skin is considered.

ISIC 2017: The size of the training and validation
data was 2000/150 whereas the test data size was
approximately 600.
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TABLE 9 CCTM classification outcomes using ISIC-2019 dataset.

Akiec Bcc Bkl Df Mel Nv Scc Vl P R F

� 0.97 0.97 0.97

� 0.96 0.94 0.95

� 0.95 0.95 0.95

� 0.99 0.99 0.99

� 0.97 0.98 0.97

� 0.96 0.98 0.97

� 0.95 0.97 0.96

� 1.00 0.99 0.99

� � � � � � � 0.97 A

� � � � � � � 0.97 0.97 0.97

� � � � � � � 0.97 0.97 0.97

TABLE 10 CCTM classification outcomes using ISIC-2020 dataset.

Akiec Bcc Bkl Df Mel Nv Scc Vl P R F1

� 0.99 0.99 0.99

� 0.95 1.00 0.97

� 1.00 1.00 1.00

� 1.00 1.00 1.00

� 1.00 0.95 0.97

� 1.00 0.99 1.00

� 1.00 1.00 1.00

� 1.00 1.00 1.00

� � � � � � � 0.99 A

� � � � � � � 0.99 0.99 0.99

� � � � � � � 0.99 0.99 0.99

ISIC 2018: A large-scale dataset published by ISIC containing
10,015 dermoscopic images with skin lesions annotated with
seven classes of skin diseases such as skin cancer, pigment
network, globule, and others: milia-like cysts, negative
networks, and streaks. These classes were used to detect
various skin diseases. The dataset was used for instances and
semantic segmentation.

The details of classification datasets are as follows:
HAM10000: The HAM10000 dataset comprised a considerable

group of multisource dermoscopic images containing colored
skin diseases. Diverse populations and acquisition methods were
used to collect 10,015 images. The dataset included seven
generic classes of pigmented lesions, selected for simplicity
and practical clinical relevance. The dataset was meticulously
cleaned and standardized to ensure high quality using manual
screening to exclude specific attributes and ensure appropriate
color reproduction.

ISIC 2019: consisted of 19,424 dermoscopic images captured
over 16 years using high-resolution cameras. These images
comprised approximately 11 diagnostic groups. The dataset may
become more disabled in medical practice by relating each
captured image to the age and sex of the patient and the
position of the lesion.

TABLE 11 CCTM classification outcomes using PH2 dataset.

Benign Malignant P R F

� 0.97 0.96 0.97

� 0.96 0.97 0.97

� � 0.97 A

� � 0.97 0.97 0.97

� � 0.97 0.97 0.97

MED-NODE: This is a non-dermoscopic skin-lesion dataset
consisting of two classes: benign nevi with 100 images and
melanoma lesions with 70 images.

DermNet: Consisted of 19,500 images with three RGB channels
and 23 distinct categories of skin diseases, such as eczema, borrheic
keratoses, poison ivy, acne, vascular tumors, tinea ringworm,
psoriasis, melanoma, and bullous disease. However, the images
were mostly of low resolution.

The datasets had limitations such as data imbalance, low
resolution, and poor contrast. The data were augmented through
horizontal and vertical flipping to increase the number of images.
Hybrid loss and residual refinements were applied to BASNet to
handle occlusion and poor contrast images.
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TABLE 12 CCTM classification outcomes using MED-NODE dataset.

AN CN Me P R F1

� 0.98 1.00 0.99

� 1.00 0.97 0.98

� 1.00 1.00 1.00

� � � 0.99 A

� � � 0.99 0.99 0.99

� � � 0.99 0.99 0.99

TABLE 13 CCTM classification outcomes using DermNet dataset.

Classes P R F1

AR 0.96 0.97 0.97

AK 0.99 0.98 0.99

AD 0.99 0.99 0.99

BD 0.99 1.00 1.00

CI 0.99 1.00 0.99

EP 0.97 0.97 0.97

ED 0.97 0.99 0.98

HL 0.93 1.00 0.96

HP 0.88 0.95 0.91

LD 0.98 0.97 0.98

LO 0.99 0.98 0.99

MS 0.99 1.00 1.00

NF 0.91 0.86 0.88

PI 1.00 1.00 1.00

PL 0.95 0.92 0.93

SL 1.00 1.00 1.00

SK 0.99 0.97 0.98

SD 0.98 0.98 0.98

TR 0.99 0.97 0.98

UH 1.00 1.00 1.00

VT 0.99 1.00 0.99

V 0.99 0.99 0.99

WM 0.93 0.89 0.91

Total
Classes = 23

Accuracy = 0.97

0.97 0.97 0.97

0.97 0.97 0.97

4.2 Experiment 1: segmentation of the
skin lesions using the proposed BASNet
model

In this experiment, the BASNet Model was trained on the
optimal hyperparameters that are shown in Figure 5.

In Figure 4, the blue and red lines represent the training
and validation losses, respectively. On the PH2 dataset, the
training/validation loss was stable at the initial epochs, whereas on

TABLE 14 Classification results of CCTM compared with those of
existing methods.

References Year Datasets Accuracy
(%)

Rokhsati et al. (44) 2024 MED-
NODE

0.96

Georgiadis et al. (53) 2025 0.66

Rasel et al. (54) 2024 0.75 F1

Proposed model 0.99

Rokhsati et al. (44) 2024 PH2 0.96

Reis et al. (39) 2024 0.88

Mustafa et al. (50) 2025 0.94

Georgiadis et al. (53) 2025 0.50

Proposed model 0.97

Singh et al. (45) 2024 ISIC-2020 0.73

Georgiadis et al. (53) 2025

Proposed model 0.99

Reis et al. (39) 2024 ISIC-2019 0.96

Mustafa et al. (50) 2025 0.93

Georgiadis et al. (53) 2025 0.48

Proposed model 0.97

Singh et al. (45) 2024 HAM-10000 0.96

Mustafa et al. (50) 2025 0.92

Georgiadis et al. (53) 2025 0.73

Proposed Model 0.97

Medhat et al. (46) 2024 DermNet 91.92± 1.74

Mui-zzud-din et al. (47) 2024 0.91

Hanum et al. (55) 2025 0.94

Proposed model 0.97

the ISIC [2016, 2017, and 2018] datasets, the training/validation
curves were stable after 30 epochs. The segmentation model results
are shown in Figures 6–9.

As shown in Figure 10, BASNet segments the skin-lesion
boundaries more accurately, even with illumination and lighting
effects. The computed segmentation results are given in Table 3.

Table 3 shows the evaluation of the segmentation model using
four dermoscopy datasets, PH2, ISIC 2016, ISIC 2018, and ISIC
2017. During training, the average IoU and Dice scores were 0.95
and 0.98 on PH2; 0.88 and 0.97 on ISIC 2016; 0.96 and 0.98 on
ISIC 2018, and 0.94 and 0.96 on ISIC 2017 datasets, respectively.
Similarly, in the validation stage, the results in terms of IoU and
Dice scores were 0.96 and 0.98 on PH2; 0.87 and 0.95 on ISIC
2016; 0.93 and 0.96 on ISIC 2018, and 0.95 and 0.97 on ISIC
2017 datasets, respectively. Finally, in the testing stage, the results
were 0.95 and 0.98 on PH2; 0.88 and 0.97 on ISIC 2016; 0.96
and 0.98 on ISIC 2018, and 0.94 and 0.96 on ISIC 2017 datasets,
respectively.

The confidence intervals demonstrate high consistency and
reliability across datasets. Most intervals fall within narrow ranges,
indicating stable performance. For instance, several scores show
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TABLE 15 Segmentation results on the variant of ablation using ISIC-2018 dataset.

Variant of ablation Testing Validation Training Average (%)

IoU Dice score

Without using residual refinement � 0.78 0.79

� 0.75 0.76

� 0.75 0.78

Without using hybrid loss (structured similarity and
boundary aware)
Only binary cross-entropy

� 0.79 0.76

� 0.77 0.75

� 0.78 0.77

TABLE 16 Experiment for the selection of hyperparameters.

Batch
size

Optimizer Loss Learning
rate

Error
rate

2 Sgdm Tversky le−5 0.093

4 Adam Hybrid le−4 0.049

8 RMSprops Focal le−3 0.100

The bold numbers represent the values selected from the experiment for further analysis and
experimentation.

a confidence interval of [0.9383, 0.9817], reflecting a robust and
precise estimation. Similarly, intervals such as [0.9283, 0.9717]
and [0.9183, 0.9617] suggest minimal variability, while slightly
wider intervals like [0.8683, 0.9117] and [0.8483, 0.8917] indicate
reduced but still consistent performance. Notably, the highest
confidence interval [0.9483, 0.9917] showcases the peak reliability
within the dataset. Overall, the reported intervals confirm a
high level of accuracy and confidence. BASNet was trained for
50 epochs; the training time of each epoch is presented in
Table 4.

Table 4 shows the training times of BASNet and the existing
method on the HAM-10000 dataset. The input image size is 288
× 288. This model takes four minutes on each epoch. However,
the existing method is trained for 50 epochs with 240 × 240
input image size, taking 17.46 sec on each epoch. The difference
in time is due to the image size. The outcomes are shown in
Table 5.

Table 5 presents the results of the proposed model and those
of the existing approaches, such as (38–41). The U-Net model
was designed using skip paths to the encoder to reduce the
semantic gap between concatenated maps of features for skin-lesion
segmentation. The method was evaluated using PH2 and ISIC-
18 datasets providing accuracies of 96.18 and 96.09%, respectively
(38). The adaptive contour was applied for segmentation on
the ISIC-17 and PH2 datasets, with accuracies of 0.94% and
0.96%, respectively (42). The LinkNet and U-Net models were
combined to transfer skin-lesion segmentation learning on ISIC-18
and PH2 datasets with 0.89% and 0.92% accuracy (40). A two-
stage method was designed based on a modified CNN classifier
to segment the skin lesions. This method was evaluated on the
PH2 and ISIC-17 datasets with accuracies of 0.82% and 0.89%,
respectively.

4.3 Experiment 2: classification of the
skin lesions using the proposed compact
convolutional transformer model

The proposed CCTM was trained for 100 epochs, and the
results are shown in Table 6. The features vectors visualization for
PH2 dataset is shown in Figure 11.

In Figure 11, t-SNE visualization of feature vectors illustrates
how well the model has learned to distinguish between different
classes. Each dot represents a sample in the dataset, and the
color coding corresponds to different class labels. The clear
separation of clusters indicates that the model has successfully
extracted meaningful features, with samples of the same class
grouping together while maintaining distinct boundaries between
different classes. Some overlap might suggest areas where the
model could improve, possibly due to similarities between
certain categories. This visualization helps understand the model’s
representation learning and provides insights into feature space
organization.

The test results are shown in terms of the confusion matrix in
Figure 12.

Table 6 presents the classification results on the HAM-10000
dataset. Precision, recall, and F1-score were computed for the
individual classes, as well as the overall accuracy, micro average,
and weighted average. The values of precision, recall and F1-
score were 0.96, 0.96, and 0.96 for Akiec; 0.96, 0.97, and 0.96
for BCC; 0.95, 0.95, and 0.95 for Bkl; 0.98, 1.00, and 0.99 for
Df; 0.96, 0.93, and 0.95 for Mel; 0.95, 0.96, and 0.96 for Nv;
and 1.00, 1.00, and 1.00 for V1. The overall attained accuracy of
the seven classes was 0.97, the macro average of the precision,
recall, and F1 scores was 0.97, and the weighted average was
0.97.

The proposed CCTM classified all skin lesions, including
light and dark lesions. Furthermore, to authenticate the model
performance, explainable AI (XAI) was applied using LIME to
highlight the important features of the model as shown in Figure 13.

The study addresses AI interpretability by applying explainable
AI (XAI) techniques, specifically LIME, to highlight important
features contributing to the model’s decisions. Figure 13 visually
demonstrates how the proposed CCTM model classifies both light
and dark skin lesions with transparency. This ensures clinical trust
by making the model’s decision-making process more interpretable
and justifiable.
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FIGURE 14

Testing of the BASNet on HAM-10000 dataset (A) input images (B) ground mask (C) predicted masks.

TABLE 17 Comparison of training time.

Model Time of each epoch

BASNet model 4 min

Öztürk and Özkaya (56) 432.3 sec

The time elapsed was computed for both training and testing
on the benchmark datasets, as shown in Table 7.

The running/execution time of the proposed model was also
compared with that of the existing method (43), as listed in Table 8.

Table 8 shows the elapsed time for the same benchmark dataset,
where the execution time of the existing method is 1 h 30 min,
whereas that of the proposed model is 28 min 4 s. Thus, the
proposed model is computationally efficient. The classification
outcomes are given in Table 9.

On ISIC-2019, the values of P, R, and F1 on the classes of Akiec
were 0.97, 0.97, 0.97, whereas those of Bcc were 0.96, 0.94, 0.95, Bkl
were 0.95, 0.95, 0.95, Df were 0.99, 0.99, 0.99, Mel were 0.97, 0.98,
0.97, Nv were 0.96, 0.98, 0.97, Scc were 0.95, 0.97, 0.96, and of VI
were 1.00, 0.99, 0.99 respectively. The outcomes achieved for the
ISIC-2020 dataset are listed in Table 10.

Tables 10, 11 present the values of precision, recall, and F1-
score on eight classes of ISIC-2020 dataset.

Table 11 presents results for benign and malignant classes.
In the benign class, the results for P, R, and F1 were 0.97, 0.96,
and 0.97, respectively, whereas those for the malignant class were
0.96, 0.97, and 0.97, respectively. Similarly, the accuracy was 0.97,
and macro average and weighted rates were 0.97, 0.97, and 0.97
for precision, recall, and F1-scores, respectively. The classification
results on MED-NODE dataset are listed in Table 12.

The classification results on the MED-NODE dataset were
computed in three classes: AN, CN, and Me. The results of P, R, and
F1 were 0.98, 1.00, and 0.99 for AN; 1.00, 0.97, and 0.98 for CN; and
1.00, 1.00, and 1.00 for the Me class, respectively. The accuracy was
0.99 and the macro-average and macro-weighted results were 0.99,
0.99, and 0.99, respectively. The results for the DermNet dataset are
listed in Table 13.

Table 13 provides results on twenty-three skin-lesion classes.
On the classes the results of AR were 0.96, 0.97, 0.97, on AK were
0.99, 0.98, 0.99, whereas 0.99, 0.99, 0.99 on AD, 0.99, 1.00, 1.00 on

BD, 0.99, 1.00, 0.99 on CI, 0.97, 0.97, 0.97 on EP, 0.97, 0.99, 0.98
on ED, 0.93, 1.00, 0.96 on HL, 0.88, 0.95, 0.91 on HP, 0.98, 0.97,
0.98 on LD, 0.99, 0.98, 0.99 on LO, 0.99, 1.00, 1.00 on Ms, 0.91,
0.86, 0.88 on Nf, 1.00, 1.00,1.00 on PI, 0.95, 0.92, 0.93 on PL, 1.00,
1.00, 1.00 on SL, 0.99, 0.97, 0.98 on SK, 0.98, 0.98, 0.98 on SD, 0.99,
0.97, 0.98 on TR, 1.00, 1.00,1.00 on UH, 0.99, 1.00,0.99 on VT, 0.99,
0.99, 0.99 on V and 0.93, 0.89, 0.91 on WM. The accuracy of all the
classes is 0.97.

The CCTM outcomes validated using the ISIC-2019, ISIC-
2020, PH2, and DermNet datasets are shown in Tables 5–9. The
proposed model has an accuracy of 0.97 on ISIC-2019, 0.99
on ISIC-2020, 0.97 on PH2, 0.99 on MED-NODE, and 0.97 on
DermNet datasets.

The CCTM model provides the highest accuracy of 0.99 on
ISIC-2020 and MED-NODE compared with the other datasets. The
CCTM results were compared with those of the existing methods,
as presented in Table 14.

Iterative magnitude pruning was used with AlexNet for skin-
lesion classification on PH2 and MED-NODE datasets with
an accuracy of 0.96 (44). The DT uses Bayesian learning and
fuzzy ID3 values for skin-lesion classification. The results on
PH2 and ISIC-19 datasets were 88% and 96%, respectively (39).
A stacked CNN model was used for skin-lesion classification.
This method was evaluated on ISIC-20 and HAM-10000 with
accuracies of 0.73% and 0.96%, respectively (45). The features were
optimized using GSO and the skin lesion was classified based on
a random forest classifier (46). The ensemble model was created
using a combination of pretrained models, such as ResNet50V2,
ResNet152V2, and ResNet101V2, which were used for feature
extraction to classify skin lesions (47).

In Table 14, on the MED-NODE dataset, where the proposed
model achieved 99% accuracy, the misclassification rate is 1%.
Similarly, for the PH2 dataset, achieving 97% accuracy, the
misclassification rate is 3%. On the ISIC-2020 dataset, the proposed
model outperformed previous methods with 99% accuracy, leading
to a 1% misclassification rate. Likewise, for ISIC-2019, the model
achieved 97% accuracy, corresponding to a 3% misclassification
rate. On the HAM-10000 dataset, the proposed model attained 97%
accuracy, resulting in a 3% misclassification rate. Finally, for the
DermNet dataset, where the model achieved 97% accuracy, the
misclassification rate remains 3%. These results indicate that the
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TABLE 18 Training hyperparameters of CCTM.

Conv
layers

Project
dimension

Number of
heads

Transformer
layers

Stochastic
rate

Learning
rate

Batch
size

Error
rate

2 128 2 2 0.10 0.001 128 0.021

4 64 4 4 0.01 0.01 64 0.054

The bold numbers represent the values selected from the experiment for further analysis and experimentation.

TABLE 19 Results of classification on variant of ablation using HAM-10000 dataset.

Variant of ablation Akiec Bcc Bkl Df Mel Nv Vl P R F1

Without convolution layers
K

� 0.82 0.82 0.80

� 0.82 0.81 0.81

� 0.80 0.79 0.85

� 0.81 0.80 0.78

� 0.82 0.83 0.74

� 0.78 0.79 0.74

� 0.80 0.81 0.79

� � � � � � � � 0.80 Accuracy (A)

� � � � � � � � 0.80 0.80 0.80

� � � � � � � � 0.80 0.80 0.80

Kernel size of convolution = 4 � 0.90 0.91 0.90

� 0.91 0.90 0.92

� 0.90 0.89 0.90

� 0.91 0.92 0.91

� 0.92 0.93 0.90

� 0.92 0.92 0.92

� 0.91 0.91 0.91

� � � � � � � � 0.90 A

� � � � � � � � 0.91 0.91 0.91

� � � � � � � � 0.91 0.91 0.91

Without patch embedding � 0.81 0.80 0.89

� 0.80 0.81 0.82

� 0.80 0.81 0.82

� 0.82 0.82 0.82

� 0.81 0.80 0.80

� 0.80 0.81 0.80

� 0.81 0.81 0.81

� � � � � � � � 0.82 A

� � � � � � � � 0.82 0.82 0.82

� � � � � � � � 0.82 0.82 0.82

proposed model significantly reduces errors compared to previous
studies while maintaining robust classification performance.

4.4 Ablation study

An ablation study was performed using both segmentation and
classification models.

BASNet used ResNet-34 as a backbone because it gives a

balance between performance and efficiency. It is a lightweight,

less computationally expensive, and faster model. The residual

connections and hierarchical features extraction abilities of this

model help capture the contextual and fine-detail information. The

pretrained weights of ResNet-34 enable faster training and better

generalization. Compared with ResNet-50 and ResNet-101, deeper
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models exist, with higher computation and memory requirements
and long training time.

Dermoscopy images of skin cancer often suffer from poor
quality due to factors like lighting variations, hair occlusion,
and low contrast, which can obscure critical features needed
for accurate diagnosis. The hybrid loss and residual refinement
alleviate the challenges of occlusion and poor contrast. Hybrid loss
combines pixel-wise accuracy (e.g., cross-entropy) with structural
sensitivity (e.g., dice loss), ensuring the model captures both
fine details like lesion borders and broader patterns like texture
irregularities. Residual refinement further improves predictions
by iteratively correcting errors from earlier outputs, focusing on
subtle but diagnostically significant features. This combination
makes the system more robust and accurate, enabling it to
handle the variability and imperfections common in dermoscopy
images, ultimately supporting better skin cancer detection in real-
world clinical applications. The hyperparameters of BASNet were
finalized after the experimentation as shown in Table 15.

Table 15 presents different types of losses and batch
sizes. Learning rates and loss function were used for model
training. In this experiment, an error rate of 0.049 was
obtained on the combination of hyperparameters such as Hybrid
loss, Adam optimizer, and le−4, which is less than those of
others.

In BASNet model, weight (0.8) for pixel-wise (L2) loss and
perceptual loss (0.2) were applied. This helped the model prioritize
high-level preservation of features. The high weight on pixel-
level loss, helps reconstruct the image and preserve the overall
structure, particularly when fine details are less distinguishable
due to occlusion or low contrast. This combination strikes a
balance between fidelity and original ability to retain the vital
features.

The segmentation BASNet model was authenticated by
performing different experiments on the ISIC-2018 dataset, as
listed in Table 16.

Table 16 presents the ablation variant without using the residual
refinement module. The IoU was 0.78 and Dice score was 0.79 in
the testing stage, the IoU was 0.75 and Dice score was 0.76 in the
validation stage, and the IoU was 0.75 and Dice score was 0.78
in the training stage. Similarly, without using hybrid loss in the
testing stage, IoU and Dice scores were 0.79 and 0.76, respectively.
In the validation stage, IoU and Dice scores were 0.77 and 0.75,
respectively. In the training stage, IoU and Dice scores were 0.78
and 0.77, respectively. It was observed that the residual refinement
module and hybrid loss played vital roles in the segmentation of
skin lesions. The results of segmentation drastically decrease when
used without these parameters.

The proposed BASNet model was trained and tested on four
benchmark datasets: PH2, ISIC 2016, ISIC 2017 and ISIC 2018.
To authenticate the performance of BASNet, some images of the
HAM-10000 dataset were passed to the trained weights on ISIC
2018 datasets; the segmentation results of the predicted masks with
DSC scores are shown in Figure 14.

In Figure 14, BASNet was not trained on the BASNet model.
The trained weights of BASNet on ISIS-2018 dataset were used
to test some images of the HAM-10000 dataset. BASNet achieved
0.949 DSC, which shows the generalizability and reliability of the
model. The training time of BASNet was compared with that of the
existing method (Table 17).

The training time of each epoch of BASNet is 4 minutes while
that of the existing method, the iFCN model, is 432.3 seconds
(Table 17). Before training CCTM, hyperparameters were selected
after experimentation as shown in Table 18.

The hyperparameters which provide less error rates compared
to others are highlighted in bold and italics, in Table 18. The results
of the classification model were evaluated using a variant of ablation
on the HAM-10000 dataset as shown in Table 19.

The results in Table 19 were computed based on different
parameters, such as without convolution layers, by varying
convolution kernel size, and without a patch embedding layer.
Without convolutional layers, the accuracy was 0.80, whereas with
the four kernel sizes of the convolutional layers, an accuracy of
0.90 was achieved. Similarly, without the patch embedding layer,
an accuracy of 0.82 was achieved. The results can be drastically
changed by reducing or changing the number of parameters.

5 Conclusion

Several studies have been conducted on the detection of
skin lesions; however, accurate segmentation and classification
of skin lesions remain great challenges. To overcome these
challenges, we proposed a method, which is based on two novel
models. To address the challenges of skin-lesion segmentation,
a boundary-aware segmentation model was proposed based on
hybrid loss and selected hyperparameters for more accurate
skin-lesion segmentation. The model was assessed using four
challenging dermoscopic datasets: PH2, ISIC-2016, ISIC-
2017, and ISIC-2018. The average IoU and Dice scores were
0.96 and 0.98 for PH2; 0.89 and 0.96 for ISIC 2016; 0.94
and 0.97 for ISIC 2018; and 0.97 and 0.98 for ISIC 2017
datasets, respectively.

Skin-lesion classification remains a challenge owing to the
similar shape, color, and size of skin lesions. Therefore, a CCTM
was proposed and trained on optimal hyperparameters, achieving
accurate skin-lesion classification at the testing stage. CCTM was
evaluated on the ISIC Challenge and DermNet datasets with
different types of skin lesions. The accuracy obtained was 0.99 on
MED-NODE, 0.97 on PH2, 0.97 on ISIC-2019; 0.99 on ISIC-2020;
0.97 on HAM-10000, and 0.97 on DermNet datasets, respectively.

6. Limitations and future scope

BASNet is appropriate for poorly contrasted, illuminated,
and hair dermoscopic images, it is computationally intensive. It
focuses on both global and fine-grained details by employing a
deep-learning model that undergoes several rounds of feature
extraction, refinement, and fusion. This leads to significant
processing and memory requirements, particularly when handling
high-resolution dermoscopic images. Furthermore, the results
demonstrated the superiority of CCTM. This is a great contribution
to this domain; in the future, this model will be implemented
in hospitals to evaluate its performance on real dermoscopic
images. However, there remain obstacles to its incorporation
into clinical workflows, including the need for strong regulatory
approvals to guarantee safety, huge computing resources required
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for real-time inference, and the need for clinician training
to properly understand AI results. For smooth adoption and
for AI to support human knowledge in managing skin cancer
rather than replace it, these obstacles must be overcome and
cooperation between AI developers and healthcare practitioners
must be encouraged.

In the future, a method using quantum machine/DL may be
proposed to achieve accurate and efficient outcomes. The proposed
method may also be validated on ISIC Challenge-2024, which was
not used in this study.
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