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The Internet of Medical Things (IoMT) is transforming healthcare by enabling 
continuous remote patient monitoring, diagnostics, and personalized therapies. 
However, the widespread deployment of these devices introduces significant 
security vulnerabilities due to limited resources and inadequate network protocols. 
Intrusions within IoMT networks can compromise patient privacy, disrupt critical 
medical services, and jeopardize patient safety. To address these challenges, 
we propose HCLR-IDS, an advanced Intrusion Detection System (IDS) specifically 
designed for IoMT networks. The system integrates Convolutional Neural Networks 
(CNN), Long Short-Term Memory (LSTM) networks, and Reinforcement Learning 
(RL) techniques, namely Deep Q-Network (DQN) and Proximal Policy Optimization 
(PPO), to enhance the detection of evolving threats. The methodology begins 
with Enhanced Mutual Information Feature Selection (MIFS) to preprocess the 
CICIoMT2024 dataset, selecting the most relevant features while reducing noise 
and computational complexity. These selected features are then passed through a 
hybrid CNN-LSTM architecture. The CNN captures spatial patterns in network traffic, 
while the LSTM identifies temporal patterns. This dual feature extraction approach 
enables the system to effectively detect both static and dynamic characteristics 
of IoMT data. After feature extraction, the model incorporates DQN and PPO 
for decision-making. DQN optimizes actions based on Q-values, enhancing 
detection rewards, while PPO ensures stability in dynamic environments through 
a clipping mechanism. This combination of adaptive Q-learning and stable policy 
optimization significantly improves system robustness, ensuring effective real-
time intrusion detection. The model demonstrates exceptional performance with 
binary classification accuracy of 0.9958, outperforming traditional IDS models. 
Additionally, it performs effectively in multi-class classification across 18 classes, 
achieving an accuracy of 0.7773. These results highlight that HCLR-IDS offers a 
reliable and efficient solution for securing IoMT healthcare systems.
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1 Introduction

The Internet of Things (IoT) has revolutionized numerous 
industries, and in healthcare, it has paved the way for the Internet of 
Medical Things (IoMT), which connects medical devices, wearables, 
and sensors to improve patient care, enhance diagnostics, and enable 
real-time monitoring (1–3). The integration of IoMT in healthcare 
enables continuous patient health monitoring, predictive health 
management, and personalized data-driven medical interventions. 
These advancements are particularly impactful for patients with 
chronic conditions, providing opportunities for timely, preventative 
care and reducing the burden on healthcare systems (4). However, the 
rapid adoption of IoMT devices introduces critical security and 
privacy challenges, such as unauthorized access, data breaches, and 
cyberattacks, which jeopardize patient safety, confidentiality, and the 
integrity of medical services (5–7).

One of the most pressing challenges in securing IoMT networks 
is the inadequacy of traditional Intrusion Detection Systems (IDS) 
to address the unique characteristics of these environments. 
Existing IDS schemes face several limitations (8–10), including 
their inability to effectively capture both spatial and temporal 
patterns in network traffic (11), resulting in missed detections or 
high false positive rates (12). In IoMT networks, medical devices 
and sensors generate data streams that exhibit both spatial and 
temporal dependencies spatial patterns reflect device 
communication behaviors, while temporal patterns capture the 
evolution of attack events over time. Most existing IDS solutions, 
however, focus only on either spatial or temporal features, failing to 
capture the complex interactions between them (13). This inability 
to detect the dynamic and evolving nature of attacks in IoMT 
networks makes traditional IDS approaches unsuitable for securing 
such systems (14).

Moreover, the high false positive rates in traditional anomaly-
based IDS systems, particularly in IoMT environments, arise from the 
dynamic and diverse nature of normal traffic. The communication 
patterns between devices can fluctuate based on patient conditions, 
device configurations, and environmental factors, making it difficult 
for conventional IDS to distinguish between benign and malicious 
activities. This problem is exacerbated in real-time monitoring 
scenarios, where delays or inaccuracies in detection can have serious 
consequences for patient care (15). Another significant challenge is 
the evolving nature of cyberattacks targeting healthcare systems. 
Attackers continuously develop new strategies, exploiting 
vulnerabilities in IoMT devices and networks (16). Traditional IDS 
models that rely on static detection algorithms are ill-equipped to 
adapt to new and emerging threats. Consequently, these models often 
fail to detect sophisticated attack vectors, compromising the overall 
resilience of IoMT security (17).

To address these pressing challenges, we propose HCLR-IDS, an 
advanced Intrusion Detection System specifically designed for IoMT 
networks. HCLR-IDS integrates state-of-the-art CNN and LSTM 
networks, and RL techniques to overcome the limitations of existing 
IDS solutions. This hybrid approach is tailored to the unique 
characteristics of IoMT traffic, enabling the system to capture both 
spatial and temporal patterns simultaneously, while integrating and 
adapting to evolving attack strategies. The first key feature of 
HCLR-IDS is the use of MIFS to preprocess the CICIoMT2024 
dataset. MIFS identifies the most relevant features, reducing noise and 

computational complexity, and ensuring that only the most critical 
data is used for model training and detection.

Next, we leverage the strengths of CNNs and LSTMs to capture 
spatial and temporal dependencies in IoMT network traffic. CNNs are 
effective at detecting spatial patterns, such as device behaviors, while 
LSTMs are designed to identify temporal patterns, such as the 
sequence of events over time. By integrating these two powerful 
architectures, HCLR-IDS is able to detect complex, dynamic attack 
patterns that evolve over time an ability that traditional IDS solutions 
often lack. Finally, we integrate two RL models: DQN and PPO. DQN 
optimizes actions based on Q-values, maximizing detection rewards, 
while PPO enhances policy learning through a clipping mechanism, 
stabilizing decision-making in dynamic environments. This 
combination of RL techniques allows HCLR-IDS to continuously 
adapt to new attack scenarios and optimize its detection strategy over 
time, improving accuracy and reducing false positives.

The main contributions of this work include.

 • HCLR-IDS integrates deep learning for feature extraction and 
reinforcement learning for decision-making, enabling real-time 
detection and adaptation to evolving threats in resource-
constrained IoMT environments.

 • We utilize Enhanced Mutual Information Feature Selection 
(MIFS) for feature selection improves efficiency by reducing 
noise and improving detection accuracy.

 • We propose a novel hybrid framework combining Convolutional 
Neural Networks (CNN) and Long Short-Term Memory (LSTM) 
to capture both spatial and temporal patterns in IoMT network 
traffic. This integration addresses the challenge of dynamic and 
evolving attack patterns specific to IoMT environments.

 • The integration of Deep Q-Networks (DQN) and Proximal Policy 
Optimization (PPO) enables our system to adapt and learn from 
real-time data, improving detection accuracy and reducing false 
positives. This is a critical improvement over traditional IDS 
approaches, which lack such adaptive capabilities.

The paper is organized as follows: Section 2 presents a 
comprehensive literature review, discussing relevant research in the 
field. Section 3 details our proposed approach for securing IoMT 
networks, including a description of the algorithm and its 
implementation. Section 4 outlines the experimental setup used in our 
simulations. Section 5 discusses the results, comparing the 
performance of our approach with existing methods. Finally, Section 
6 concludes the paper and provides directions for future research.

2 Literature review

Intrusion Detection for the IoMT healthcare systems have 
attracted significant attention due to the increasing reliance on 
connected medical devices in healthcare environments, which exposes 
systems to various cybersecurity risks. As IoMT networks are 
becoming more widespread, addressing these emerging threats is 
critical for ensuring the safety and integrity of healthcare systems. 
Several studies have explored IDS enhancements to tackle these 
challenges effectively. Anomaly-based IDS is widely adopted in IoMT 
networks due to its ability to detect deviations from normal network 
behavior, which is essential for identifying novel attacks that 
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traditional signature-based methods may miss. However, anomaly-
based systems face significant challenges in dealing with false positives 
and capturing both temporal and spatial dependencies inherent in 
IoMT traffic. The traffic patterns in IoMT environments are often 
device-specific and highly variable, making it difficult to identify 
deviations without robust models capable of learning these complex 
behaviors (18). This limitation highlights the need for advanced 
methods capable of handling these complexities and providing reliable 
detection in dynamic environments.

Feature selection plays a crucial role in improving the performance 
of IDS by reducing data dimensionality and enhancing classification 
efficiency. Recent studies have shown the effectiveness of Improved 
MIFS in enhancing detection accuracy, particularly in cases where 
attack patterns are underrepresented or difficult to identify (19). 
Furthermore, hybrid approaches, such as combining Principal 
Component Analysis (PCA) with optimization algorithms like Grey 
Wolf Optimization (GWO), have been explored to optimize feature 
selection in deep learning-based IDS models, further enhancing 
performance in IoMT settings (20). These techniques demonstrate the 
potential to reduce feature redundancy and improve model 
interpretability. A meta-learning techniques are gaining traction for 
adapting IDS systems to evolving attack strategies. Meta-learning 
enables IDS models to dynamically adjust their learning strategies 
based on incoming network data, thereby ensuring that the detection 
system remains robust in the face of emerging attack patterns (21). 
The integration of swarm intelligence with neural networks has also 
been investigated to optimize decision-making processes, which can 
improve detection accuracy and minimize false positives in IoMT 
environments (22).

In addition, LSTM networks have gained prominence due to their 
ability to capture complex temporal patterns in network traffic, which 
is crucial for real-time intrusion detection. Recent studies have 
demonstrated that when enhanced with cyber twin deep learning 
techniques, LSTMs can handle the intricate temporal dependencies 
characteristic of IoMT traffic, leading to more accurate intrusion 
detection in dynamic and resource-constrained environments (23). 
This capability is critical for ensuring that IDS can adapt to the 
evolving nature of network behavior and detect previously unseen 
attacks. With respect to privacy-preserving approaches, federated 
learning has emerged as a promising solution. This method enables 
multiple IoMT devices to collaboratively train IDS models without 
sharing sensitive data, addressing privacy concerns while maintaining 
model accuracy. Federated learning has demonstrated its potential to 
improve the robustness and scalability of IDS systems in healthcare 
networks (24). Furthermore, hierarchical federated learning has been 
proposed to further enhance scalability and efficiency, making it better 
suited for large-scale IoMT deployments while ensuring data 
privacy (25).

Furthermore, in the context of Reinforcement Learning (RL), 
recent advancements have shown that DQN and PPO can 
significantly enhance decision-making and adaptability in 
IDS. DQN’s trial-and-error learning mechanism and PPO’s stable 
policy optimization have been effectively employed to improve IDS 
performance over time by adapting to new and emerging attack 
patterns. Specifically, RL-DQN models utilize a Markov Decision 
Process (MDP) to optimize decision-making and improve 
classification accuracy by learning from observed network behaviors 
(26–29). These techniques contribute to the overall resilience of IDS 

systems by enabling them to continuously evolve and respond to new 
threats. Table  1 describes each abbreviation and its 
corresponding definition.

3 Proposed HCLR-IDS

In this study, we  propose HCLR-IDS, a novel IDS for IoMT 
healthcare networks. The system integrates networks, and RL 
techniques, specifically DQN and PPO, to effectively address the 
complexities of IoMT traffic. The methodology begins with the use of 
MIFS for preprocessing the CICIoMT2024 dataset, which reduces 
noise, improves computational efficiency, and ensures that only the 
most relevant features are used for model training. The model then 
leverages the hybrid architecture of CNNs for spatial feature extraction 
and LSTMs for capturing temporal dependencies, enabling it to detect 
both spatial and temporal patterns in IoMT traffic. This hybrid feature 
extraction significantly enhances the ability to identify evolving attack 
patterns that traditional IDS solutions may miss. For decision-making, 
DQN optimizes actions based on Q-values, enhancing the detection 
rewards, while PPO stabilizes the learning process with a clipping 
mechanism, ensuring consistent performance in dynamic attack 
environments. This integration of CNN, LSTM, and RL enables 
HCLR-IDS to continuously learn from new data, adapt to emerging 
threats, and reduce false positives, making it a robust and real-time 
solution for intrusion detection in IoMT healthcare networks. Figure 1 
illustrates the working principle of the proposed HCLR-IDS model.

3.1 Dataset and preprocessing

The CICIoMT2024 (30) dataset, utilized in this study, comprises 
network traffic data from 40 IoMT devices, including 25 real devices 
and 15 simulated devices, commonly found in healthcare 

TABLE 1 List of abbreviations.

Abbreviation Definition

IoMT Internet of Medical Things

IDS Intrusion Detection System

CNN-LSTM Convolutional Neural Networks-Long Short-Term Memory

HCLR-IDS Hybrid CNN-LSTM Reinforcement Learning-based 

Intrusion Detection System

MIFS Mutual Information Feature Selection

CNN Convolutional Neural Networks

LSTM Long Short-Term Memory

RL Reinforcement Learning

DQN Deep Q-Network

PPO Proximal Policy Optimization

IoT Internet of Things

IIoT Industrial Internet of Things

MDP Markov Decision Process

ROC Receiver Operating Characteristic

AUC Area Under the Curve
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environments. The dataset includes 18 distinct cyberattack scenarios, 
categorized into five major attack types: DDoS (Distributed Denial of 
Service), DoS (Denial of Service), Reconnaissance, MQTT-based 
attacks, and Spoofing, with a total of 3.2 million data points. These 
attacks include SYN Flood, ICMP Flood, UDP Flood, Ping Sweep, 
Vulnerability Scan, and ARP Spoofing, among others. The dataset also 
contains benign traffic to ensure a balanced representation of both 
malicious and non-malicious activities given in Table 2. To mitigate 
the potential impact of class imbalance on model performance, 
we employed stratified sampling during the data splitting process, 
ensuring that each subset (training, validation, and test) contained a 
representative distribution of attack types. This approach guarantees 
that the model is exposed to all attack types during training, improving 
its ability to generalize to unseen attack scenarios. Additionally, 
techniques such as oversampling and class weighting were used to 
further address any class imbalances during the model training phase. 
The data was collected using a network tap, capturing real-time 
packets from IoMT devices under various operational states (power, 
idle, active, and interaction states), reflecting real-world behaviors and 
threat vectors. Mutual Information Feature Selection (MIFS) was 
applied to reduce dimensionality, selecting 34 features with the highest 
mutual information to retain the most informative attributes for 
intrusion detection.

Preprocessing Steps: The following preprocessing steps were 
applied to ensure that the raw network traffic data was 
appropriately prepared for training an effective intrusion 
detection model.

 • Handling Missing Values: The dataset contained some missing 
values, which were addressed using two primary strategies:

 ▪ Imputation: Missing values were estimated using standard 
imputation techniques, such as mean imputation for 
continuous features and mode imputation for categorical 
features. This method ensures that valuable data points are 
retained without introducing significant bias.

 ▪ Elimination: Entries with a high percentage of missing values 
(beyond a predefined threshold) were removed to prevent the 
model from being misled by incomplete data.

FIGURE 1

Proposed HCLR-IDS architecture.

TABLE 2 Quantification display of the utilized dataset.

lass category Attack type Count

BENIGN – 230,339

DoS DoS TCP 462,480

DoS UDP 704,503

DoS SYN 540,498

DDoS DDoS TCP 987,063

DDoS UDP 1,998,026

DDoS ICMP 1,887,175

Reconnaissance Port Scan 106,603

OS Scan 20,666

Spoofing ARP Spoofing 17,791

MQTT MQTT DoS Connect Flood 15,904

MQTT DoS Publish Flood 52,881

MQTT Malformed Data 6,877

ATTACK – 6,800,467
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To address missing and anomalous data points, we implemented 
a combination of imputation and elimination strategies. For 
continuous features, we used mean imputation to replace missing 
values, ensuring that the overall distribution of the data remained 
consistent. For categorical features, mode imputation was used to 
fill in missing values with the most frequent category. When missing 
values exceeded 20% for any entry, we  eliminated that entry to 
avoid introducing significant bias into the dataset. These steps 
ensured that the dataset remained representative and suitable for 
training the IDS while minimizing the impact of missing or 
anomalous data.

 • Feature Scaling: To standardize the dataset and ensure consistent 
treatment of features with different ranges, min-max scaling was 
employed to transform the feature values into a range between 0 
and 1. The formula for min-max scaling is as follows.

 
( ) ( ) ( )( )

( )( ) ( )( )
, min ,

,
max ,1 min ,

F p q F p q
F p q

F p F p q
−

=
−  

(1)

Where ( ),F p q  represents the value of the feature at row p and 
column q . This scaling ensures that each feature contributes equally 
to the model, especially in algorithms that are sensitive to the scale of 
data, such as distance-based models. While min-max scaling improves 
uniformity across features, it is sensitive to outliers. Features with 
extreme values could disproportionately influence the scaling process, 
leading to skewed results. Future work could consider using more 
robust scaling techniques, such as Z-score normalization or robust 
scaling, which are less affected by outliers.

 • Categorical Feature Encoding: Categorical features, such as 
protocol types and device identifiers, were encoded into 
numerical values using standard methods like one-hot 
encoding and label encoding. These encoding techniques are 
necessary for enabling machine learning models to process 
categorical data, as most models require numerical input.

One-hot encoding can significantly increase the dimensionality of 
the dataset, especially for features with a high number of unique 
categories. This increase in dimensionality can lead to sparsity in the 
feature space, making the model more complex and computationally 
expensive. Future work could explore alternative encoding methods, 
such as target encoding or embedding layers, to address these 
challenges and reduce the dimensionality.

 • Enhanced MIFS: The feature selection process was conducted 
using the Enhanced MIFS technique to identify the most relevant 
features for intrusion detection (31). Initially, the dataset 
consisted of 42 features, and MIFS was applied to evaluate the 
mutual information between each feature and the target variable 
(i.e., the attack classes). A threshold of 0.1 for mutual information 
was set, allowing only features with a score above this threshold 
to be retained. This process reduced the feature set from 42 to 34, 
which significantly enhanced the model’s computational 
efficiency while maintaining the key information necessary for 
accurate attack classification. Features with minimal correlation 
to the attack types, such as certain packet-level attributes, were 

discarded, ensuring that the model focused on the most 
informative features. MIFS works by measuring the mutual 
information between features and the target variable, helping 
reduce dimensionality while preserving relevant information. 
The mutual information (MI) between two discrete variables is 
calculated using the formula.

( ) ( ) ( ) ( ) ( )
( ) ( )

,
; | , log

y Y x X

p x y
MI X Y H X H X Y p x y

p x p y∈ ∈
= − = ∑ ∑

 
(2)

Where H(X) represents the entropy of X, and H(X∣Y) represents 
the conditional entropy of XXX given YYY. The joint distribution 
( ),p x y  and the marginal distributions ( ) ( )andp x p y  are used to 

quantify the relationships between the variables and assess the 
amount of information shared between them. Although MIFS is 
effective for feature selection, it assumes conditional independence 
between features, which may not always hold in complex real-world 
datasets such as IoMT traffic, where feature interactions are 
common. Additionally, MIFS may become less effective in high-
dimensional datasets, as it might overlook subtle but crucial 
feature relationships.

3.2 Proposed CNN-LSTM neural networks

This paper presents a hybrid model that combines CNN and 
LSTM networks for feature extraction, consisting of a convolutional 
layer followed by an LSTM layer, as illustrated in Figure 2. The CNN 
effectively extracts significant spatial features from the dataset by 
utilizing convolutional layers that identify patterns and structures 
within the input data. While the CNN excels at capturing spatial 
relationships, it has limitations in understanding temporal 
dependencies due to its static processing of data. To address this, 
we integrate LSTM, which is specifically designed to handle sequential 
data and capture temporal dependencies, allowing it to retain 
information over time. By combining the strengths of both 
architectures, the hybrid CNN-LSTM model learns both spatial and 
temporal patterns, resulting in a more robust feature representation 
that enhances the model’s ability to detect intrusions in 
IoMT networks.

The CNN architecture consists of several layers, starting with 
an input layer that receives the selected network features, structured 
as (N, 1) for 1D CNNs when there are N features (32). The 
convolutional layer contains neurons with identical weights and 
biases, referred to as kernels or filters, which connect to a region of 
n × n neurons in the preceding layer. The output for the (j,k)th 
neuron is calculated as:

 

1 1

0 0
, , ,

n n
x

l m
yj k wl m j l k m b

− −

= =
= + + +∑ ∑

 
(3)

Following this is an activation layer, where a nonlinear 
activation function such as Rectified Linear Unit (ReLU) is 
applied to introduce nonlinearity into the model. ReLU, defined 
as ( ) ( )max ,0f x x=  sets negative values in the feature maps to 
zero while preserving positive values, enhancing the model’s 
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expressive power. The pooling layer then down-samples the 
output from the previous layer, typically using max-pooling to 
extract the maximum value from each non-overlapping 
sub-region. Finally, the flatten layer converts the high-
dimensional feature maps into a 1D vector that is fed into 
the LSTM.

LSTM (33) is a type of recurrent neural network suitable for 
analyzing time series data. It can capture the temporal 
dependencies in data. LSTM can model long-term dependencies 
and correlations by consolidating memory units that can update 
a hidden state. The model is composed of four main components: 
a memory cell that is linked to itself, and three multiplicative 
units known as the input, output, and forget gates as in Figure 2. 
The LSTM, suitable for analyzing time series data, captures 
temporal dependencies through its architecture, which comprises 
four main components: a memory cell linked to itself and three 
multiplicative units known as the input, output, and forget gates 
(4). The LSTM processes the input sequence and captures these 
dependencies by receiving a flattened vector from the CNN. The 
equations governing the LSTM operations are as follows.

 [ ]( )1. ,t i t t ii W h X bσ −= +  (4)

 [ ]( )1. ,t f t t ff W h X bσ −= +  (5)

 [ ]( )1tanh . ,t c t t cC W h X b−= +  (6)

 [ ]( )1. ,t o t t oO W h X bσ −= +  (7)

The final hidden state ht , which encapsulates the temporal 
features, is calculated as.

 ( )tanht tht O c=  (8)

The hybrid CNN-LSTM architecture aims to balance model 
complexity, learning rate, and regularization to effectively detect 
intrusions in the IoMT network environment. The tuning of these 

hyperparameters is crucial for optimizing the model’s performance 
and generalization capabilities.

3.3 Proposed reinforcement learning

Reinforcement Learning (RL) (34) is a powerful machine 
learning approach designed to tackle decision-making and action-
selection problems. In this framework, an agent interacts with an 
environment, learning to make optimal decisions through trial and 
error. The primary objective of reinforcement learning is to develop 
a policy that maximizes cumulative rewards over time. In 
reinforcement learning, the agent observes the state of the 
environment, performs actions, and receives feedback in the form of 
rewards. The agent’s actions are determined based on the current 
state, facilitating a dynamic interaction that leads to the next state 
and associated reward. This learning process can be  formally 
represented as a Markov Decision Process (MDP) (35). A schematic 
diagram of the reinforcement learning process is illustrated in 
Figure 3.

The fundamental components of reinforcement learning can 
be outlined as follows:

 1. Reward Signal: The agent receives immediate feedback from the 
environment based on its actions. Rewards can be positive, 
negative, or neutral, providing an evaluation of the 
action’s effectiveness.

 2. Policy: The policy defines the strategy by which the agent selects 
actions based on the current state. It can be  deterministic 
(assigning one specific action per state) or stochastic (using a 
probability distribution to select actions).

 3. Value Function: The value function estimates the expected 
long-term cumulative reward for an agent following a specific 
policy. It aids in assessing the quality of different states and 
informs policy updates.

 4. Model: A model represents the agent’s internal understanding 
of the environment, predicting state transitions and rewards. 
Methods that utilize a model are termed model-based, while 
those that operate without one are considered model-free.

The ultimate aim of reinforcement learning is to identify the optimal 
policy that maximizes cumulative rewards. The learning process typically 

FIGURE 2

Proposed CNN-LSTM integration architecture.
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involves repeated iterations where the agent interacts with the 
environment according to its current policy, gathers experience, and 
updates its value functions and policies based on this data. Common 
algorithms in reinforcement learning include DQN and PPO, among 
others. A distinctive feature of reinforcement learning is its ability to 
improve through exploration and interaction with the environment, 
fostering autonomous decision-making and intelligent behavior.

In the proposed work, we utilize RL for intrusion detection, where 
we define the key components of states, actions, and rewards as follows.

 • States: The states in our RL model are represented by feature 
vectors derived from the outputs of the CNN and LSTM models. 
These feature vectors capture both spatial and temporal 
information about the network traffic, providing a comprehensive 
representation of the current state of the system.

 • Actions: The actions correspond to the decisions made by the 
intrusion detection system (IDS), such as classifying the network 
traffic as either normal or malicious. The RL agent learns which 
actions lead to the most accurate detections of various 
attack types.

 • Rewards: The rewards are assigned based on the accuracy of the 
model’s classification. If the model correctly classifies the traffic 
(either as normal or malicious), a positive reward is given. 
Conversely, incorrect classifications (false positives or false 
negatives) result in negative rewards. The objective of the RL 
agent is to maximize cumulative rewards over time by learning 
the optimal policy for intrusion detection.

This RL framework enables the system to adapt dynamically to new 
attack patterns by continually improving its decision-making process 
based on feedback from previous actions. This continual learning 
process ensures that the IDS is capable of handling novel, evolving 
attack vectors.

3.3.1 Proposed DQN model
The DQN (36) is a specific reinforcement learning algorithm that 

focuses on learning decision-making strategies by approximating 
Q-values. These Q-values represent the expected future rewards 
associated with taking a specific action in a given state. The DQN 
algorithm iteratively refines an optimal Q-function to maximize 
cumulative rewards. In the context of an intrusion detection system, 
the state is represented by a feature vector derived from network traffic 
data, specifically produced by a Long LSTM network that captures 
both spatial and temporal dependencies.

We use the Q-function, which represents the expected cumulative 
reward when starting from the state s, taking action a , and 
subsequently following the policy π. This is defined as.

 ( ), [ | , , ]t t tQ s a E R s s a aπ π= = =
 (9)

Here, tR  is the cumulative reward from the time step t  onward.
The state-value function ( )V sπ  is the expectation of the Q-value 

over all possible actions a  that could be  taken from the state s 
according to the policy π . It is defined as:

 ( ) ( ) ( )~ ,a sV s E Q s aπ π
π  =   

(10)

The optimal Q-function Q∗(s, a) can be  expressed in the 
following manner.

 ( ) ( ), max ,Q s a Q s aπ
π

∗ =  (11)

For optimal Q-function, the optimal state-value function ( )V s∗  is.

FIGURE 3

Proposed reinforcement learning architecture.
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 ( ) ( )max ,aV s Q s a∗ ∗=  (12)

We define the state-dependent action advantage function to measure 
how much better or worse taking a specific action a in state s is compared 
to the average expected outcome of being in that state. It is defined as.

 ( ) ( ) ( ), ,A s a Q s a V sπ π π= −  (13)

By subtracting ( )V sπ  from ( ),Q s aπ , we get ( ),A s aπ , which tells 
us how much better action a  is compared to the average action 
according to the policy π . We define the loss function to minimize the 
difference between the predicted Q-values and the target Q-values. 
We accumulate experience from every iteration, store it in a replay 
buffer, and then use these stored experiences to update the Q-network. 
The loss function is given as.
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This loss function represents the sum of squared 
errors between the target network’s predicted future reward and 
the Q-network’s predictions. The Q-network continues to 
improve as it updates its target network with new information 
over time. To address challenges associated with limited sample 
sizes and correlations between training samples, DQNs employ 
experience replay, enhancing data efficiency by reusing empirical 
samples across multiple updates. This method reduces variance 
and promotes uniform sampling from the replay buffer, thereby 
minimizing correlations among samples used during updates. 
The DQN algorithm steps are detailed in Algorithm 1.

3.3.2 Proposed PPO model
PPO (37) enhances a stochastic policy through iterative updates, 

employing a clipped surrogate objective to balance exploration and 
exploitation while ensuring stable learning. One of the key benefits of 
PPO is its ability to maximize exploration without significantly 
increasing the algorithm’s computational complexity. The policy is 
updated using the policy gradient theorem to enhance 
expected rewards.

In PPO, the agent comprises two main components: the actor and 
the critic. The actor’s role is to determine the optimal policy to 
maximize rewards based on the environment. The actions generated 
by the actor can be represented as.

 ( )~k ka sθπ  (15)

The critic module evaluates the agent’s actions by estimating the 
value function of the system’s state ( )kV sµ , which predicts the 
expected cumulative reward

 ( ) [ ]|k kV s R sµ =   (16)

PPO utilizes a modified objective function to iteratively improve 
the target function clipL  by clipping updates to keep the new policy 
close to the old one. This prevents large policy changes that could 
destabilize training. The update rule for the policy is given by.

 
( )1 , ~arg max , , ,

k

clip
k s a kL s aπθ

θ
θ θ θ+  =  

 
(17)

Here, ( ), , ,clip
kL s a θ θ represents the surrogate advantage 

function, which assesses the new policy’s performance relative to 
the old policy:
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Where ∈  is a (small) hyperparameter, which roughly says how far 
away the new policy is allowed to go from the old. The former policy is 
denoted by 

k
πθ  in the equation above, while the current policy is 

represented by .πθ  As a result, ( )a sπθ  represents the likelihood that 
states will behave according to the present policy. Moreover, ( ),kA s aπθ  
denotes the Advantage that is, the projected gain in the reward that is 
noticed when a state employs policy 

k
πθ  to do action a. The objective of 

the advantage function is to provide a relative measure of the goodness of 
an action, rather than an absolute value.

In this equation, ∈  is a hyperparameter that determines the allowable 
deviation of the new policy from the old one. The advantage function 

( ),kA s aπθ  serves to indicate the relative benefit of an action in a 
given state.

The objective function (L) and the ratio of the two distributions 
(r) are depicted in figures illustrating the PPO optimization process. 
When the advantage is positive, the updates encourage actions that 
yield higher rewards, while negative advantages drive the agent away 
from suboptimal actions. The implementation details of the PPO 
algorithm are outlined in Algorithm 2.

 ( ) ( ) ( ), ,A s a Q s a V sπ π π= −  (19)

There is another simplified version of this objective.
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Where ( ),Aδ ∈  is defined as.

 
( ) ( )

( )
1 0

,
1 0

A A
A

A A
∈

δ ∈
∈

 + ≥=  − <  
(21)

In the above equation, a positive benefit suggests that the agent 
took a wise course of action. Therefore, we would want the update to 
further inspire the choice of that course of action. But we do not want 
the update to be too big.

The objective function ( )L  and the ratio between the two 
distributions (r) are represented by the x and y axes, respectively, 
in Figure 4. The goal function’s value will be rA as long as r  is less 
than or equal to 1 ∈+ . Thus, in this instance, the ratio of 1 ∈+  

https://doi.org/10.3389/fmed.2025.1524286
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Shaikh et al. 10.3389/fmed.2025.1524286

Frontiers in Medicine 09 frontiersin.org

corresponds to the maximum of the objective function. Since 
we are choosing the minimum, 1-ρ does not matter, therefore 
even if rA is smaller than ( )1 ,rA∈+  it will not be clipped. This is 
because we  do not care if the update is too little. Whereas a 
negative advantage suggests that the agent acted improperly. 
Therefore, for the specified state, we want the update to make the 
agent less likely to do that action. Stated otherwise, the updates 
will be in the opposite direction as the goal function now has a 
negative value as shown in Figure 5. The objective function will 
have a value of ( )1 A∈+  as long as r is larger than or equal to 
( )1 .∈+  Thus, in this instance, the ratio of ( )1 ∈+ corresponds to 
the maximum of the objective function. The goal function’s value 
becomes increasingly negative as r rises above ( )1 .∈+ This 

indicates that a reduced number of policy changes will result 
from the update’s attempt to prevent it.

The implementation of the algorithm is shown in Algorithm 2.

ALGORITHM 1 Proposed DQN

ALGORITHM 2 Proposed PPO

4 Experimental setup

To address concerns about overfitting and data leakage, 
we implemented 5-fold cross-validation to ensure consistent model 
performance across different subsets of the data. In this approach, the 
dataset was split into five folds, where each fold served as both a 
training and testing set. This ensured that no single partition 
influenced the model’s performance evaluation. Our results 
consistently showed high accuracy across all folds, demonstrating that 
the model is generalizable and not overfitting to specific data subsets. 
To further prevent data leakage, we ensured strict separation of data 
preprocessing steps for training and testing. Feature selection and 
normalization were performed independently on the training and test 
sets to avoid any overlap that could artificially inflate performance 
metrics. The model’s consistent performance across validation folds 
validates the reliability of our results, confirming they were not 
impacted by data leakage. For the experimental setup, the 
CICIoMT2024 dataset was divided into three subsets: 70% for 
training, 10% for validation, and 20% for testing. The training 

FIGURE 5

PPO objective function with −ve advantage.

FIGURE 4

PPO objective function with +ve advantage.
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set  allowed the model to learn patterns from the data, while the 
validation set was used for hyperparameter tuning and performance 
monitoring to prevent overfitting. The test set, which remained unseen 
during training, was used for final evaluation to assess real-world 
performance. Additionally, to improve the model’s robustness and 
generalization, 5-fold cross-validation was employed. In this method, 
the dataset was divided into five equal subsets, and the model was 
trained on four folds while being tested on the remaining fold. This 
process was repeated for all five combinations, and the final 
performance metrics were averaged to reduce variance and ensure that 
the model’s performance was not biased by any specific data split.

4.1 Hyper optimization

In this study, hyperparameter tuning for the proposed HCLR-IDS 
was performed using a grid search approach. This method exhaustively 
searches through a predefined set of hyperparameters to identify the 
optimal configuration for the model. We tested various combinations 
of hyperparameters, including learning rate, batch size, dropout rate, 
and the number of CNN filters. For the reinforcement learning 
models, we also optimized the discount factor, exploration rate decay, 
and the number of training epochs. The goal was to strike a balance 
between model performance and computational efficiency. The 
rationale behind the selection of these hyperparameters is detailed in 
the Experimental Setup section.

Grid search is particularly effective for small search spaces, as it 
systematically evaluates all possible combinations of hyperparameters, 
ensuring that the best-performing set is identified. For the proposed 
HCLR-IDS, which integrates CNN and LSTM networks with Deep 
Q-Networks (DQN) and Proximal Policy Optimization (PPO), the 
following hyperparameters were tested:

 • CNN: Learning rate (0.001, 0.0001), number of filters (32, 64, 
128), kernel size (3×3, 5×5), dropout rate (0.2, 0.3), batch size 
(32), and epochs (100).

 • LSTM: Learning rate (0.001, 0.0001), number of units (64, 128, 
256), dropout rate (0.2, 0.3), batch size (32), and epochs (100).

 • DQN: Learning rate (0.001, 0.0001), discount factor (0.99, 0.95), 
exploration rate decay (0.995, 0.999), batch size (32), and 
epochs (100).

 • PPO: Learning rate (0.0003, 0.0001), clip range (0.1, 0.2), number of 
epochs for policy update (3, 5), batch size (32), and epochs (100).

These hyperparameters were selected to optimize the model’s 
performance while ensuring computational efficiency, thereby enhancing 
the robustness of intrusion detection in IoMT healthcare networks.

4.2 Software and hardware preliminaries

Our studies were carried out on a computer powered by an AMD 
Ryzen 53,600 CPU running at 4.2GHz, 128GB of RAM, and an Nvidia 
RTX 3060 Ti graphics card. To make use of the GPU’s processing 
capabilities, we used Nvidia CUDA version 11.3. The operating system 
was Windows 10 Pro, and the software stack included Python 3.10.0, 
TensorFlow 2.9.1 for deep learning, Scikit-learn 1.1.3 for machine 
learning tasks, Matplotlib 3.5.3 for data visualization. This 
combination of hardware and software provides the resources required 

to properly train, test, and analyze the deep learning models utilized 
in our study.

4.3 Model evaluation

The evaluation of classification models is essential for 
understanding their performance in real-world applications, 
particularly in complex domains like intrusion detection in Internet 
of Medical Things (IoMT) networks. In this study, we focus on several 
key metrics: accuracy, precision, recall (sensitivity), and F1 score. 
These metrics are derived from counts of True Positives (TP), True 
Negatives (TN), False Positives (FP), and False Negatives (FN), which 
are obtained from the confusion matrix. The confusion matrix 
provides a clear overview of how well the model is performing against 
each class. Mathematically, the evaluation metrics are defined 
as follows.

 
TP TNAccuracy

TP TN FP FN
+

=
+ + +  

(22)

 
TPPrecision

TP FP
=

+  
(23)
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+  
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Precision Recall

×
= ×

+  
(25)

The ROC curve visualizes the relationship between the true 
positive rate (TPR) and the false positive rate (FPR) across different 
threshold settings. The Area Under the Curve (AUC) quantifies the 
model’s ability to differentiate between classes. While there is not a 
single equation for the AUC, it is derived from the integral of the ROC 
curve, usually computed using numerical methods. Additionally, a 
confusion matrix is a valuable tool for assessing the performance of a 
classification model. It summarizes the counts of true positives (TP), 
true negatives (TN), false positives (FP), and false negatives (FN), 
providing a clear overview of the model’s predictive accuracy.

5 Results and discussion

The experimental results of our study are presented in Table 3 and 
illustrated in Figure  6, where we  compare various models using 
performance metrics such as accuracy, precision, recall, F1 score, and 
Area Under the Curve (AUC). Accuracy indicates the proportion of 
correctly classified samples, while recall assesses the model’s ability to 
identify positive samples. The F1 score provides a balance between 
precision and recall, while Figure  7 represents the AUC-ROC, 
highlighting the model’s classification capability. Together, these 
metrics offer a comprehensive evaluation of the models’ performance 
in intrusion detection.

The study utilized the CICIoMT2024 dataset, which comprises 
labeled network traffic data tailored for IoMT applications. To improve 
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the quality of the data for intrusion detection, several preprocessing 
steps were undertaken, including handling missing values, feature 
scaling using min-max normalization, and encoding categorical 
features. Additionally, the Mutual Information Feature Selection (MIFS) 
technique was applied to reduce the feature space from 42 to the most 
relevant 34 features. Table 3 summarizes the performance metrics of the 
proposed HCLR-IDS both before and after feature selection. Initially, 
the model achieved an accuracy of 69.73%, with precision, recall, and 
F1-score values of 56.80, 76.66, and 65.25%, respectively. After applying 
feature selection, the model demonstrated a significant improvement, 
achieving an accuracy of 99.58%, along with precision, recall, and 
F1-score values of 99.53, 99.83, and 99.57%, respectively.

MIFS was critical for this enhancement. Traditional intrusion 
detection methods often struggle with high-dimensional data, as they 
may fail to identify the most relevant features, resulting in lower 
performance and increased computational costs. By utilizing MIFS, 
we  were able to select only the most informative features that 
maximized the mutual information with the target variable (i.e., attack 
classes). This not only improved the accuracy of the model but also 
reduced the complexity and computational demands, making the 
system more efficient. The application of MIFS addressed the 
limitations of traditional methods by eliminating irrelevant or 
redundant features, which are often problematic in high-dimensional 
datasets. These traditional methods could either overlook critical 
patterns in the data or overfit to noise, leading to suboptimal detection 
performance. By applying MIFS, the model became more focused on 
the most pertinent features, leading to improved detection 

effectiveness and computational efficiency. This demonstrates how 
feature selection is essential for improving the performance of 
intrusion detection systems (IDS) in complex IoMT environments, 
where data quality and system efficiency are paramount.

Tables 4, 5 present the performance metrics of the proposed 
HCLR-IDS for binary and multiclass classification tasks, 
respectively. In binary classification (Table 4), HCLR-IDS achieves 
0.9958 accuracy, with perfect precision, recall, and F1-score for the 
attack class, demonstrating strong detection capabilities. For 
multiclass classification (Table 5), the model excels across various 
attack types, achieving an overall accuracy of 0.7773, with high 
precision and recall for many attack classes, showcasing its 
robustness in identifying diverse cyber threats. Figures 6, 7 display 
the confusion matrix visualizations for binary and multiclass 
classifications, respectively, providing a detailed view of the model’s 
performance for each class.

5.1 Ablation study on CICIoMT2024 dataset

Table 6 and Figure 8 presents the results of an ablation study 
conducted on the CICIoMT2024 dataset, evaluating the performance 
of various models, CNN-only, LSTM-only, Hybrid CNN-LSTM 
(without RL), Hybrid CNN-LSTM with DQN, and Hybrid 
CNN-LSTM with PPO. The performance metrics—accuracy, 
precision, recall, and F1-score demonstrate significant improvements 
as we progressively combine different model components.

TABLE 3 Proposed HCLR-IDS with and without features selection.

Model Accuracy Precision Recall F1-score

Before feature selection 0.6973 0.5680 0.7666 0.6525

After features selection 0.9958 0.9953 0.9983 0.9957

FIGURE 6

Confusion matrix of the proposed HCLR-IDS for binary classification.
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TABLE 4 Binary classification of the proposed HCLR-IDS.

Class Label Matric HCLR-IDS

Benign 0 Precision 0.9312

Recall 0.9127

F1-score 0.9247

Attack 1 Precision 1

Recall 1

F1-score 1

Accuracy 0.9958

Macro precision 0.9881

Macro recall 0.9821

Macro F1-score 0.9857

Weighted precision 0.9953

Weighted recall 0.9983

Weighted F1-score 0.9957

FIGURE 7

Confusion matrix of the proposed HCLR-IDS for multiclassification.
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The CNN-only model achieved an accuracy of 90.91%, but it 
struggled with false negatives, leading to a lower recall of 87.58%, 
highlighting its limitations in capturing temporal dependencies. 
In contrast, the LSTM-only model performed better, with 94.30% 
accuracy and 93.21% recall, as it excelled in recognizing 
sequential patterns. However, LSTM models lack the ability to 
capture spatial features, which are essential for intrusion 
detection in complex network traffic scenarios. The Hybrid 
CNN-LSTM model, which combines both spatial and temporal 
features, improved accuracy to 95.91% but lacked the adaptability 
required for real-time decision-making, which is critical for 
dynamic IoMT environments.

Incorporating Deep Q-Network (DQN) into the Hybrid 
CNN-LSTM model improved performance further, reaching 97.83% 
accuracy. DQN enabled adaptive learning from past experiences, 
optimizing decisions based on evolving network conditions. However, 
DQN models can be computationally intensive and require extensive 
training data, which can limit their real-time applicability. Finally, the 
Hybrid CNN-LSTM with PPO (HCLR-IDS) model achieved the best 
performance, with an impressive 99.58% accuracy, 99.53% precision, 
99.83% recall, and 99.57% F1-score. PPO improved decision-making 
stability, ensuring the model adapts efficiently to new data while 
preventing large policy updates that could destabilize learning. By 
combining CNN, LSTM, DQN, and PPO, HCLR-IDS captures both 

TABLE 5 Multiclassification of the proposed HCLR-IDS.

Class Accuracy Precision Recall F1-score

ARP_Spoofing 0.62 0.36 0.62 0.45

Benign 0.94 0.92 0.94 0.93

MQTT-DDoS-Connect_Flood 1.00 1.00 1.00 1.00

MQTT-DDoS-Publish_Flood 0.10 0.94 0.10 0.19

MQTT-DoS-Connect_Flood 0.96 1.00 0.96 0.98

MQTT-DoS-Publish_Flood 1.00 0.53 1.00 0.69

MQTT-Malformed_Data 0.38 0.98 0.38 0.55

Other_Attack 0.00 0.00 0.00 0.00

Recon-OS_Scan 0.04 0.71 0.04 0.08

Recon-Ping_Sweep 0.37 0.91 0.37 0.53

Recon-Port_Scan 0.97 0.84 0.97 0.90

TCP_IP-DDoS-ICMP 1.00 0.78 1.00 0.88

TCP_IP-DDoS-SYN 0.95 0.92 0.95 0.93

TCP_IP-DDoS-TCP 1.00 0.69 1.00 0.82

TCP_IP-DDoS-UDP 0.86 0.78 0.86 0.82

TCP_IP-DoS-ICMP 0.00 0.49 0.00 0.00

TCP_IP-DoS-SYN 0.85 0.91 0.85 0.88

TCP_IP-DoS-TCP 0.02 0.80 0.02 0.04

TCP_IP-DoS-UDP 0.37 0.49 0.37 0.42

Accuracy 0.7773

Macro precision 0.7386

Macro recall 0.6016

Macro F1-score 0.5829

Weighted precision 0.7602

Weighted recall 0.7773

Weighted F1-score 0.7247

TABLE 6 Ablation study on CICIoMT2024 dataset.

CNN LSTM CNN-
LSTM

DQN PPO HCLR-IDS Accuracy Precision Recall F1-score

✓      0.9091 0.9535 0.8758 0.9130

 ✓     0.9430 0.9331 0.9321 0.9211

✓ ✓ ✓    0.9591 0.9561 0.9482 0.9443

✓ ✓ ✓ ✓   0.9783 0.9752 0.9733 0.9672

✓ ✓ ✓ ✓ ✓ ✓ 0.9958 0.9953 0.9983 0.9957
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spatial and temporal features, provides adaptive learning, and 
maintains stable performance, making it the most effective model for 
intrusion detection in IoMT networks.

The ROC curve analysis in Figure 9 showcases the performance 
of multiple classifier models employed in the proposed Hybrid 
Convolutional and Reinforcement Learning Intrusion Detection 
System (HCLR-IDS) for IoMT networks. The HCLR-IDS model 
demonstrates the highest Area Under the Curve (AUC) value of 0.99, 
highlighting its superior ability to accurately distinguish between 
normal network traffic and various attack types. This outstanding 
performance underscores the effectiveness of the hybrid approach, 
which combines the spatial and temporal analysis capabilities of CNN 
and LSTM networks.

The CNN-LSTM-DQN model, which further integrates a Deep 
Q-Network (DQN) component, also exhibits strong classification 
performance with an AUC of 0.97. The integration of these diverse 
architectures, including CNN, LSTM, and DQN, enables the model to 
capture both spatial and temporal patterns in the network traffic data, 
as well as leverage reinforcement learning techniques for enhanced 
decision-making. The standalone CNN-LSTM model, without the 
DQN component, achieves an AUC of 0.95, underscoring the benefits 
of combining convolutional and recurrent neural networks to address 
the complex characteristics of IoMT network traffic.

The LSTM model, with an AUC of 0.93, demonstrates the 
importance of effectively modeling the temporal dependencies in the 
data, which is crucial for identifying intrusions that may manifest over 
time. In contrast, the CNN model, with the lowest AUC of 0.90, 
highlights the limitations of relying solely on spatial feature extraction 
without considering the temporal aspects of network traffic patterns. 
The comparative analysis of these ROC curves and AUC values 
provides valuable insights into the strengths and weaknesses of the 
various approaches, guiding the selection of the most suitable 
intrusion detection solution for IoMT.

5.2 Comparison of our proposed HCLR-IDS 
with previous approaches

Table 7 presents a comparative analysis of the performance of our 
proposed HCLR-IDS approach against several well-established 
techniques documented in the literature, evaluated on the 
CICIoMT2024 dataset. The results show that HCLR-IDS significantly 
outperforms all previous models, achieving 99.58% accuracy, 99.53% 
precision, 99.83% recall, and 99.57% F1-score. These metrics clearly 
highlight the superior effectiveness of our hybrid approach in 
detecting and classifying various cyberattacks, such as Distributed 
Denial of Service (DDoS) and spoofing.

In comparison to traditional models such as Logistic Regression 
(LR) from Ref. (30), which reports 99.5% accuracy, 94% precision, 
95.2% recall, and 94.6% F1-score, our model outperforms it across 
all metrics. While the LR model performs well, its performance is 
limited by its inherent simplicity and its reliance on linear 
relationships between features, which are insufficient for capturing 
the complex spatial and temporal patterns present in IoMT network 
traffic. In contrast, HCLR-IDS integrates CNN, LSTM, DQN, and 
PPO models, which allows it to extract both spatial and temporal 
features and adapt to changing patterns dynamically, enhancing its 
overall detection capability.

The Transformer and LSTM models from Ref. (38) show much 
lower results, with Transformer achieving only 79% accuracy and 
LSTM achieving 68% accuracy. These models suffer from limitations 
in capturing both spatial and temporal dependencies effectively. While 
LSTM is strong in sequential data processing, it struggles to account 
for spatial features essential in analyzing complex network traffic 
patterns. On the other hand, Transformers have difficulty processing 
the sequential nature of network traffic without the sequential and 
spatial interplay needed for high-performance intrusion detection in 
IoMT systems. Moreover, the MultiD-CNN model from Ref. (39)

FIGURE 8

Performance of models in CICIoMT2024 dataset.
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achieves a commendable accuracy of 96.72%, but HCLR-IDS still 
outperforms it. The MultiD-CNN model focuses on CNNs for spatial 
feature extraction but lacks the adaptive learning capabilities that 
DQN and PPO offer in HCLR-IDS. These reinforcement learning 
models allow HCLR-IDS to continuously adapt to new and evolving 
attack patterns, making it more resilient to the dynamic and real-time 
nature of IoMT networks.

Additionally, HCLR-IDS significantly outperforms CNN-based 
models such as the one in Ref. (40), which achieves 99.5% accuracy, 
99.5% precision, 99.5% recall, and 99.5% F1-score. While CNNs are 
effective for spatial feature extraction, they lack the temporal 
processing capabilities required for sequential IoMT data. In contrast, 
HCLR-IDS integrates LSTM and reinforcement learning to adapt to 
dynamic attack patterns over time, providing a comprehensive 

solution for real-time detection in IoMT environments. The LSTM 
model from Ref. (41), which reports 98.9% accuracy and high 
precision and recall, faces similar limitations. LSTM excels at 
processing sequential data but struggles with spatial feature extraction. 
HCLR-IDS addresses this limitation by incorporating CNN for spatial 
features, enhancing its overall performance. Furthermore, the 
Gradient Boosting Machine (GBM) model from Ref. (42) achieves 
97.8% accuracy, but as a traditional machine learning technique, it 
lacks the capacity for adaptive learning in the dynamic IoMT setting. 
Finally, Ensemble Learning (RF + SVM) from Ref. (43), with 98.2% 
accuracy, demonstrates strong performance but does not adapt as 
quickly to new attack patterns compared to HCLR-IDS, which 
leverages reinforcement learning to continuously learn and improve 
its detection capabilities.

FIGURE 9

ROC curves.

TABLE 7 Different methods on CICIoMT2024 dataset.

Article Techniques Accuracy Precision Recall F1-score

(30) LR 0.995 0.94 0.952 0.946

(38) Transformer 0.79 0.80 0.79 0.78

(39) MultiD-CNN 0.9672 0.9556 0.9665 0.9542

(40) CNN 0.9950 0.9950 0.9950 0.9950

(41) LSTM 0.989 0.99 0.988 0.989

(42) GBM 0.9780 0.979 0.978 0.978

(43) Ensemble Learning (RF+ SVM) 0.982 0.982 0.981 0.981

Our HCLR-IDS 0.9958 0.9953 0.9983 0.9957
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HCLR-IDS is specifically designed to address the challenges 
of real-time intrusion detection in IoMT healthcare 
environments, where high data volume, velocity, and evolving 
attack patterns can overwhelm traditional models. Its hybrid 
architecture, which combines deep learning for feature extraction 
and reinforcement learning for decision-making, allows it to 
capture both spatial and temporal features while adapting to new 
threats in real-time. CNN and LSTM excel at detecting complex 
attacks such as DDoS and spoofing, while DQN and PPO 
facilitate adaptive learning, enabling the system to improve 
detection accuracy over time. This results in low-latency 
processing, making HCLR-IDS particularly suitable for healthcare 
networks, where rapid response times are critical. The system 
integrates seamlessly with existing cybersecurity frameworks and 
can be deployed in distributed architectures across edge devices, 
ensuring scalability and real-time performance. By leveraging 
streaming data pipelines and hardware acceleration, HCLR-IDS 
efficiently processes high-throughput data, offering near-
instantaneous detection even in large-scale hospital networks.

6 Conclusion

In conclusion, the proposed HCLR-IDS system demonstrates 
exceptional performance in securing IoMT healthcare networks. 
The model achieves a binary classification accuracy of 0.9958%, 
significantly outperforming traditional Intrusion Detection 
Systems (IDS). This high accuracy showcases the system’s ability 
to effectively identify malicious activities and distinguish them 
from normal network traffic, which is crucial for real-time 
protection in sensitive healthcare environments. Additionally, 
HCLR-IDS excels in multi-class classification, attaining an 
accuracy of 0.7773% across 18 distinct attack classes. This result 
highlights the system’s capability to detect a wide range of 
evolving and complex attack patterns, making it adaptable to the 
dynamic threats faced by IoMT systems. Its performance in 
handling both binary and multi-class classification reinforces its 
versatility in addressing various intrusion scenarios, further 
validating its effectiveness in providing comprehensive protection 
for healthcare IoT systems.

Future work will focus on enhancing the model’s ability to detect 
zero-day attacks and exploring advanced techniques such as attention 
mechanisms and ensemble methods to improve detection accuracy 
and the model’s adaptability to new attack strategies.
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