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Objective: Acute liver failure (ALF) is a rare yet serious clinical syndrome. Recent 
studies have indicated that stem cells can effectively treat this condition. 
However, the optimal route for stem cell transplantation in the treatment of ALF 
remains unclear. This study aims to investigate the most effective transplantation 
route for stem cell therapy in ALF.

Methods: Human umbilical cord mesenchymal stem cells (hUC-MSCs) 
expressing both luciferase and green fluorescent protein were generated using 
a lentiviral vector. The hUC-MSCs were transplanted via the tail vein, portal vein, 
and abdominal cavity. The survival and distribution of the transplanted hUC-
MSCs in rats were assessed through in vivo imaging and immunofluorescence. 
Furthermore, the therapeutic effects of hUC-MSCs transplanted via different 
routes on ALF were compared.

Results: The survival time of hUC-MSCs transplanted via the tail vein and 
portal vein was shorter compared to those transplanted intraperitoneally. The 
distribution of hUC-MSCs varied by transplantation route: those injected via the 
tail vein and portal vein were primarily found in the lungs and liver, respectively, 
while intraperitoneally transplanted hUC-MSCs predominantly localized in the 
abdominal cavity. In ALF rats, hUC-MSCs transplanted via the tail vein and portal 
vein improved survival rates, enhanced liver pathology, and reduced levels of 
inflammatory cytokines in liver tissue. In contrast, abdominal transplantation of 
hUC-MSCs showed no significant therapeutic effect.

Conclusion: hUC-MSCs transplanted via the tail vein and portal vein exhibited 
similar therapeutic effects on ALF; however, abdominal transplantation of hUC-
MSCs showed no significant effect.
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Introduction

ALF is a syndrome marked by the rapid decline of liver function, with clinical 
manifestations such as jaundice, coagulopathy, and hepatic encephalopathy, occurring after 
acute injury in patients without pre-existing chronic liver disease (1). Severe ALF carries a 
mortality rate of up to 40–50% (2). Currently, liver transplantation is the most effective 
treatment for ALF; however, due to a shortage of donor organs and the high costs associated 
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with the procedure, only a limited number of patients are eligible for 
transplantation (3). Consequently, the search for new treatments for 
ALF remains a pressing clinical challenge. Stem cells have emerged as 
a promising new cell therapy, demonstrating potential in treating 
various diseases (4).

Stem cells possess self-replication capabilities, high proliferation 
rates, and the ability to differentiate into multiple cell types (5). Their 
therapeutic effects primarily stem from anti-inflammatory, anti-
apoptotic, and immunomodulatory properties, as well as the 
secretion of growth factors and tissue repair mechanisms (6–8). 
Research on stem cells in liver diseases has predominantly focused 
on liver failure and liver fibrosis, with most studies indicating their 
beneficial effects on these conditions (9, 10). However, the 
application of stem cells for liver disease treatment lacks standardized 
criteria regarding cell source, dosage, transplantation route, and 
treatment duration (11). This absence of uniform guidelines may 
contribute to inconsistent efficacy of stem cell therapies in liver 
diseases. The optimal route for stem cell transplantation in ALF 
treatment remains uncertain. Therefore, this study aims to investigate 
the most effective transplantation route by comparing the therapeutic 
effects of hUC-MSCs administered via different routes in a rat 
model of ALF.

Methods

Culture and identification of hUC-MSCs

In our study, the third-passage hUC-MSCs were obtained from 
Hui Rong Tong Chuang Biological Technology Ltd. The complete 
culture medium used for hUC-MSCs was Dulbecco’s Modified Eagle’s 
Medium (DMEM) supplemented with 10% fetal bovine serum (Gibco, 
United  States). The cells were incubated at 37°C in a 5% CO2 
atmosphere, with the culture medium changed every 3–4 days.

hUC-MSCs from passages 3 ~ 9 were used in experiments. The 
characterization of hUC-MSCs was based on their morphology, cell 
surface marker expression, and differentiation potential. Flow 
cytometry (BD Accuri™ C6) was employed to assess the expression 
of CD90, CD105, CD34, and CD45 in hUC-MSCs, using PE-labeled 
antibodies purchased from BD. The differentiation potential of 
hUC-MSCs was evaluated using adipogenic and osteogenic 
differentiation kits (Cyagen Biosciences Inc., China), following the 
manufacturer’s protocols. Adipogenesis was assessed using Oil Red O 
staining, while osteogenesis was evaluated with Alizarin Red staining.

hUC-MSCs luciferase labeling

Revive the cryopreserved third-passage hUC-MSCs and plate 
them when the cell confluency reaches 90%. Plate 1 × 105 hUC-MSCs 
per well in a 6-well plate 24 h prior to viral infection. Dilute the Firefly 
Luciferase Lentifect™ (GeneCopoeia, United States) suspension to a 
multiplicity of infection (MOI) of 100 in complete medium containing 
polybrene at a final concentration of 6 μg/mL, and add 1.5 mL of this 
solution to each well. Incubate the plate in a 5% CO2 atmosphere at 
37°C for 48 h, then transfer the cells to 10 cm culture dishes. Replace 
the old medium with fresh complete medium containing 1 μg/mL 
puromycin (Solarbio, China) daily until drug-resistant colonies 

emerge. Ultimately, the screened fifth-passage hUC-MSCs express 
luciferase and green fluorescent protein (GFP).

hUC-MSCs transplantation and in vivo 
imaging

Luciferase-labeled hUC-MSCs were injected via the tail vein, portal 
vein, and peritoneal cavity, with an injection dose of 3 × 104 cells/g and 
a concentration of 1 × 107 cells/mL. At 0, 12, 24, and 48 h post-
transplantation of hUC-MSCs, 150 mg/kg (15 mg/mL) of D-Luciferin 
potassium salt (Beyotime, China) was administered intraperitoneally. 
The fluorescence of the hUC-MSCs was then detected using the IVIS 
Spectrum 15 min after the D-Luciferin potassium salt injection.

Animal models

Male SD rats (weighting 160–180 g) were obtained from Chengdu 
Dossy Experimental Animals Co., Ltd. (Chengdu, China). The rats were 
housed in an animal laboratory with stable temperature and humidity, 
with unrestricted access to chow and water. An ALF model was 
established through a single intraperitoneal injection of 800 mg/kg 
D-galactosamine (Sigma, United States) and 20 μg/kg lipopolysaccharide 
(Sigma, United States). hUC-MSCs transplantation was conducted 2 h 
after D-GalN/LPS treatment, with 3 × 104 cells/g injected slowly over 3 
to 5 min. Outcomes were assessed by comparing the 24-h survival rate, 
transaminase levels, and liver histopathology in the ALF rats.

Biochemical analysis and HE staining

Blood samples were collected from each rat and centrifuged at 
3,000 rpm for 15 min (Thermo, Germany) to obtain serum. The 
concentrations of alanine aminotransferase (ALT) and aspartate 
aminotransferase (AST) were measured using an automated 
biochemical analyzer (Abbott, United States). Each liver sample was 
fixed in 4% paraformaldehyde for 24 h prior to histological analysis. 
Fixed liver samples were then cut into small pieces, dehydrated, 
paraffin-embedded, and sectioned into 5 μm thick slices. These 
sections were stained with hematoxylin and eosin for 
pathological assessment.

Real-time PCR analysis

Total RNA was extracted from liver tissue using the Trizol method 
(Invitrogen). Quantitative real-time PCR (qRT-PCR) was conducted 
using the LightCycler FastStart DNA Master PLUS SYBR Green I kit 
(Roche). The primer sequences (Table 1) specific to the target genes 
were synthesized by TSINGKE Biological Technology (Beijing, 
China). All samples were amplified in triplicate.

Statistical analysis

Data conforming to a normal distribution are presented as mean 
± standard deviation, while data that do not conform to a normal 
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distribution are expressed as median values. Categorical variables 
are reported as counts and percentages. Statistical analyses for 
normally distributed variables were performed using the t-test or 
analysis of variance (ANOVA), whereas the Mann–Whitney U test 
was applied for non-normally distributed variables and categorical 
variables. Statistical analyses were conducted using SPSS 17.0 
software, and a p-value of < 0.05 (two-tailed) was considered 
statistically significant.

Results

Identification and labeling of hUC-MSCs

Under normal culture conditions, hUC-MSCs adhered to 
plastic flasks, exhibiting clear cell morphology with either an 
epithelioid or spindle arrangement (Figure  1A). Following 
differentiation induced by a commercial stem cell osteoblast and 
adipocyte differentiation kit, hUC-MSCs were successfully induced 
to differentiate into osteoblasts and adipocytes (Figure 1B). The 
percentages of hUC-MSCs expressing the stem cell surface markers 
CD90 and CD105 were 99.9 and 98.4%, respectively, while the 
percentages of the negative surface markers CD34 and CD45 were 
2.5 and 2.4%, respectively (Figure 1C). Additionally, hUC-MSCs 
selected using puromycin expressed both luciferase and GFP 
proteins (Figure 1D).

Distribution and survival of hUC-MSCs 
transplanted via tail vein

Tail vein-injected hUC-MSCs rapidly accumulated in the lungs of 
rats, as observed through in vivo imaging. Following the injection of 
hUC-MSCs, the number of luciferase-labeled hUC-MSCs gradually 
decreased over time, with no detectable fluorescence signal at 48 h 
(Figures 2A,C). Immunofluorescence results corroborated the in vivo 
imaging findings, showing that GFP-labeled hUC-MSCs were 
primarily localized in the lungs, while no GFP-labeled hUC-MSCs 
were detected in the heart, liver, spleen, or kidneys (Figures 2B,D).

Distribution and survival of hUC-MSCs 
transplanted via portal vein

Portal vein-injected hUC-MSCs rapidly accumulated in the liver 
of rats, as observed through in vivo imaging. Following the injection 
of hUC-MSCs, the number of luciferase-labeled hUC-MSCs gradually 
decreased over time, with no detectable fluorescence signal at 48 h 
(Figures 3A,C). Immunofluorescence results were consistent with the 
in vivo imaging findings, indicating that GFP-labeled hUC-MSCs 
were primarily localized in the liver, with a small number also present 
in the lungs at 24 h. No fluorescence signals were detected in the heart, 
spleen, or kidneys (Figures 3B,D).

Distribution and survival of hUC-MSCs 
transplanted via abdominal cavity

Intraperitoneally injected hUC-MSCs accumulated in the 
abdominal cavity of rats, as observed through in  vivo imaging. 
Following the injection, the number of luciferase-labeled hUC-MSCs 
gradually decreased over time; however, fluorescence signals were still 
detectable at 48 h (Figures  4A,C). Immunofluorescence detection 
revealed no distribution of GFP-labeled hUC-MSCs in the heart, liver, 
spleen, lungs, or kidneys at any of the four time points assessed 
(Figure 4B).

Therapeutic evaluation of three routes of 
hUC-MSCs transplantation on ALF in rats

In the rat ALF model established by D-GalN/LPS, survival rates 
(survival/total) after 48 h post-injection of PBS, hUC-MSCs-TV, 
hUC-MSCs-PV, and hUC-MSCs-AC were 4/15 (26.7%), 11/15 
(73.3%), 10/15 (66.7%), and 6/15 (40%), respectively (Figure 5A). 
Liver function ALT/AST (IU/L) were 1,224 ± 108.9/1,909 ± 97.5, 
653.2 ± 39.9/942.5 ± 47.9, 703.7 ± 38.5/1064 ± 52.8 and 1,157 ± 
69.4/1,742 ± 66.3, respectively (Figure 5B). The main pathological 
changes observed in liver tissue included extensive hepatocyte 
necrosis, significant hepatic sinusoidal congestion, and 
widespread inflammatory cell infiltration in the ALF model. Both 
hUC-MSCs-TV and hUC-MSCs-PV improved the pathological 
changes of ALF, while hUC-MSCs-AC did not alleviate liver damage 
(Figure  5C). Additionally, quantitative PCR analysis of cytokine 
expression in liver tissue indicated that hUC-MSCs-TV and 
hUC-MSCs-PV significantly upregulated levels of IL-10 and HGF, 
while reducing levels of TGF-β, TNF-α, IL-1β, and IL-6 in ALF liver 
tissue. Although hUC-MSCs-AC reduced IL-6 expression, it had no 
significant effect on other cytokines (Figure 6). These results suggest 
that hUC-MSCs-TV and hUC-MSCs-PV exhibit similar therapeutic 
effects in treating ALF in rats, whereas hUC-MSCs-AC shows no 
significant benefit.

Discussion

ALF is a rare yet severe clinical syndrome characterized by an 
extremely high mortality rate. The primary etiologies of ALF include 
viral hepatitis and drug-induced liver injury (12). Liver transplantation 

TABLE 1 Primer sequence of inflammation-related factors.

Primer name 5′-primer sequence-3′

IL10-F CAGACCCACATGCTCCGAGA

IL10-R CAAGGCTTGGCAACCCAAGTA

HGF-F CATGAGAGAGGCGAGGAGAA

HGF-R AAGTCACCTTGCCTTGATGG

TGFβ-F ATACGCCTGAGTGGCTGTCT

TGFβ-R TTCTCTGTGGAGCTGAAGCA

TNFa-F GCTCCCTCTCATCAGTTCCA

TNFa-R GCTTGGTGGTTTGCTACGAC

IL-1β-F TACATCAGCACCTCTCAAGC

IL-1β-R AGATTCTTCTGTCGACAATGC

IL6-F CCAGTTGCCTTCTTGGGACT

IL6-R AGTCTCCTCTCCGGACTTGT
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is the most effective treatment for acute liver failure; however, its 
widespread application is hindered by a shortage of donor livers and 

the high costs associated with the procedure (13). The mechanism 
underlying ALF can be divided into two stages. In the first stage, 

FIGURE 1

Identification and labeling of hUC-MSCs. (A) Observation of hUC-MSCs morphology under an optical microscope; (B) Detection of adipogenesis and 
osteogenesis capacity of hUC-MSCs; (C) Analysis of hUC-MSCs surface markers by flow cytometry; (D) The expression of GFP protein and luciferase in 
hUC-MSCs was detected.

FIGURE 2

Distribution and survival of hUC-MSCs transplanted via tail vein. (A) The distribution and survival of hUC-MSCs transplanted via tail vein in rats were 
observed by in vivo imaging; (B) The distribution and survival of hUC-MSCs transplanted via tail vein in rats were observed by immunofluorescence; 
(C) Relative fluorescence intensity for in vivo imaging; (D) Relative fluorescence intensity of immunofluorescence.
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pathogens and toxins directly damage hepatocytes. In the second 
stage, the injured hepatocytes trigger excessive immune activation, 
resulting in immune-mediated liver damage (14). Therefore, 
eliminating pathogenic factors and inhibiting excessive immune 
activation are crucial components in the treatment of liver failure.

Stem cells have shown significant effects in a variety of liver 
diseases in vivo and in vitro (15, 16). Stem cells can be categorized 
into three main types: embryonic stem cells, adult stem cells, and 
induced pluripotent stem cells. Among these, mesenchymal stem cells 
(MSCs), a subtype of adult stem cells, are widely utilized in various 
applications (17). MSCs primarily contribute to disease treatment 

through tissue repair and immunomodulation, with 
immunomodulation being the most significant aspect (18). MSCs can 
inhibit the proliferation and activation of T cells, B cells, natural killer 
(NK) cells, and dendritic cells (DCs), thereby exerting an 
immunosuppressive effect (19). Consequently, MSCs may treat ALF 
by inhibiting over-activated immune responses. However, the optimal 
route for stem cell transplantation in the treatment of ALF remains 
unclear, making it crucial to select the most appropriate 
transplantation method.

In this study, the transplantation routes for stem cells included tail 
vein, portal vein, and intraperitoneal injection. Following the injection 

FIGURE 3

Distribution and survival of hUC-MSCs transplanted via portal vein. (A) The distribution and survival of hUC-MSCs transplanted via portal vein in rats 
were observed by in vivo imaging; (B) The distribution and survival of hUC-MSCs transplanted via portal vein in rats were observed by 
immunofluorescence; (C) Relative fluorescence intensity for in vivo imaging; (D) Relative fluorescence intensity of immunofluorescence.

FIGURE 4

Distribution and survival of hUC-MSCs transplanted via abdominal cavity. (A) The distribution and survival of hUC-MSCs transplanted via abdominal 
cavity in rats were observed by in vivo imaging; (B) The distribution and survival of hUC-MSCs transplanted via abdominal cavity in rats were observed 
by immunofluorescence; (C) Relative fluorescence intensity for in vivo imaging.
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of hUC-MSCs via the tail vein and portal vein, the number of 
luciferase-labeled hUC-MSCs gradually decreased over time, with no 
detectable fluorescence signal observed after 48 h. In contrast, after 
intraperitoneal injection, while the luciferase-labeled hUC-MSCs also 
showed a gradual decline, fluorescence signals were still detectable at 
48 h. These findings suggest that the survival time of hUC-MSCs 
transplanted via the tail and portal veins is shorter compared to those 
administered intraperitoneally. Additionally, most transplanted 
hUC-MSCs in rats were cleared within 24 h post-injection. This is 
consistent with previous studies indicating that MSCs injected 
through the tail vein in mice can be rapidly cleared within 24–48 h 
(20, 21). The in vivo clearance rate of MSCs needs to be considered 
when using MSCs to treat diseases.

The biodistribution of stem cells is largely influenced by the 
route of transplantation. Following tail vein transplantation, 
GFP-labeled hUC-MSCs were predominantly found in the lungs, 
with no detectable fluorescence signals in the liver, heart, spleen, or 
kidneys. In contrast, after portal vein transplantation, GFP-labeled 
hUC-MSCs were primarily distributed in the liver, with no 
fluorescence observed in the lungs, heart, spleen, or kidneys. 
Additionally, after intraperitoneal transplantation of GFP-labeled 
hUC-MSCs, no fluorescence signals were detected in the heart, liver, 
spleen, lungs, or kidneys. These findings suggest that stem cells 
injected peripherally via the intravenous route tend to be trapped in 
the lungs, with only a small fraction reaching other organs (22–24). 
However, portal vein transplantation allows the majority of stem 

cells to reside in the liver, which may be beneficial for stem cell 
treatment of liver diseases.

It remains unclear whether the route of stem cell transplantation 
influences the outcomes of ALF. To address this, we compared the 
efficacy of hUC-MSCs transplanted via the tail vein, portal vein, and 
abdominal cavity in a D-GalN/LPS-induced ALF model in rats. The 
data indicate that both hUC-MSCs administered via the tail vein 
(hUC-MSCs-TV) and portal vein (hUC-MSCs-PV) exhibit similar 
therapeutic effects in treating ALF, while hUC-MSCs delivered via the 
abdominal cavity (hUC-MSCs-AC) showed no significant impact. 
Importantly, the biodistribution of hUC-MSCs in the lungs or liver 
did not correlate with the efficacy in ALF treatment, suggesting that 
the therapeutic effects of hUC-MSCs are systemic rather than 
localized. Similarly, Zheng et  al. demonstrated that hUC-MSC 
transplantation via the tail vein has comparable therapeutic efficacy to 
intrahepatic injection (25). Sun et al. demonstrated that bone marrow-
derived mesenchymal stem cells (BMSCs) have comparable effects on 
ALF when transplanted via the hepatic artery, caudal vein, or portal 
vein, while intraperitoneal transplantation showed no significant 
impact (26). Although hUC-MSCs transplanted via the tail vein and 
portal vein exhibit similar efficacy in treating ALF, portal vein 
transplantation is more invasive; therefore, the tail vein transplantation 
is more recommended (Figure 7).

Currently, the transplantation routes of MSCs to treat diseases 
are mainly divided into local and systematic ways (27). Local 
transplantation is the direct transfer of MSCs into the lesion, usually 

FIGURE 5

Therapeutic evaluation of three routes of hUC-MSCs transplantation on ALF in rats. (A) Survival curves of different hUC-MSCs treatment groups; 
(B) Serum ALT and AST levels of rats in different treatment groups; (C) HE and Tunel staining were used to observe the pathological changes of liver 
tissue. *p < 0.05; **p < 0.01; ***p < 0.001; NC: normal control; ALF: acute liver failure; hUC-MSCs-TV: hUC-MSCs transplanted via tail vein; hUC-MSCs-
PV: hUC-MSCs transplanted via portal vein; hUC-MSCs-AC: hUC-MSCs transplanted via abdominal cavity.
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FIGURE 6

Detection of the expression of inflammation-related factors in liver tissue by Q-PCR. *p < 0.05; **p < 0.01; ***p < 0.001; NC: normal control; ALF: 
acute liver failure; hUC-MSCs-TV: hUC-MSCs transplanted via tail vein; hUC-MSCs-PV: hUC-MSCs transplanted via portal vein; hUC-MSCs-AC: hUC-
MSCs transplanted via abdominal cavity.

FIGURE 7

Stem cell transplantation via the portal vein, tail vein, and abdominal cavity for the treatment of liver failure. hUC-MSCs-TV and hUC-MSCs-PV have 
similar effects in the treatment of ALF in rats, but hUC-MSCs-AC has no obvious effect. Although hUC-MSCs transplanted via the tail vein and portal 
vein exhibit similar efficacy in treating ALF, portal vein transplantation is more invasive; therefore, the tail vein transplantation is more recommended.
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used for the treatment of myocardial infarction, osteoarthritis, and 
spinal cord injury (28). The systemic transplantation, which involves 
the transfer of MSCs through the bloodstream, is the most 
commonly used method. In this study, portal vein and tail vein 
transplantation of hUC-MSCs is a systematic way, while 
intraperitoneal injection is similar to local transplantation. MSCs 
exert their therapeutic effects primarily through directed 
differentiation to repair damaged tissues, secretion of reparative 
factors, and immune modulation (10, 29). However, many studies 
have shown that transplanted MSCs are difficult to repair damaged 
organs through differentiation (30). Therefore, the therapeutic effect 
of MSCs is mainly exerted by secreting cytokines, growth factors, 
chemokines and extracellular vesicles (31). In the treatment of ALF, 
both portal vein and tail vein transplantation are systemic 
approaches. hUC-MSCs delivered via the portal vein route can reach 
the liver more effectively, but there is no significant difference in 
therapeutic efficacy between the two transplantation pathways. The 
reason for this phenomenon may be that hUC-MSCs transplanted 
from portal vein and tail vein exert systemic therapeutic effects by 
secreting factors. The lack of therapeutic efficacy of intraperitoneally 
transplanted hUC-MSCs in ALF may be attributed to two factors: 
the intraperitoneal microenvironment potentially compromising the 
secretory function of hUC-MSCs, and the inability of hUC-MSCs-
derived factors (e.g., exosomes) to penetrate the peritoneal barrier 
into the systemic circulation. Therefore, systemic transplantation is 
the best way to treat ALF with hUC-MSCs, especially through tail 
vein transplantation.

Conclusion

hUC-MSCs-TV and hUC-MSCs-PV have similar effects in the 
treatment of ALF in rats, but hUC-MSCs-AC has no obvious effect. 
Although hUC-MSCs transplanted from the tail vein and portal vein 
have similar efficacy in liver failure, tail vein transplantation is 
more recommended.
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