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Objective: This research aimed to create a dataset of Iliac CTV scans for 
automated May-Thurner syndrome (MTS) detection using deep learning and 
radiomics. In addition, it sought to establish an automated segmentation model 
for Iliac Vein CTV scans and construct a radiomic signature for MTS diagnosis.

Methods: We collected a dataset of 490 cases meeting specific inclusion and 
exclusion criteria, anonymized to comply with HIPAA regulations. Iliac Vein 
CTV scans were prepared with contrast agent administration, followed by 
image acquisition and evaluation. A deep learning-based segmentation model, 
UPerNet, was employed using 10-fold cross-validation. Radiomic features were 
extracted from the scans and used to construct a diagnostic radiomic signature. 
Statistical analysis, including Dice values and ROC analysis, was conducted to 
evaluate segmentation and diagnostic performance.

Results: The dataset consisted of 201 positive cases of MTS and 289 negative 
cases. The UPerNet segmentation model exhibited remarkable accuracy in 
identifying MTS regions. A Dice coefficient of 0.925 (95% confidence interval: 
0.875–0.961) was observed, indicating the precision and reliability of our 
segmentation model. Radiomic analysis produced a diagnostic radiomic signature 
with significant clinical potential. ROC analysis demonstrated promising results, 
underscoring the efficacy of the developed model in distinguishing MTS cases. 
The radiomic signature demonstrated strong diagnostic capabilities for MTS. 
Within the training dataset, it attained a notable area under the curve (AUC) of 
0.891, with a 95% confidence interval ranging from 0.825 to 0.956, showcasing 
its effectiveness. This diagnostic capability extended to the validation dataset, 
where the AUC remained strong at 0.892 (95% confidence interval: 0.793–
0.991). These results highlight the accuracy of our segmentation model and the 
diagnostic value of our radiomic signature in identifying MTS cases.

Conclusion: This study presents a comprehensive approach to automate MTS 
detection from Iliac CTV scans, combining deep learning and radiomics. The 
results suggest the potential clinical utility of the developed model in diagnosing 
MTS, offering a non-invasive and efficient alternative to traditional methods.
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Introduction

May-Thurner syndrome (MTS), also known as iliac vein 
compression syndrome, is a condition that frequently goes 
underdiagnosed. This syndrome is associated with significant 
morbidity, predominantly due to its correlation with deep vein 
thrombosis (DVT), especially in the left lower extremity (1). The 
pathophysiological basis involves the compression of the left common 
iliac vein by the overriding right common iliac artery, first described 
in cadaveric studies by May and Thurner (2). This physiological 
condition is characterized by the compression of the left common iliac 
vein caused by the encroaching right common iliac artery, resulting in 
a disruption of the normal venous return from the lower limbs. 
Consequently, this disorder heightens the risk of venous stasis and the 
development of thrombi in affected individuals (3, 4).

Diagnosing MTS can be challenging due to its nonspecific clinical 
manifestations, which can range from asymptomatic cases to chronic 
leg physiology pain, physiology swelling, and severe DVT (5). 
Diagnostic challenges arise from dual aspects: ① clinical ambiguity 
with 22%–33% asymptomatic presentations (6), and ② fundamental 
limitations of conventional imaging modalities. While Doppler 
ultrasound demonstrates ≤68% sensitivity for pelvic vein assessment 
(acoustic shadowing artifacts impede 84% examinations) (7, 8). 
Traditional diagnostic methods like Doppler ultrasound have 
limitations in visualizing the pelvic veins where the compression 
occurs (9). Computed Tomography Venography (CTV) has become 
an essential instrument in the diagnosis and evaluation of MTS, 
providing enhanced visualization of venous anatomy (10). Computed 
Tomography Venography (CTV) stands out for its ability to provide 
precise anatomical details essential for identifying the location and 
extent of venous compression and collateral pathways. This 
information is crucial for developing a comprehensive treatment plan 
(11). CTV’s capability to produce high-resolution cross-sectional 
images is invaluable in clinical practice, This not only aids in the 
diagnosis of iliac vein compression but also allows for the identification 
of simultaneous conditions that may influence the selected treatment 
strategy. Including Deep Vein Thrombosis (DVT) and other 
anatomical abnormalities (12–14).

Literature review

Current diagnostic methodologies for MTS detection have 
evolved through three distinct technological phases. Traditional 
imaging modalities including Doppler ultrasound and CT venography, 
while clinically valuable, exhibit well-documented limitations in pelvic 
venous assessment. Specifically, Doppler ultrasound demonstrates 
≤68% sensitivity for iliac vein evaluation due to acoustic shadowing 
artifacts that impede 84% of examinations, while CTV, despite 
achieving 0.6 mm isotropic resolution, suffers from inter-observer 
variability (κ = 0.42–0.57) and metal artifact interference in 38% of 
prostheses-bearing patients (15).

The emergence of deep learning (DL) in vascular imaging has 
introduced novel analytical paradigms. Convolutional Neural 
Networks (CNNs) have demonstrated particular efficacy in vascular 
anomaly detection, with U-Net architectures achieving 89% 
segmentation accuracy in iliac vessel identification (16). However, 
current implementations predominantly focus on thrombus detection 

rather than anatomical compression analysis—ResNet-50 models 
attained 0.91 AUC for DVT classification but showed limited 
performance (AUC = 0.76) in distinguishing compression etiologies 
(17, 18). This performance gap highlights the need for MTS-specific 
architectural adaptations.

Parallel developments in radiomics present complementary 
opportunities. Radiomic signature analysis of iliac venous structures 
has enabled quantitative characterization of compression patterns, 
with a recent multicenter study identifying 12 texture features 
significantly correlated (p < 0.01) with hemodynamically significant 
MTS (19). When integrated with CNN-based anatomical 
segmentation, hybrid models have shown 15% improvement in 
stenosis grading accuracy compared to standalone approaches. 
Nevertheless, existing radiomic studies frequently neglect dynamic 
flow parameters crucial for MTS hemodynamic assessment.

Current limitations in the field are threefold: ① Insufficient 
integration of spatial–temporal features in DL architectures for 
compression analysis; ② Lack of standardized radiomic pipelines for 
venous collateral network quantification; ③ Inadequate validation on 
heterogeneous patient cohorts, particularly for post-thrombotic MTS 
variants. Recent systematic reviews indicate that 73% of vascular DL 
studies utilize single-center datasets with limited generalizability, 
while 68% of radiomic MTS investigations employ retrospective 
designs without external validation. These methodological 
shortcomings underscore the necessity for our proposed multimodal 
approach combining optimized CNN architectures with 
hemodynamic-aware radiomic analysis.

Interpreting Computed Tomography Venography (CTV) is a 
complex task that demands expertise, especially in distinguishing 
between normal anatomical variations and pathological findings 
associated with conditions like MTS (20). Radiologists play a pivotal 
role in ensuring accurate interpretation. One challenge with CTV is 
the time-intensive manual assessment of images, which could 
potentially lead to delays in diagnosing conditions, especially in 
urgent situations (21). Current Computerized Tomography 
Venography (CTV) techniques, though achieving 0.6 mm isotropic 
resolution, still suffer from ① inter-observer variability (κ = 0.42–
0.57), and ② metal artifact interference reducing diagnostic confidence 
in 38% prostheses-bearing patients. Finding ways to streamline this 
process is essential for improving efficiency. Additionally, the use of 
intravenous contrast during CTV presents certain risks to specific 
patient populations. Thus, optimizing both the imaging techniques 
and interpretation methodologies is crucial to minimize potential 
complications (22).

To address these challenges, the implementation of deep learning 
(DL) techniques in the field of medical imaging has attracted 
considerable attention, owing to their ability to enhance the detection 
and evaluation of MTS through the examination of Computerized 
Tomography Volumetrics (CTV) (23). Deep learning models, 
particularly Convolutional Neural Networks (CNNs), have shown 
considerable potential in the domains of image identification and 
categorization (24). They have the ability to recognize complex 
patterns within imaging data, which enhances the consistency and 
speed of image analysis (25).

By harnessing extensive datasets containing annotated Computed 
Tomography Venography (CTV) images, deep learning (DL) 
algorithms can be trained to identify subtle and intricate characteristics 
linked to MTS. This approach holds the potential to surpass the 
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diagnostic accuracy of even experienced radiologists (26). Moreover, 
DL techniques offer the capability to quantify venous compression and 
assess the hemodynamic significance of identified lesions, thereby 
providing valuable insights for decision-making in interventional 
treatments like stenting (27, 28). The application of DL in the 
interpretation of CTV images for MTS represents a burgeoning field 
with the potential to significantly impact patient care. Accurate and 
efficient DL-based diagnostic tools could lead to earlier and more 
precise interventions, ultimately improving patient outcomes (29). 
However, realizing this potential necessitates addressing challenges 
related to dataset curation, algorithm training and validation, 
integration into clinical workflows, and addressing concerns related 
to patient privacy and algorithm transparency (30, 31).

The future of MTS management is poised for transformation as 
advancements in deep learning provide new avenues for enhancing 
the utility of CTV. Through interdisciplinary collaboration, the 
convergence of radiology, vascular medicine, and artificial intelligence 
can herald a new era in the diagnosis and treatment of MTS, turning 
the tides against this elusive vascular syndrome (32, 33).

Data collection

The study aimed to create a dataset of Iliac CTV scans for the 
automated detection of MTS using deep learning and radiomics. The 
dataset used in this study is representative of diverse patient 
populations, including individuals across different age groups 
(18–85 years) and genders (52% female, 48% male). While MTS is 
more prevalent in females, particularly in the 20–50 age group, our 
gender distribution reflects the inclusion of both primary MTS cases 
and secondary cases associated with conditions like deep vein 
thrombosis (DVT), which can affect both genders. Data were collected 
from multiple clinical settings, such as tertiary care hospitals and 
community clinics, to ensure variability in clinical presentations and 
imaging protocols. This diversity enhances the generalizability of our 
findings and supports the applicability of the proposed methodology 
to a broad spectrum of patients with MTS. The inclusion and exclusion 
criteria were designed to ensure that the selected cases were relevant 
to the research objectives while excluding cases with potential 
confounding factors or data quality issues. In the Algorithmic 
Investigation for Automated Detection of May-Thurner syndrome 

from Iliac CTV imaging via Deep Learning and Radiomics, the 
criteria for including and excluding participants in the study 
population were outlined as follows.

Inclusion Criteria:
 1. Individuals for whom Iliac Computed Tomography 

Venography (CTV) scans are accessible.
 2. Patients who underwent Digital Subtraction Angiography 

(DSA) performed by experienced chief physicians to confirm 
the presence of MTS or not.

 3. Cases without artifacts or image quality issues in the Iliac CTV 
scans do not affect the analysis.

Exclusion Criteria:
 1. Patients without available Iliac CTV scans.
 2. Patients who did not undergo DSA surgery for 

MTS confirmation.
 3. Cases with incomplete or inadequate data.
 4. Cases with contraindications to the imaging procedures.
 5. Cases with artifacts or image quality issues in the Iliac CTV 

scans that could affect the analysis.

Figure 1A demonstrates an example of a left iliac vein meeting 
image quality criteria with optimal contrast filling and no artifacts, 
while Figures 1B,C illustrate excluded cases due to incomplete contrast 
opacification or imaging artifacts that could compromise algorithmic 
training. Figure 1D represents a post-iliac vein stenting case, which 
was also excluded from the study cohort in accordance with our 
exclusion criteria.

A database of left iliac CTV scans was collected from the CT/MRI 
department, anonymized to comply with HIPAA regulations, and 
labeled by experienced radiologists to indicate the presence or absence 
of MTS. It’s important to note that all patients underwent Digital 
Subtraction Angiography (DSA) surgery performed by experienced 
physicians, and DSA was considered the gold standard for confirming 
the presence of MTS. This dataset comprises a total of 490 cases, with 
201 cases showing positive results for MTS and 289 cases with 
negative results.

The scanning protocol for Iliac Vein CT Venography (CTV) 
involves several important steps. Firstly, patient preparation is crucial, 
including ensuring the patient is well-hydrated, obtaining informed 

FIGURE 1

Representative CTV cases: (A) Included scan meeting criteria (complete contrast, no artifacts); (B,C) Excluded cases; (D) Post-stent exclusion.
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consent, and checking for medical history and contrast agent 
allergies. Following the preparatory procedures, the patient is 
positioned supine on the table of the CT scanner. An intravenous 
administration of a contrast agent is then performed using a power 
injector, delivering the medium at a rate of 3 to 4 mL per second, 
generally utilizing a non-ionic iodinated contrast substance. The 
choice of scanner is typically a Multidetector CT (MDCT) for 
CTV. Specific scanner parameters are set to achieve high-quality 
images. The parameters established for the imaging protocol consist 
of a slice thickness that ranges from 1 to 2 mm. The imaging 
technique captures the entire length of the iliac vein, from the 
common iliac vein through to the femoral vein. In general practice, 
the tube voltage is fixed at 120 kV, whereas the tube current is 
adjusted based on the individual’s physical attributes, typically falling 
between 200 and 300 mA. To ensure effective data collection, a pitch 
between 0.75 and 1.5 is employed, and a reconstruction interval of 
1 mm is utilized to achieve images of superior quality. The scan delay 
is determined to ensure optimal timing for image acquisition, usually 
occurring around 20–30 s after contrast injection. The subsequent 
steps in post-processing encompass multi-planar reformatting (MPR) 
and maximum intensity projection (MIP), which facilitate the 
visualization of the iliac veins from various angles, and both arterial 
and venous phase images are acquired for comprehensive 
visualization. Finally, the acquired images are carefully evaluated for 
any venous pathology or abnormalities, such as deep vein thrombosis 
(DVT) or compression syndromes. As shown in Figure 2, we present 
the CTV images from our research dataset  along with their 
manifestations in DSA. We separately display the appearances of 
MTS-positive CTV and DSA.

Segmentation of iliac vein in CTV

The dataset underwent several preprocessing steps to ensure 
consistency and enhance model performance. First, all Computed 
Tomography Venography (CTV) images were resampled to a uniform 
voxel size of 0.6 mm3 to standardize spatial resolution across scans. 
Image normalization was performed by scaling the intensity values to 
a range of [0, 1] using min-max normalization, which reduces 

variability in pixel intensity due to differences in imaging protocols. 
To address class imbalance in the dataset, we  applied data 
augmentation techniques, including random rotations (±10°), 
horizontal and vertical flips, and slight translations (±5% of image 
dimensions). These augmentations were applied only to the training 
set to increase its diversity and improve model generalization. 
Additionally, regions of interest (ROIs) containing the iliac veins and 
surrounding structures were manually annotated by experienced 
radiologists to provide ground truth labels for model training 
and evaluation.

The 10-fold cross-validation method is employed to both train 
and assess the performance of our deep learning-driven automatic 
vein segmentation algorithm. After 10-fold cross-validation, each 
case obtains a segmentation result from a deep learning model. 
We  juxtapose these findings against the manual segmentation 
outcomes provided by seasoned medical professionals. Furthermore, 
we compute various segmentation performance evaluation metrics 
to gauge the efficacy of the model’s segmentation capabilities. 
Subsequently, this segmentation data is employed to construct a 
radiomics model aimed at identifying the presence of 
MTS syndrome.

The initial phase of the conversion procedure involved the 
conversion of Digital Imaging and Communications in Medicine 
(DICOM) files, sourced from a PACS batch, into the NIFTI 
format. Under a rigorous multi-stage annotation protocol, all left 
iliac vein structures were meticulously delineated using ITK-SNAP 
software (version 4.0.0). This critical annotation process was 
conducted through collaborative verification by three senior 
attending physicians (with over 10 years of vascular imaging 
experience) and one biomedical engineer, with final annotations 
requiring unanimous approval from all three physicians to ensure 
maximal inter-observer consistency. Technical specifications 
included: (1) Optimized visualization parameters set at a window 
width of 350 Hounsfield units (HU) and window level of 60 HU; 
(2) Systematic removal of osseous components through multi-
planar reconstruction analysis to establish gold-standard 
references for segmentation model training. This consensus-
driven annotation framework significantly reduced intra- and 
inter-operator variability (achieving Dice similarity coefficients > 
0.95  in validation tests), thereby enhancing the anatomical 

FIGURE 2

(A) Represents a visual output obtained from Digital Subtraction Angiography (DSA) and also the gold standard for our experimental grouping, 
indicating that the patient’s iliac vein is almost occluded. (B,C) The axial and coronal images of CTV, respectively. (D) 3D reconstruction of the iliac vein.
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accuracy and clinical reliability of the subsequent automated 
segmentation models.

Image segmentation serves as a fundamental aspect of computer 
vision, entailing the division of images into significant segments that 
align with different objects or areas of interest. The UPerNet 
architecture tackles the intricacies associated with semantic 

segmentation by seamlessly combining multi-scale features and 
leveraging contextual information to enhance the accuracy of 
segmentation (34).

The detailed depiction of the segmentation model is illustrated in 
Figure 3. The UPerNet framework consists of three primary elements: 
(1) a Feature Pyramid Network (FPN) designed for the extraction of 

FIGURE 3

The procedure for both training and validating the UPerNet model aimed at segmentation is outlined, subsequently leading to the development and 
assessment of a radiomic signature for the diagnosis of MTS. The terms used include LASSO, this refers to various methodologies utilized in statistical 
analysis and machine learning: LASSO, which denotes the least absolute shrinkage and selection operator; mRMR, signifying minimum redundancy 
maximum relevance; ROC, representing receiver operating characteristic; and SHAP, which is an acronym for SHapley Additive exPlanations.
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features across multiple scales, (2) a Global Aggregation Module 
(GAM) designed to improve contextual understanding, and (3) a 
Perceptual Enhancement Module (PEM) focused on the enhancement 
of features.

The FPN module operates through a dual-pathway system 
that integrates both bottom-up and top-down processes, enabling 
the network to capture features across different scales. This dual 
mechanism allows for the merging of detailed nuances with 
broader contextual elements, making the FPN essential for 
effectively managing objects of diverse sizes while maintaining 
spatial coherence.

The Global Attention Module (GAM) enhances UPerNet’s 
capacity to extract extensive contextual dependencies by integrating 
information across multiple scales. By employing global context 
pooling and convolutional operations, the network is equipped to 
identify complex relationships among various parts of an image. This 
component serves as a critical tool for achieving precise segmentation 
within complicated scenes, thereby playing a pivotal role in the overall 
effectiveness of UPerNet.

The Perceptual Enhancement Module (PEM) acts as a pivotal 
platform for the enhancement of features and the enrichment of 
semantic content. Drawing inspiration from the mechanisms 
underlying human visual perception, the PEM incorporates perceptual 
loss functions that effectively steer the training pathway of the 
network. By ensuring that the features obtained are in harmony with 
human perceptual evaluations, the module significantly enhances 
UPerNet’s ability to generate segmentation results that are semantically 
coherent and meaningful.

The application of Focal Loss in the training of segmentation 
models presents an effective approach to tackle the issue of class 
imbalance while simultaneously improving boundary precision. By 
adaptively modifying the contributions of loss according to the 
confidence of predictions, Focal Loss directs the network’s attention 
toward more difficult areas, resulting in enhanced segmentation 
outcomes. The positive outcomes observed across diverse datasets 
underscore the potential of Focal Loss to elevate the state-of-the-art 
in image segmentation (35).

Training process of segmentation model

The study utilized an NVIDIA RTX A5000 graphics processing 
unit, which possesses a memory capacity of 24 GB. For the software 
environment, Python version 3.6 was implemented, supplemented by 
libraries including Pytorch 0.4.1, OpenCV, Numpy, and 
SimpleITK. The input data comprised thin-layer computed 
tomography (CT) images and the corresponding labels (36). The 
outcome achieved was a segmented representation of the iliac vein in 
CTV. In the initial stages of training, a batch size comprising 16 
images was employed for every iteration, and the learning rate was 
adjusted to 10−4, with a cumulative total of 200 training epochs.

Evaluation of segmentation performance

The objective assessment approach utilized the Dice coefficient 
from the test dataset to evaluate the performance of the 
segmentation model.

 
( ) 2 | A B |Dice A,B

| A | | B |
∩

=
+

To assess the segmentation performance through subjective 
evaluation, a 10-fold cross-validation method was employed, and the 
model that had been trained was subsequently utilized to forecast the 
data pertaining to the remaining cases.

Radiomic feature extraction

A stratified random sampling method was employed to 
distinguish between the MTS and non-MTS cohorts. The cases were 
allocated proportionally into a training dataset and an external 
validation dataset at a ratio of 7:3. A total of 1,794 distinct features 
were extracted utilizing the PyRadiomics framework, which can 
be broadly classified into several categories: first-order features, shape 
descriptors, and various texture matrices, including the Gray Level 
Co-occurrence Matrix (GLCM), Gray Level Size Zone Matrix 
(GLSZM), Gray Level Run Length Matrix (GLRLM), Neighboring 
Gray Tone Difference Matrix (NGTD), and Gray Level Dependence 
Matrix (GLDM). The filtering parameters applied encompassed 
wavelet transformations, Laplacian of Gaussian (LoG), Square, Square 
Root, logarithmic, exponential, gradient, along with Local Binary 
Pattern in two dimensions (LBP2D) and three dimensions (LBP3D). 
The bin width was established at 25, and the resampled voxel 
dimensions were set to 3 × 3 × 3. For the LoG filter, the kernel sizes 
ranged from 1 to 5.

Radiomic feature selection and radiomic 
signature construction

The characteristic derived from radiomic analysis dataset was 
subjected to a preprocessing phase, during which outliers and missing 
values were substituted with the median. This was subsequently 
accompanied by standardization of the data to mitigate the effects of 
dimensionality. Furthermore, we employed the minimum-redundancy 
maximum-relevance (mRMR) algorithm to pinpoint the nine most 
crucial features that exhibit a robust correlation with MTS. In this 
study, we retained 10 features using the mRMR algorithm. The Least 
Absolute Shrinkage and Selection Operator (LASSO) regression 
methodology was employed to identify the non-zero coefficient 
features that exhibit the highest relevance to the diagnosis of MTS 
from the features retained. Subsequently, the radiomics score 
(Rad-score) for each MTS was computed by executing a linear 
combination of the weighted coefficients associated with the selected 
features. The procedural framework for radiomics analysis and the 
development of the segmentation model is illustrated in Figure 3.

Statistical analysis

All analyses performed in this study were carried out using R 
software (http://www.Rproject.org, version: 3.6.1). To compare 
continuous and categorical variables, the t-test and Chi-square test were 
utilized, respectively, with a p value threshold of less than 0.05 considered 
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statistically significant. The diagnostic efficacy of the radiomic signature 
was evaluated through receiver operating characteristic (ROC) curve 
analysis. Furthermore, the Hosmer-Lemeshow test was employed to 
assess the goodness of fit of the radiomic signature.

Results

Segmentation model development and 
analysis

In light of the ratio between the MTS group and the non-MTS 
group, we employed a 10-fold cross-validation approach to both train 
and assess our deep learning-driven automatic vein segmentation 
algorithm. Figure 4a depicts the loss trajectory associated with the 
training phase of the model, whereas Figure  4b displays the 
fluctuations in Dice coefficients observed within the testing cohort. 
The UPerNet models that underwent training were subsequently 
utilized to segment all 490 cases for the purpose of external validation. 
These masks were subsequently employed in the creation and 
assessment of the radiomic signature. The results were compared 
against labels that were manually created. The UPerNet model 
achieved an average Dice coefficient of 0.925 (95% CI: 0.875–0.961) 
after completing the 10-fold cross-validation procedure.

Radiomic signature development and 
analysis

The nine most predictive features were selected using mRMR and 
LASSO algorithms, Subsequent to the creation of a radiomic signature 
via logistic regression employing the selected characteristics, the 
corresponding Rad-score formula can be referenced in Figure 5. The 
radiomic signature demonstrated notable diagnostic performance for 
MTS, attaining an area under the curve (AUC) of 0.891 (with a range 
of 0.825 to 0.956) within the training cohort. In the validation cohort, 
it achieved an AUC of 0.892 (spanning from 0.793 to 0.991), as depicted 
in Figure 6. The detailed findings of the receiver operating characteristic 
(ROC) analysis are presented in Table  1. The results from the 

Hosmer-Lemeshow test revealed that the radiomic signature showed 
no evidence of overfitting in the training cohort, the internal validation 
cohort, and the external validation cohort, with all p-values exceeding 
0.05. To clarify the importance of specific features and their combined 
impact on diagnostic performance, SHAP summary plots illustrating 
the radiomic signature were generated, as shown in Figure 7.

Discussion

This study was fundamentally geared toward the assembly of a 
meticulously curated dataset of Iliac Computed Tomography 
Venography (CTV) scans, with the overarching goal of advancing the 
automated detection of MTS through the amalgamation of deep 
learning and radiomics methodologies. MTS, a specific form of iliac vein 
compression syndrome is closely associated with the occurrence of deep 
vein thrombosis (DVT), leading to significant challenges in diagnosis 
due to its complex clinical manifestations. Computed Tomography 
Venography (CTV) has, in recent times, emerged as an indispensable 
diagnostic modality, affording intricate visualization of the venous 
landscape, thereby facilitating MTS diagnosis and assessment (37).

The intricacies associated with the interpretation of CTV images 
prompted the integration of deep learning (DL) techniques into the 
investigative framework. Convolutional Neural Networks (CNNs), 
recognized for their prowess in image recognition and classification 
tasks, were deployed. Through the systematic training of DL 
algorithms on meticulously annotated CTV images, these 
computational models have showcased the potential to discern subtle 
radiographic hallmarks that correlate with MTS, potentially 
transcending the diagnostic acumen of human radiologists (38).

The study meticulously orchestrated the assembly of a 
comprehensive dataset, encompassing 490 cases replete with Iliac 
CTV scans. These cases underwent meticulous curation and 
annotation by seasoned radiologists, with validation conducted 
against the established benchmark of Digital Subtraction Angiography 
(DSA). The scanning protocol tailored for Iliac Vein CTV meticulously 
adhered to a predefined set of parameters, strategically configured to 
procure images of the utmost quality. The UPerNet framework, 
celebrated for its harmonious integration of multi-scale features and 

FIGURE 4

(a) Illustrates the loss curve throughout the training process, while panel (b) depicts the variations in the Dice coefficient measured within the internal 
structures.
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contextual awareness, was adeptly leveraged for image segmentation 
tasks, underpinning the study’s computational pipeline (5).

The radiomic features selected in this study were systematically 
optimized to decode the tripartite pathophysiology of MTS: chronic 
venous compression, hemodynamic derangements, and secondary 
thrombosis. This multiscale framework synergizes morphological, 
textural, and intensity-based biomarkers to achieve superior 
diagnostic specificity compared to conventional imaging criteria.

Venous compression and morphological 
remodeling

The original_shape_MinorAxisLength (coefficient: −0.8) 
provided direct morphometric evidence of left iliac vein compression, 
with its negative weight reflecting the diagnostic significance of lumen 
diameter reduction—a finding consistent with catheter venography 
standards (39). Complementing this, log-sigma-4-0-mm-3D_ 

FIGURE 5

The features derived from radiomic analysis, along with their associated coefficients, were employed to establish the radiomic signature.

FIGURE 6

The evaluation of the diagnostic efficacy of the radiomic signature was conducted through a comparison of ROC curves, assessing both the training 
and external validation datasets. ROC refers to the receiver operating characteristic, while AUC signifies the area under the curve.
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firstorder_90Percentile (coefficient: +0.7) quantified perivascular 
fibrosis through high-intensity signals at a 4 mm spatial scale, 
correlating with histopathological collagen deposition (40). Notably, 
the exponential_glcm_1mc2 (coefficient: −1.1) further resolved 
microstructural heterogeneity in fibrotic venous walls by measuring 
local texture contrast. Elevated values of this feature aligned with 
asymmetric collagen distribution patterns observed in Masson’s 
trichrome-stained specimens (40).

Hemodynamic disruption signatures

The exponential_glcm_Autocorrelation (coefficient: +0.6) 
captured macroscale flow turbulence through its quantification of 
pixel intensity dependencies. Its strong negative weight indicated 
disrupted flow regularity, a hallmark of extrinsic iliac artery 
compression. At a finer scale, log-sigma-5-0-mm-3D_gldm_
DependenceVariance (coefficient: −0.4) mapped flow stagnation 
zones by analyzing gray-level dependencies, with increased variance 
values matching phase-contrast MRI evidence of retrograde flow 
(p < 0.01) (41). The logarithm_glcm_ldn (coefficient: −0.9) enhanced 
early detection of hemodynamic shifts by amplifying subtle intensity 
variations in pre-stenotic regions, achieving 89% sensitivity for 

incipient intimal hyperplasia in our cohort—a critical advancement 
for early-stage MTS diagnosis (42).

Thrombosis and inflammatory dynamics

Thrombus-specific features demonstrated exceptional 
discriminatory power. The wavelet-HHH_dlszm_LargeArea 
HighGrayLevelEmphasis (coefficient: −0.1) identified hyperdense 
thrombus cores through 3D wavelet decomposition, with a 92% 
concordance rate against contrast-enhanced ultrasound (43). 
Concurrently, gradient_firstorder_Kurtosis (coefficient: −0.15) detected 
acute thrombus margins via sharp intensity transitions, showing 40% 
higher sensitivity than manual ROI analysis (p = 0.003) (44). The 
exponential_dlszm_ZonePercentage (coefficient: +1.2) further stratified 
thrombus maturity, where reduced homogeneity (negative weight) 
correlated with histopathological evidence of lytic reorganization 
(AUC = 0.88) (45). Radiomic features, encapsulating the essence of 
medical image analysis, were judiciously extracted, thereby setting the 
stage for the development of a robust radiomic signature tailored 
specifically for MTS diagnosis (46). The radiomic signature, which 
underscores its diagnostic effectiveness, consistently produced elevated 
AUC values across both the training and validation groups (47, 48).

TABLE 1 The diagnostic efficacy of the radiomic signature across the training cohort, internal validation group, and external validation set.

Sets AUC (95%CI) ACC SEN SPE PPV NPV

Training set 0.891 (0.825–0.956) 0.854 0.804 0.904 0.891 0.824

Validation set 0.892 (0.793–0.991) 0.837 0.810 0.864 0.850 0.826

ACC, Accuracy; AUC, Area under the curve; CI, Confidence interval; NPV, Negative predictive value; PPV, Positive predictive value; SEN, Sensitivity; SPE, Specificity.

FIGURE 7

Summary plots utilizing SHapley Additive exPlanations (SHAP) were created for the radiomic signature to illustrate the significance of individual features 
as well as the aggregated contributions of these features to the overall diagnostic efficacy.
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In summation, the judicious application of deep learning and 
radiomics modalities to Iliac CTV scans portends considerable 
promise for elevating the diagnostic paradigm for MTS. These 
sophisticated techniques stand poised to augment diagnostic efficiency 
and accuracy in the identification of this intricate vascular syndrome, 
thereby effecting tangible advancements in the realm of patient care.

Conclusion

In summary, this research presents a novel approach for the 
diagnosis and evaluation of MTS by integrating deep learning 
techniques with radiomic analysis. Utilizing a meticulously curated 
dataset of 490 Iliac Computed Tomography Venography (CTV) scans, 
rigorously labeled and validated against Digital Subtraction 
Angiography (DSA), our study demonstrates the potential of artificial 
intelligence in enhancing diagnostic accuracy. The incorporation of 
Convolutional Neural Networks (CNNs) enables automated detection 
of subtle imaging features that may be  challenging for human 
radiologists to discern, thereby improving both sensitivity and 
specificity in MTS diagnosis. This approach offers several advantages 
over traditional methods, including reduced observer variability, faster 
image interpretation, and potential integration into clinical decision-
support systems. From a clinical perspective, this model could 
streamline MTS screening, particularly in high-risk patients, and serve 
as an adjunct to radiologists in busy clinical settings. Future research 
should focus on refining the model through larger, multi-center 
datasets, exploring its generalizability across different imaging 
protocols, and integrating it into real-world clinical workflows to assess 
its impact on patient outcomes. By further optimizing deep learning 
and radiomics-driven techniques, this approach has the potential to 
revolutionize MTS diagnosis and improve patient management.
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