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Background: The link between programmed cell death (PCD) and mitochondria

has been documented in various diseases. However, its role in endometriosis

(EMS) remains unexplored. This study aims to identify potential biomarkers in

EMS associated with both PCD and mitochondrial functions.

Methods: This analysis incorporates datasets related to EMS, PCD-related

genes (PCD-RGs), and mitochondria-related genes (MRGs) sourced from public

repositories. To uncover potential biomarkers, di�erential expression analysis,

weighted gene co-expression network analysis (WGCNA), Boruta feature

selection, expression validation, and diagnostic assessments were conducted.

Functional analyses, immune infiltration profiling, and the construction of

regulatory networks further elucidated the mechanisms through which these

biomarkers may influence EMS. Finally, single-cell data were leveraged to

examine the expression and functionality of these biomarkers at a granular level.

Results: Apoptosis-inducing factor mitochondria-associated 1 (AIFM1) and

pyruvate dehydrogenase kinase 4 (PDK4) were identified as potential biomarkers,

with PDK4 upregulated and AIFM1 downregulated in EMS. Both genes

demonstrated strong diagnostic potential. Enrichment analyses indicated their

involvement in pathways associated with the cell cycle. Immune infiltration

analyses revealed that AIFM1 had a significant positive correlation with resting

dendritic cells and a negative correlation with M2 macrophages, whereas PDK4

was positively associated with M2macrophages and inversely related to follicular

helper T cells. Moreover, AIFM1 and PDK4 were regulated by 16 miRNAs (e.g.,

hsa-mir-16-5p) and 18 lncRNAs (e.g., LINC00294). Single-cell analysis further

revealed dynamic expression trends of these potential biomarkers across cell

di�erentiation stages, including gametocytes, monocytes, mesenchymal stem

cells, and neutrophils.

Conclusion: In this study, potential biomarkers (AIFM1 and PDK4) related to

PCD and mitochondria were identified in EMS, o�ering valuable insights for the

diagnosis and therapeutic strategies for the disease.
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1 Introduction

Endometriosis (EMS) is characterized by the abnormal growth,

infiltration, and recurrent bleeding of endometrial tissue (glands

and stroma) outside the uterine cavity, leading to pain, infertility,

and the formation of nodules or masses (1, 2). It is a prevalent

condition among women of reproductive age (3). The development

of EMS is influenced by various factors, including sex hormones,

immune response, inflammation, and genetics, though its exact

pathogenesis remains elusive. Current theories attempting to

explain the origins of EMS include Sampson’s Theory, immune

dysregulation, Mullerianosis, vascular and lymphatic metastasis,

the eutopic endometrium theory, and genetic and environmental

contributions (4–7). Despite the prominence of these theories, none

fully account for all cases (8), suggesting that EMS pathogenesis

may be a multifactorial and stepwise process. Epidemiological

studies have identified several risk factors for EMS, including

family history, early menarche, short menstrual cycles, low fertility,

obesity, chemical exposure, and prior abdominal surgery (9–12).

A significant challenge in EMS management is diagnostic delay,

which often leads to disease progression, complicates treatment,

increases the likelihood of recurrence, and diminishes the patient’s

quality of life. Notably, no definitive cure exists for EMS, and

current treatments primarily focus on symptom management.

Early diagnosis is critical, yet no reliable biomarkers are available

in peripheral blood or the endometrium for accurate diagnosis

(13). Although elevated CA125 levels are often observed in patients

with severe EMS, significant pelvic inflammation, or associated

conditions like endometriotic cyst rupture or adenomyosis (14,

15), it is not a definitive diagnostic marker. Consequently, the

identification of novel, effective biomarkers for early EMS diagnosis

remains a pressing need to facilitate clinical management and

improve treatment outcomes.

Programmed cell death (PCD) is a fundamental process in

the development of multicellular organisms and plays a pivotal

role in the pathogenesis of degenerative diseases. Key forms of

PCD, including apoptosis, ferroptosis, and pyroptosis, involve

mitochondrial participation (16). Mitochondria serve as critical

regulators of PCD by acting as signal amplifiers. In response to

both internal and external stimuli, mitochondria alter membrane

permeability, release proteins such as cytochrome C, and initiate

apoptotic pathways. Under normal conditions, mitochondrially

produced reactive oxygen species (ROS) activate apoptosis;

however, excessive ROS can damage mitochondrial integrity and

accelerate apoptosis (17). Additionally, mitochondria interact with

the endoplasmic reticulum and nucleus to propagate apoptotic

signals (18). Mitochondrial dysfunction impairs cellular oxidative

phosphorylation, leading to insufficient ATP production. To

compensate, cells shift to anaerobic glycolysis, even in the presence

of adequate oxygen, which produces lactate. This accumulation

of lactic acid promotes cell migration, invasion, and angiogenesis,

thus exacerbating the progression of EMS (19). Studies have

underscored the pivotal role of PCD in the pathophysiology

of EMS, suggesting potential therapeutic avenues. For instance,

abnormal apoptosis in ectopic endometrial tissue is associated with

disease progression and clinical manifestations (20). Additionally,

spontaneous apoptosis is diminished in the endometrial glands of

patients with EMS, facilitating immune evasion and promoting

ectopic growth (21). Research has also shown that creatine confers

resistance to ferroptosis in ectopic endometrial stromal cells by

inhibiting prion protein, thus supporting EMS development (22).

Furthermore, women with mild EMS exhibit a significantly higher

number of dysfunctional mitochondria in their oocytes (23).

Mitochondrial energy production and metabolism are impaired

in EMS-affected tissues, potentially due to oxidative stress-

induced mitochondrial DNA or membrane damage, metabolic

shifts, or reduced availability of energy substrates. However, the

combined impact of PCD and mitochondrial dysfunction on EMS

pathogenesis remains unexplored. Thus, further investigation into

the roles of mitochondria and PCD in EMS is essential.

Using a comprehensive bioinformatics approach, including

machine learning techniques, this study identified biomarkers in

EMS linked to both PCD and mitochondrial activity. Through

expression validation and diagnostic performance analysis, the

study not only assessed their potential clinical utility but

also explored their expression dynamics. Integrated functional,

immunological, and regulatory network analyses revealed the

underlying mechanisms of these biomarkers in EMS. Additionally,

single-cell level analysis provided new insights into their functional

roles, offering a deeper understanding of EMS pathology

and laying the groundwork for advancing diagnostic and

therapeutic strategies.

2 Materials and methods

2.1 Data extraction

The GSE7305 dataset (platform GPL570) was downloaded

from the Gene Expression Omnibus (GEO) database (https://

www.ncbi.nlm.nih.gov/geo/) as a training set, comprising 10 EMS

endometrial tissue samples (disease) and 10 control samples

(normal). The GSE120103 dataset (platform GPL6480) was

used as a validation set, including 18 EMS endometrial tissue

samples and 18 control samples. Additionally, the GSE214411

single-cell dataset was downloaded from the GEO database,

containing 6 EMS endometrial tissue samples and 7 control

samples. A total of 1,136 mitochondria-related genes (MRGs)

were obtained from the MitoCarta 3.0 database (http://www.

broadinstitute.org/mitocarta) (24), and 1,548 programmed cell

death-related genes (PCD-RGs) were retrieved from published

literature (25).

2.2 Di�erential expression analysis

For the GSE7305 dataset, differential gene expression analysis

was performed using the limma package (v3.51.0) (26), applying a

threshold of an adjusted p-value < 0.05 and |log2(Fold change)FC|

> 1 to filter differentially expressed genes (DEGs). Visualizations

of DEGs were generated using volcano plots and heatmaps

with the ggplot2 (v3.4.1) (27) and Complex Heatmap (v2.14.0)

(28) packages.
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2.3 Weighted gene co-expression network
analysis (WGCNA)

In GSE7305, disease and normal samples were assigned as

traits to identify the module most correlated with these traits

using the WGCNA package (v1.71) (29). Hierarchical clustering

based on Euclidean distance of gene expression levels was first

conducted to identify and exclude outliers. A soft threshold with

an R2 value >0.85 and close-to-zero connectivity was chosen

as the optimal threshold. Using this, an unsigned network was

constructed to categorize genes into modules (deepSplit = 2,

minModuleSize = 30, mergeCutHeight = 0.25, numericLabels

= FALSE, maxBlockSize = 100,000). Correlation analysis was

subsequently performed to identify the key module most highly

correlated with the traits, with its genes designated as key

module genes.

2.4 Functional analysis

The intersection of DEGs, key module genes, MRGs,

and PCD-RGs was determined using the ggVenn package

(v1.7.3) (30), and the resulting intersecting genes were

classified as candidate genes. Further functional analysis

was conducted through Gene Ontology (GO) enrichment

(adjusted p-value < 0.05) and Kyoto Encyclopedia of Genes

and Genomes (KEGG) pathway analysis (p-value < 0.05)

using the clusterProfiler package (v4.2.2) (31), to explore

the biological functions and pathways associated with these

candidate genes.

2.5 Identification of potential biomarkers

The Boruta package (v8.0.0) (32) was used for feature

selection based on candidate genes to identify significant

genes with confirmed importance. The expression of selected

feature genes was then compared between the GSE7305

and GSE120103 datasets. Genes showing significant inter-

group expression and consistent trends across both datasets

were retained for subsequent analysis. Receiver operating

characteristic (ROC) curves were plotted using the pROC

package (v1.18.0) (33) in both datasets to evaluate the diagnostic

performance of the genes. Genes with strong diagnostic

performance (area under the curve [AUC] > 0.7) were defined as

potential biomarkers.

2.6 Analysis of organizational expression

To further explore the expression patterns of potential

biomarkers across human tissues, data from normal human tissues

were analyzed using the Genotype-Tissue Expression (GTEx),

Biological Gene Expression Profiling Source (BioGPS), and Serial

Analysis of Gene Expression (SAGE) systems via the GeneCards

database (https://www.genecards.org/).

2.7 Gene set enrichment analysis (GSEA)

GSEA was performed to investigate the key biological processes

involved with the potential biomarkers. In the GSE7305 dataset,

correlation coefficients between biomarkers and other genes were

computed, and the genes were ranked in descending order. GSEA

was then conducted using the c2.cp.kegg.v2023.1.Hs.symbols.gmt

as the background gene set through the clusterProfiler package

(v4.2.2) (34) (p-value < 0.05).

2.8 Immune infiltration analysis

Immune infiltration analysis was carried out based on the

CIBERSORT algorithm to calculate enrichment scores for 22

immune cell types in all samples from the GSE7305 dataset.

Wilcoxon tests were applied to compare enrichment scores between

groups, excluding cell types with predominantly zero scores.

Spearman correlation analysis (|cor|> 0.3, p-value< 0.05) was then

performed to assess relationships between differentially enriched

immune cells and potential biomarkers.

2.9 Regulatory analysis

To investigate upstream pathways associated with the potential

biomarkers, the SPEED2 database (https://speed2.sys-bio.net/) was

used to identify relevant pathways, with enrichment levels assessed

using the Bates test to evaluate ranking changes. The pathways

were ranked according to these changes, and gene rankings

within each pathway were displayed. For molecular regulatory

mechanisms, upstream miRNAs of the potential biomarkers were

predicted using the ENCORI (http://starbase.sysu.edu.cn/index.

php), miRcode (http://www.mircode.org/), and miRwalk (http://

mirwalk.umm.uni-heidelberg.de/) databases. The intersection of

predictions from all three databases was taken. Additionally, the

ENCORI database was used to predict upstream lncRNAs for

the identified miRNAs. A lncRNA-miRNA-mRNA (biomarker)

regulatory network was constructed and visualized using Cytoscape

software. The potential drugs related to the potential biomarkers

were predicted using the Drug-Gene Interaction Database (DGIdb)

(http://www.dgidb.org/), and the relationships between potential

biomarkers and diseases were analyzed through the Comparative

Toxicogenomics Database (CTD) (http://ctdbase.org/). Finally, the

disease-biomarker-drug interaction network was visualized using

Cytoscape software (v3.8.2) (35).

2.10 Single-cell analysis

The GSE214411 single-cell dataset was converted into a Seurat

object using the Seurat package (v4.1.0) (36). Quality control

was performed with criteria set as nFeature_RNA between 200

and 9,000, and percent.mt <25%. The data were normalized

using the NormalizeData function, and highly variable genes were

selected based on the relationship between mean and variance

using the FindVariableFeatures function. Principal components
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(PCs) for subsequent analysis were determined via an Elbow

Plot. Dimensionality reduction was performed using principal

component analysis (PCA), followed by non-linear visualization

with UniformManifold Approximation and Projection (UMAP) to

identify cell clusters.

Specific genes with high expression in each cell cluster were

identified using the FindAllMarkers function, with thresholds set

at |log2FC| > 1 and an adjusted p-value < 0.05. Cell clusters were

annotated using SingleR (37) for automatic annotation, along with

marker genes from the Cell Marker database.

To differentiate between EMS and normal samples, cell

communication analysis was conducted using the CellChat package

(v0.0.7.900) (38) for each group separately. Functional enrichment

analysis was performed using the ReactomeGSA package (v1.12.0)

(39) to calculate pathway expression, followed by identification of

differential expression pathways between EMS and normal samples,

with the top 15 pathways visualized. Expression differences of

biomarkers between EMS and normal groups across different cell

types were also compared.

Pseudotime analysis was then performed using the Monocle

package (v2.26.0) (40) to analyze the developmental trajectory of

different cell types and assess the expression changes of potential

biomarkers within these cells.

2.11 Statistical analysis

Data analysis was performed using R software (v4.1.0), with

statistical significance evaluated using t-tests or Wilcoxon rank-

sum tests, with a significance threshold set at p < 0.05.

3 Results

3.1A total of 1,772 key module genes were
identified in the GSE7305 dataset

A total of 1,136 DEGs were identified in the GSE7305

dataset (disease vs. normal), comprising 572 upregulated and

564 downregulated genes (Figures 1A, B). Hierarchical clustering

analysis revealed no significant outliers in the dataset, indicating

that no samples needed to be excluded (Figure 1C). The optimal

soft threshold, determined by selecting an R2 > 0.85 and minimal

connectivity, was set at 18 (Figure 1D). This led to the identification

of seven co-expression modules, with the blue module showing the

strongest correlation to the disease (cor = 0.96, p-value < 0.05),

encompassing 1,772 key module genes (Figures 1E, F).

3.2 Candidate genes were enriched in the
NF-κB signaling pathway

Four candidate genes—FAM162A, PDK4, BCL2A1, and

AIFM1—were selected by intersecting the DEGs, key module

genes, MRGs, and PCD-RGs (Figure 2A). Gene Ontology (GO)

enrichment analysis of these genes revealed 312 enriched terms,

including 141 biological processes (BP) (e.g., activation of cysteine-

type endopeptidase activity in the apoptotic process), 5 cellular

components (CC) (e.g., mitochondrial intermembrane space), and

5 molecular functions (MF) (e.g., oxidoreductase activity, acting on

NAD(P)H, oxygen as acceptor) (Figure 2B). Furthermore, the genes

were predominantly involved in the NF-κB signaling pathway,

apoptosis, and acute myeloid leukemia (Figure 2C).

3.3 PDK4 and AIFM1 were identified as
potential biomarkers

Feature genes (FAM162A, PDK4, BCL2A1, and AIFM1)

were confirmed through Boruta analysis (Figure 3A). Expression

validation in both the GSE7305 and GSE120103 datasets showed

significant inter-group differences for PDK4 and AIFM1,

with consistent trends across datasets. Specifically, PDK4 was

upregulated in the disease group, while AIFM1 was downregulated

(Figures 3B, C). The AUC values for PDK4 and AIFM1 exceeded

0.75 in both datasets, underscoring their strong diagnostic value

and defining them as potential biomarkers for EMS (Figures 3D, E).

3.4 AIFM1 and PDK4 were enriched in the
cell cycle and other pathways

Additionally, PDK4 exhibited higher expression in various

human tissues compared to AIFM1 (Figures 4A, B). GSEA revealed

that both biomarkers were significantly enriched in the cell

cycle, complement and coagulation cascades, and systemic lupus

erythematosus pathways (Figures 4C, D).

3.5 Potential biomarkers were associated
with di�erent immune cells

The distribution of 22 immune infiltrating cell types in each

sample from the disease and normal groups was visualized in

a heatmap (Figure 5A). After excluding immune cells with an

enrichment score of 0, the differences in immune cell proportions

between the disease and normal groups were compared. The

results revealed that M0 Macrophages, resting Mast cells, naive

B cells, and M2 Macrophages were more abundant in the

disease group, while resting dendritic cells, activated NK cells,

and follicular helper T cells were more prevalent in the normal

group (Figure 5B). Correlation analysis among the immune

cell types showed the strongest positive correlation between

resting mast cells and M2 Macrophages (cor = 0.65, p-value <

0.05), and the strongest negative correlation between follicular

helper T cells and M2 Macrophages (cor = −0.73, p-value

< 0.05; Figure 5C). Notably, resting dendritic cells showed the

strongest positive correlation with AIFM1 (cor = 0.76, p-value

< 0.001), while M2 Macrophages exhibited the strongest negative

correlation with AIFM1 (cor = −0.74, p-value < 0.001; Figure 5D,

Supplementary Tables S1, S2).

Frontiers inMedicine 04 frontiersin.org

https://doi.org/10.3389/fmed.2025.1528434
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Liu et al. 10.3389/fmed.2025.1528434

FIGURE 1

Di�erentially expressed genes in endometriosis. (A) Volcano plot showing DEGs. (B) Heatmap illustrating the DEGs. (C) Cluster dendrogram for the

GSE7305 dataset. (D) Determination of the optimal soft threshold for the WGCNA algorithm. (E) Identification of co-expression modules. (F)

Heatmap depicting module-trait correlations.

3.6 Two biomarkers were related to many
uterine diseases

To further investigate the upstream pathways of potential

biomarkers, pathway analysis revealed that the PPAR (cor

= 0.65) and Estrogen (cor = 0.52) signaling pathways

exhibited the strongest activities, while the TLR (cor =

−0.79) and TGFb (cor = −0.71) pathways showed the weakest

activities (Figure 6A). Molecular regulatory mechanisms of

potential biomarkers were further explored by constructing a
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FIGURE 2

Screening and functional analysis of candidate genes. (A) Venn diagram displaying the overlap of genes identified through intersection analysis. (B)

Bubble plot of enriched GO terms. (C) Bubble plot of enriched KEGG pathways.

lncRNA-miRNA-mRNA network. In this network, LINC00294

and XIST regulated the expression of PDK4 through hsa-

miR-103a-3p, while XIST and MALAT1 regulated AIFM1

expression through hsa-miR-32-5p (Figure 6B). Additionally,

four drugs were identified with potential therapeutic effects

on the biomarkers: cyclosporine, recombinant 70-kd heat-

shock protein, sodium dichloroacetate, and devimistat. It was

also observed that both biomarkers were associated with 48

uterine diseases, including placenta accreta and hydrops fetalis

(Figure 6C).
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FIGURE 3

Identification of biomarkers and their di�erential expression in normal and diseased tissues. (A) Feature selection using the Boruta algorithm, where

the horizontal axis represents the variable name and the vertical axis the z-value. (B) Expression levels of FAM162A, PDK4, BCL2A1, and AIFM1 in the

GSE7305 dataset. (C) Expression levels of FAM162A, PDK4, BCL2A1, and AIFM1 in the GSE120103 dataset. (D) ROC curves showing AUC values for

AIFM1 and PDK4 based on GSE7305. (E) ROC curves showing the AUC values for AIFM1 and PDK4 based on GSE120103. *p < 0.05, **p < 0.01, ***p

< 0.001, ****p < 0.0001.

3.7 Single-cell data were annotated to 10
cell types

The GSE214411 single-cell dataset provided 26,386 genes and

139,399 cells after quality control (Figures 7A, B). From this,

2,000 highly variable genes were selected, and the top 30 PCs

were used for cell clustering (Figures 7C, D). This clustering

analysis identified 22 distinct cell clusters (Figure 7E), and heat

maps were drawn to demonstrate the expression status of specific

highly expressed genes in each cell type (Figure 7F). Further
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FIGURE 4

Expression of AIFM1 and PDK4 in tissues and their associated pathways. (A) Expression of AIFM1 across various human tissues. (B) Expression of PDK4

across various human tissues. (C) Pathway enrichment analysis of AIFM1. (D) Pathway enrichment analysis of PDK4.
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FIGURE 5

Immune infiltration analysis. (A) Heatmap displaying the relative abundance of 22 immune cell types in each sample from disease and control groups.

(B) Di�erences in immune cell infiltration between the disease and normal groups. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. (C)

Correlation analysis among di�erent immune cell types. (D) Correlation analysis between AIFM1, PDK4, and immune cell types.

annotation of the clusters revealed 10 distinct cell types: endothelial

cells, epithelial cells, gametocytes, smooth muscle cells, fibroblasts,

mesenchymal stem cells (MSCs), neutrophils, monocytes, NK cells,

and T cells (Figure 7G).

3.8 Two biomarkers showed di�erent
expression in distinct cell types between
EMS and normal samples

In the EMS samples, smooth muscle cells and endothelial

cells exhibited a higher probability of interaction (Figures 8A, B).

In contrast, smooth muscle cells showed a higher probability of

interaction in the normal samples (Figures 8C, D). To further

explore the biological significance, enrichment analysis was

conducted on the differential expression between the EMS and

normal samples, revealing significant enrichment in pathways

related to alanine metabolism, ATP-sensitive potassium channels,

and intracellular oxygen transport (Figure 8E). Differential

expression analysis of AIFM1 and PDK4 between the EMS

and normal groups revealed notable changes across various

cell types. In the EMS group, AIFM1 was under-expressed in

endothelial cells, epithelial cells, and neutrophils, while showing

the opposite trend in gametocytes, MSCs, monocytes, and T cells

(Figure 8F). Similarly, PDK4 in the EMS group was overexpressed

in gametocytes, smoothmuscle cells, fibroblasts, MSCs, monocytes,

and T cells, with the opposite pattern observed in neutrophils and

NK cells (Figure 8G).

3.9 The expression trends of AIFM1 and
PDK4 were di�erent during cell
di�erentiation

Differentiation dynamics of these biomarkers were analyzed

across various cell types. Gametocytes showed three distinct

differentiation states, with AIFM1 exhibiting an initial increase

followed by a decrease, while PDK4 displayed a similar trend,

with an initial increase followed by a decrease throughout

differentiation (Figure 9A). Monocytes had nine differentiation

states, with both AIFM1 and PDK4 showing high expression in

early stages that gradually decreased in later stages (Figure 9B).

Frontiers inMedicine 09 frontiersin.org

https://doi.org/10.3389/fmed.2025.1528434
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Liu et al. 10.3389/fmed.2025.1528434

FIGURE 6

Pathways, drugs, and diseases associated with AIFM1 and PDK4. (A) Analysis of the upstream pathway activity of AIFM1 and PDK4. (B)

LncRNA-miRNA-mRNA network analysis for AIFM1 and PDK4. (C) Identification of targeted agents for AIFM1 and PDK4, along with associated

diseases.

MSCs displayed seven differentiation states, with AIFM1 showing a

decrease followed by an increase, and PDK4 exhibiting a sustained

increase in the later stages (Figure 9C). Neutrophils had three

differentiation states, where AIFM1 showed minimal variation,

while PDK4 showed an initial increase followed by a decrease

(Figure 9D). Finally, T cells had seven differentiation states, with

both biomarkers showing consistently low expression levels and

stable trends throughout differentiation (Figure 9E).

4 Discussion

EMS, a condition affecting many women of reproductive age,

remains a global health challenge with an unclear pathogenesis

(41). It is hypothesized that the dynamic changes in mitochondrial

function, which regulate energy metabolism and redox balance,

may be linked to the development of EMS (42, 43). Additionally,

ferroptosis, a form of PCD, has been suggested to contribute to EMS

progression through the secretion of vascular endothelial growth

factors and modulation of immune mechanisms (44). While PCD

is a natural cellular process, mitochondrial dysfunction can affect

apoptosis and may therefore be implicated in the pathogenesis

of EMS. However, the specific mechanisms linking mitochondrial

dysfunction, PCD, and EMS remain to be fully elucidated, requiring

further investigation.

Through a series of bioinformatics analyses—including

differential expression analysis, WGCNA, machine learning, and

expression validation—two potential biomarkers, AIFM1 and

PDK4, were identified. Both biomarkers demonstrated strong

diagnostic performance for EMS. PDK4 was upregulated, and

AIFM1 was downregulated in the disease group. PDK4 encodes a

mitochondrial protein that belongs to the PDK/BCKDK protein
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FIGURE 7

Annotation of 10 cell types associated with EMS. (A, B) Quality control of single-cell data from the GSE214411 dataset. Y-axis respectively stands for

nFeature_RNA; nCount_RNA; percent.mt. (C) Identification of highly variable genes in the dataset. (D) Generation of elbow plots to identify PCs for

subsequent analysis. (E) Cell clustering using the first 30 PCs, resulting in 22 distinct cell clusters. (F) Identification of specific highly expressed genes

for each cell cluster. (G) Annotation of 10 cell types associated with EMS.
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FIGURE 8

Interactions among di�erent cell types and expression patterns of AIFM1 and PDK4 in EMS and normal samples. (A, B) Interaction network analysis of

10 cell types in EMS samples, highlighting the number and strength of interactions. (C, D) Interaction network analysis of 10 cell types in normal

samples, focusing on interaction dynamics. (E) Pathways involved in di�erential expression between EMS and normal samples. (F) Expression levels

of AIFM1 in various cell types from EMS and normal samples. (G) Expression levels of PDK4 in various cell types from EMS and normal samples. The

y-axis stands for the normalized gene expression. *p < 0.05, **p < 0.01, ****p < 0.0001.

kinase family and contains a histidine kinase domain (45). It

plays a pivotal role in ferroptosis resistance by inhibiting pyruvate

oxidation through the pyruvate dehydrogenase pathway (46).

Increased expression of PDK4 has been associated with colitis,

with its substrate accumulating in CD4+ T cells of patients with

inflammatory bowel disease. Loss of PDK4 function can delay

colitis development and reduce T cell activation and aerobic

glycolysis (47). Inflammation also enhances PDK4 expression

in C2C12 myoblasts via the Jun N-terminal kinase (JNK)

pathway (48). Since EMS is often accompanied by inflammation,

PDK4 may mediate this pathological process through its effect

on inflammatory signaling. However, the precise mechanism

remains to be explored. On the other hand, AIFM1, which

encodes a flavoprotein critical for nuclear breakdown during

apoptosis, is located in the mitochondrial intermembrane space

of healthy cells. Upon apoptosis, AIFM1 translocates to the
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FIGURE 9

Expression trends of AIFM1 and PDK4 during cell di�erentiation. (A) Pseudotime analysis revealing expression changes of AIFM1 and PDK4 during

gametocyte development. (B) Pseudotime analysis showing changes in the expression of AIFM1 and PDK4 during monocyte di�erentiation. (C)

Pseudotime analysis of AIFM1 and PDK4 expression trends during MSC di�erentiation. (D) Pseudotime analysis illustrating the expression dynamics of

AIFM1 and PDK4 during neutrophil di�erentiation. (E) Pseudotime analysis depicting the changes in AIFM1 and PDK4 expression throughout T cell

di�erentiation.
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nucleus, where it participates in chromosome condensation and

fragmentation, and promotes the release of cytochrome c and

caspase-9 from mitochondria (49). Previous studies have shown

that silencing CCAAT/enhancer-binding protein α (C/EBPα) can

promote the proliferation and anti-apoptosis of normal eutopic

endometrial stromal cells, and lead to the downregulation of

AIFM1 expression (50). Therefore, AIFM1 plays a pivotal role in

human development and disease by serving as a key mediator of

extra-mitochondrial signals.

AIFM1 and PDK4 were notably enriched in pathways related

to the cell cycle, complement and coagulation cascades, as well

as systemic lupus erythematosus (SLE). These pathways play

pivotal roles in the pathogenesis of EMS and its associated

disorders. For instance, cyclin B1 is implicated in promoting

ectopic endometrial cell proliferation under ovarian hormone

regulation (51). Dysregulation of cell cycle regulators interacting

with p27 (Kip1) is essential in driving ovarian clear cell carcinoma

progression linked to EMS, enhancing cellular proliferative activity

(52). EMS is also closely associated with immune dysfunction

and chronic inflammation, with the complement system playing

a critical role in its pathophysiology. Studies have demonstrated

the upregulation of complement components (C1S, C1QA, C1R,

C3) in patients with EMS, which correlate positively with tissue

factor, suggesting an interaction between the complement and

coagulation pathways in EMS progression (53).Moreover, EMS and

SLE, both prevalent in females, share significant immunological

overlap, as SLE is a severe autoimmune condition affecting

multiple systems, while EMS is a chronic inflammatory disorder

involving hormonal and immune dysregulation (54, 55). Thus,

AIFM1 and PDK4 may influence EMS onset and progression by

modulating the cell cycle, complement and coagulation pathways,

and autoimmune mechanisms.

This study underscores the pivotal role of the immune system

in EMS. Immune cell infiltration levels across 22 types were

analyzed, revealing a significant upregulation in M0 macrophages,

resting mast cells, naive B cells, and M2 macrophages in EMS.

In contrast, infiltration levels of resting dendritic cells, activated

NK cells, and follicular helper T cells were downregulated.

These findings suggest that the suppression of activated NK cells

in endometriotic lesions may aid ectopic endometrial cells in

evading immune surveillance, thereby promoting their survival

and implantation. This observation aligns with previous research

(56). In healthy women, peritoneal NK cells exhibit enhanced

cytotoxicity; however, in patients with EMS, elevated local estrogen

levels alter the number and phenotype of NK cells, impairing

their ability to effectively eliminate ectopic cells and fostering

lesion development (57). Correlation analysis of immune cells

revealed a strong positive correlation between resting mast cells

and M2 macrophages, indicating a potential synergistic role in

immune regulation and inflammation resolution. Previous research

has shown that the local microenvironment of EMS lesions

can trigger mast cell activation, with these activated mast cells

releasing various inflammatory mediators that contribute to EMS-

related pain via inflammatory pain pathways (58). Conversely,

the negative correlation between T follicular helper cells and M2

macrophages suggests a mutually restrictive relationship during

immune responses. Furthermore, a strong positive correlation

was observed between resting dendritic cells and AIFM1, while

a negative correlation was found between M2 macrophages

and AIFM1. M2 macrophages are central to the immune

microenvironment in EMS (59), and blocking macrophage-

associated immune checkpoint CD47 can effectively alleviate EMS

(60). These findings indicate that AIFM1 may play differential

regulatory roles across immune cell types, modulating the immune

balance. Additionally, the expression of AIFM1 and PDK4 was

correlated with immune cell infiltration levels, further suggesting

that these biomarkers could serve as promising therapeutic targets

for EMS.

In this study, 10 distinct cell types were identified, including

endothelial cells, epithelial cells, gametocytes, smooth muscle

cells, fibroblasts, MSCs, neutrophils, monocytes, NK cells, and

T cells, all of which have been previously associated with

EMS. Endothelial cells, for instance, play critical roles in

promoting inflammation, angiogenesis, and permeability in

EMS, particularly in deep infiltrating cases (61). This suggests

their vital involvement in angiogenesis and the sustenance of

ectopic tissues. Ectopic epithelial cells, on the other hand,

resist apoptosis via the NNMT-FOXO1-BIM pathway and

can stimulate CD4+ T cells through the HLA II complex,

fostering chronic inflammation (62). Lymphocytes in EMS show

signs of immune activation and exhaustion, with NK cells

exhibiting increased cytotoxicity and T cells displaying elevated

expression of checkpoint genes (63). These alterations likely

contribute to the immune evasion of ectopic tissues. Fibroblasts

and smooth muscle cells are also integral to pathological

fibrosis and angiogenesis in EMS, leading to persistent fibrotic

phenomena that contribute to classic EMS symptoms such

as pain and infertility (64, 65). Monocytes and macrophages

play essential roles in the progression, vascularization, and

painful manifestations of EMS. Macrophages, in particular, are

multifaceted cells crucial for embryonic development and tissue

homeostasis in healthy conditions. However, under inflammatory

stress, monocytes migrate from the bloodstream and differentiate

into macrophages, which then perform functions such as

infection defense and wound healing. The role of macrophages

in inflammation has garnered significant attention in recent

research (66). Neutrophil levels are notably elevated in the

blood, peritoneal fluid, and ectopic endometrium of patients with

EMS. Ectopic endometrial lesions actively recruit neutrophils,

which, in turn, promote early-stage angiogenesis within the

inflammatory microenvironment, thereby creating a positive

feedback loop (67, 68).

In EMS samples, smooth muscle cells and endothelial cells

exhibited a higher likelihood of interaction, suggesting abnormal

intercellular communication and signaling in the pathological

context of EMS. Such dysregulated interactions may contribute

to inflammation, tissue adhesion, and lesion formation in EMS.

Consequently, targeting the crosstalk between these two cell types

could offer a novel therapeutic approach for EMS treatment. The

distinct expression patterns of AIFM1 and PDK4 in various cell

types highlight their specific roles in the disease, underscoring

their potential as biomarkers for understanding the immune

microenvironment of EMS. This understanding is crucial for

developing more targeted and precise treatment strategies.
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5 Conclusion

This study identified potential biomarkers, AIFM1 and PDK4,

in the pathogenesis of EMS through comprehensive bioinformatics

analysis. These biomarkers effectively distinguished EMS from

healthy controls. Additionally, by examining the communication

between cells and the signaling pathways involved, this research

provides valuable insights for diagnosing and treating EMS.

However, the study has some limitations, including the absence

of experimental validation of the biomarkers’ functional roles

and a relatively small sample size. Future experimental studies

are needed to validate the conclusions derived from this

bioinformatics analysis.
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