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Background: Fatty acid metabolism plays a major role in several inflammatory 
diseases such as endometriosis. However, its specific mechanism in 
endometriosis remains unclear. Therefore, this study aimed to investigate 
the hub genes involved in endometriosis and fatty acid metabolism using 
bioinformatics analyses.

Methods: The R package sva was used to remove batch effects from the 
GSE120103 and GSE25628 datasets, resulting in the creation of a combined GEO 
dataset. Differential analysis of the combined GEO dataset was interposed with 
fatty acid metabolism-related genes. Differentially expressed genes associated 
with fatty acid metabolism (FAMRDEGs) were subsequently identified. Functional 
enrichment analyses were performed using the clusterProfiler package, whereas 
gene set enrichment analysis (GSEA) was used to identify significant pathways. 
Protein–protein interaction (PPI) networks were constructed using STRING and 
visualized using Cytoscape to identify hub genes. Moreover, regulatory networks 
involving transcription factors and microRNAs were constructed using ChIPBase 
and ENCORI databases, respectively. Hub genes were validated via expression 
comparison and receiver operating characteristic curve analysis.

Results: We identified 405 DEGs in the combined dataset, including 168 and 
237 with upregulated and downregulated expression, respectively. Of these, 
17 were FAMRDEGs. These genes were significantly involved in arachidonic 
acid and fatty acid metabolic processes. GSEA highlighted pathways such as 
Hamai_apoptosis_via_trail_dn for genes whose expression was downregulated, 
along with nuclear receptors in lipid metabolism and toxicity for genes with 
upregulated expression. The PPI network identified six hub genes: PTGS2, 
CYP2C9, HSDL2, HSD17B3, ACSL4, and CYP2C18. ACSL4 showed the strongest 
positive correlation with immune cell effector memory CD8 T cells, whereas 
HSDL2 showed the strongest negative correlation with immune cell-activated 
CD8 T cells.

Conclusion: The identified hub genes may be potential biomarkers of fatty acid 
metabolism in endometriosis. This reveals the potential molecular mechanisms 
underlying this metabolic process and identifies therapeutic targets for future 
interventions.
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1 Introduction

Endometriosis is an estrogen-dependent chronic 
inflammatory disease (1). According to the World Health 
Organization, approximately 10% of women of reproductive age 
are diagnosed with this condition worldwide (2). Despite the high 
prevalence of endometriosis, its pathogenesis remains unclear; 
this complicates both diagnosis and treatment. Current 
therapeutic approaches, including hormonal therapy and surgical 
interventions, often provide temporary relief. In addition, they 
often have side effects and are associated with a notably high 
recurrence rate post-surgery (3). Because the symptoms 
associated with endometriosis are frequently misattributed to 
dysmenorrhea, a condition commonly experienced by adolescent 
girls and young women, significant delays in diagnosis can occur 
(4). Therefore, further studies are required to better understand 
the underlying pathological mechanisms and develop new 
diagnostic and therapeutic strategies. Recent investigations have 
indicated that endometriosis should not be viewed solely as a 
localized condition; rather, it is associated with systemic 
alterations, including modifications in lipid metabolism.

Fatty acid metabolism plays an essential role in the 
pathophysiology of various inflammatory disorders (5). Notable 
alterations have been observed in the lipid profiles of women 
diagnosed with endometriosis, indicating a potential correlation 
between lipid metabolism and disease progression (6). In 
addition, genes related to A are involved in the regulation of 
inflammatory responses, which are pivotal for the development 
and maintenance of endometriotic lesions (7). These observations 
suggest that fatty acid metabolism-related genes (FAMRGs) are 
intricately associated with the onset and progression of 
endometriosis. However, a systematic investigation into the hub 
genes and potential regulatory mechanisms associated with fatty 
acid metabolism in the context of endometriosis remains to 
be  conducted. Therefore, this study aimed to evaluate the 
differential expression of FAMRGs in endometriosis and explore 
the potential regulatory mechanisms involved.

Our findings highlight the potential application of fatty acid 
metabolism hub genes as diagnostic markers and therapeutic 
targets in endometriosis. This study further elucidates the 
molecular mechanisms underlying the pathogenesis of this 
disease and may provide valuable insights for developing new 
diagnostic markers and therapeutic targets.

2 Materials and methods

2.1 Data used

The endometriosis datasets GSE120103 and GSE25628 were 
downloaded from the GEO database1 using the R package GEO query 
(Version 2.72.0). These datasets were extracted from human 
endometrial tissues. The chip platforms of GSE120103 and GSE25628 
were GPL6480 and GPL571, respectively (Table 1). In total, 849 genes 
related to fatty acid metabolism were identified based on previous 
literature (8–10) after combination and deduplication 
(Supplementary Table S1).

2.2 Data preprocessing

The R package sva (version 3.52.0) was used to remove batch 
effects from the two datasets, resulting in the creation of a combined 
GEO dataset. The combined dataset included 33 endometriosis and 
25 control samples. Finally, the R package limma (version 3.60.2) was 
used to standardize and normalize the integrated GEO dataset and 
annotate probes. Principal component analysis (PCA) was performed 
on the expression matrix, both before and after the removal of the 
batch effect, to assess the effectiveness of batch effect removal.

2.3 Identification of 
endometriosis-associated fatty acid 
metabolism-related differentially expressed 
genes

The data were divided into the Endometriosis and Control groups. 
The R package limma (version 3.60.2) was used to perform differential 
analysis of genes in the two groups. Genes with threshold values of 
|logFC| > 1 and p < 0.05 were considered differentially expressed 
genes (DEGs). The R package ggplot2 (version 3.5.1) was used to plot 
the results of the differential analysis as volcano plots. The intersection 
of DEGs and FAMRGs was subsequently determined, and a Venn 
diagram was drawn to obtain FAMRDEGs. The R packages pheatmap 
(version 1.0.12) and RCircos (version 1.2.2) were used to draw a 
heatmap and a chromosome localization map, respectively.

2.4 Functional enrichment analysis

The R package clusterProfiler (version 4.12.0) was used to perform 
gene ontology (GO) and pathway (KEGG) enrichment analyses on 
FAMRDEGs. The entry screening criteria were adj. p < 0.05 and q < 0.25.

2.5 Gene set enrichment analysis (GSEA)

Genes in the combined GEO datasets were sorted according to 
their logFC values. GSEA was performed using the R package 

1 https://www.ncbi.nlm.nih.gov/geo/

Abbreviations: AUC, area under the curve; BP, biological process; DEGs, 

differentially expressed genes; EMs, endometriosis; FAMRDEGs, fatty acid 

metabolism-related differentially expressed genes; FAMRGs, fatty acid metabolism-

related genes; GO, Gene Ontology; GSEA, gene set enrichment analysis; KEGG, 

Kyoto Encyclopedia of Genes and Genomes; MF, molecular function; miRNA, 

microRNA; PCA, principal component analysis; PPI, protein–protein interaction; 

ROC, receiver operating characteristic; ssGSEA, single-sample gene set enrichment 

analysis; TF, transcription factor.
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clusterProfiler (version 4.12.0) for all genes in the combined datasets. 
The c2 gene set was obtained using the R package msigdbr (version 
7.5.1) before GSEA was performed. The screening criteria for GSEA 
were adj. p < 0.05 and q < 0.25.

2.6 Protein–protein interaction (PPI) 
network

The STRING database2 was applied based on FAMRDEGs with a 
minimum interaction coefficient >0.4 to construct a PPI network 
related to these genes. The Cytoscape software was used to visualize 
the networks. The MCC algorithm in the CytoHubba plug-in of 
Cytoscape was used to calculate the scores of FAMRDEGs. Next, the 
top six FAMRDEGs were selected as related hub genes based on their 
scores. We  predicted functionally similar hub genes using the 
GeneMANIA database3 to construct a PPI network.

2.7 Construction of regulatory network

The ChIPBase database4 was used to retrieve transcription factors 
(TFs). The regulatory function of TFs in hub genes was analyzed, and 
the mRNA-TF regulatory network was visualized using Cytoscape 
software. Hub genes associated with microRNAs (miRNAs) were 
retrieved from the ENCORI database5 to evaluate the relationship 
between hub genes and miRNA. The mRNA-miRNA regulatory 
network was subsequently visualized using Cytoscape software.

2.8 Differential expression verification and 
receiver operating characteristic (ROC) 
curve analysis of hub genes

A comparative chart was constructed based on the expression 
levels of hub genes to further investigate the differential expression of 
the hub genes between the Endometriosis and Control groups within 
the integrated GEO datasets. Next, the R package pROC (version 
1.18.5) was used to generate an ROC curve for the hub genes, thereby 
enabling the calculation of the area under the curve (AUC). This 

2 http://string-db.org

3 https://genemania.org/

4 http://rna.sysu.edu.cn/chipbase/

5 https://rnasysu.com/encori/

analysis assessed the diagnostic efficacy of hub gene expression in 
relation to the occurrence of endometriosis.

2.9 Single-sample GSEA (ssGSEA)

ssGSEA was used to quantify the relative abundance of each 
immune cell type. We then used the R package ggplot2 (version 3.5.0) 
to create comparative visualizations that depicted expression differences 
in immune cells between the Control and H groups within the combined 
GEO dataset. Immune cells that demonstrated significant differences 
between the two groups were selected for further analysis. We applied 
the Spearman correlation algorithm to assess the correlation between 
immune cell types. The R package pheatmap (version 1.0.12) was used 
to create a correlation heatmap. The correlation between hub genes and 
immune cells was subsequently calculated using Spearman’s algorithm, 
and the results were retained at a p-value of <0.05. The R package 
ggplot2 (version 3.5.1) was used to draw a correlation bubble plot to 
show the correlation between hub genes and immune cells. Immune 
cells with TOP1-positive and TOP1-negative correlation with hub genes 
were identified, and a correlation scatter plot was drawn using ggplot2.

2.10 Statistical analyses

Statistical analyses were performed using the R statistical package 
(version 4.4.0; R Foundation for Statistical Computing, Vienna, 
Austria). The p-values were two-sided, and a p-value of <0.05 was 
considered statistically significant.

3 Results

3.1 Technology roadmap (Figure 1)

A flowchart illustrating the FAMRDEG analysis is shown in Figure 1.

3.2 Merging of endometriosis datasets

The endometriosis datasets GSE120103 and GSE25628 were 
processed using the R package sva to remove the batch effect and 
obtain a combined GEO dataset. The datasets before and after batch 
effects were compared using distribution box plots (Figures 2A,B) and 
PCA (Figures 2C,D). The batch effect in the dataset was successfully 
eliminated after batch processing.

3.3 DEGs related to 
endometriosis-associated fatty acid 
metabolism

The R package limma identified 405 DEGs in the combined 
dataset. Of these, the expression of 168 genes was upregulated, 
whereas that of 237 genes was downregulated. A volcano diagram for 
this dataset was drawn based on the results of differential analysis 
(Figure 3A). Moreover, a Venn diagram of all DEGs and FAMRGs was 
drawn to obtain FAMRDEGs (Figure 3B). In total, 17 FAMRDEGs 

TABLE 1 GEO microarray chip information.

GSE120103 GSE25628

Platform GPL6480 GPL571

Species Homo sapiens Homo sapiens

Tissue Endometriosis tissues Endometriosis tissues

Samples in EMs group 18 16

Samples in control group 18 6

Reference PMID: 30760267 PMID: 23460397

GEO, Gene Expression Omnibus; EMs, Endometriosis.
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were obtained: CRYL1, ASAH1, HSD17B3, DPEP3, PTGS2, PPFIA4, 
EIF6, DRD4, UROD, ETFB, CYP2C18, GIPR, CYP2C9, ACSL4, ERP29, 
HSDL2, and GPX1. Differences in the expression of FAMRDEGs 
between sample groups in the combined GEO datasets were analyzed 
based on the intersection results. A heatmap of the analysis results is 
shown in Figure 3C. In addition, the chromosome localization map of 
the 17 FAMRDEGs is shown in Figure 3D. Chromosome mapping 
showed that FAMRDEGs were mostly located on chromosomes 1, 9, 
10, and 19. UROD, PTGS2, and PPFIA4 were located on chromosome 
1; HSDL2 and HSD17B3 were located on chromosome 9; CYP2C9 and 
CYP2C18 were located on chromosome 10; and GIPR and ETFB were 
located on chromosome 19.

3.4 Functional enrichment analysis

The following GO and KEGG enrichment pathways were explored 
for the 17 FAMRGs: biological process (BP), cell component (CC), 
molecular function (MF), biological pathways (KEGG), and their 
relationship to endometriosis (EMs). The 17 FAMRDEGs used for GO 
and KEGG enrichment analyses are listed in Table 2. These genes were 
primarily enriched in arachidonic acid and fatty acid metabolic 
processes related to endometriosis. However, they were not enriched 
in the following pathways: BP, such as long-chain fatty acid and olefinic 
compound metabolic processes, regulation of protein transport, 
arachidonic acid epoxygenase activity, heme binding, oxidoreductase 
activity, acting on paired donors, and incorporation or reduction of 
molecular oxygen; MF, such as arachidonic acid monooxygenase and 
tetrapyrrole binding; or CC. In contrast, these genes were enriched in 

KEGG pathways including chemical carcinogenesis, DNA adducts, 
and serotonergic synapse. The results of the GO and KEGG enrichment 
analyses were visualized using bubble plots (Figure 4A). The network 
diagrams for BP, MF, and KEGG are shown in Figures 4B–D.

3.5 GSEA

The effect of all gene expression levels in the combined GEO 
datasets was evaluated. The GSEA results for genes involved in BP, CC, 
and MF are shown in Figure 5A and Table 3. Genes whose expression 
was downregulated in the combined datasets were significantly 
enriched in hamai apoptosis via TRAIL DN (Figure 5B), bilanges 
serum, as well as rapamycin sensitivity (Figure  5C) and other 
biologically relevant functions and signaling pathways. In contrast, 
genes whose expression was upregulated were significantly enriched 
in nuclear receptors in lipid metabolism and toxicity (Figure 5D), as 
well as srebf and mir33 in cholesterol and lipid homeostasis (Figure 5E) 
and other biologically related functions and signaling pathways.

3.6 Construction of the PPI network and 
screening of hub genes

The PPI network of 17 FAMRDEGs is shown in Figure 6A. In 
total, 12 FAMRDEGs were related: UROD, ETFB, CRYL1, HSD17B3, 
CYP2C9, PTGS2, DRD4, ACSL4, ASAH1, CYP2C18, HSDL2, and 
DPEP3. The scores of these genes were subsequently calculated, and 
the top six genes were screened based on these scores. The interaction 

Correlation 
analysis

GSE120103 GSE25628

Combined 
Dataset

FAMRDEGs

GSEA

GOKEGG

Immune
（ ssGSEA ）

mRNA - miRNA

mRNA - TF

PPI

Expression 
analysis

ROC

DEGs FAMRGs

Hub 
genes

FIGURE 1

Flowchart for the comprehensive analysis of FAMRDEGs. EMs, endometriosis; DEGs, differentially expressed genes; FAMRGs, fatty acid metabolism-
related genes; FAMRDEGs, fatty acid metabolism-related differentially expressed genes; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and 
Genomes; GSEA, gene set enrichment analysis; PPI, protein–protein interaction; miRNA, MicroRNA; TF, transcription factor; ROC, receiver operating 
characteristic; ssGSEA, single-sample gene set enrichment analysis.
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(B) Boxplots showing the distribution of post-batch integrated GEO datasets (combined datasets). (C) The PCA dataset before batch processing. 
(D) The PCA map of the combined GEO datasets after batch processing. Light red and blue represent the EMs datasets GSE25628 and GSE120103, 
respectively. PCA, principal component analysis; EMs, endometriosis.
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network is shown in Figure 6B. Six hub genes were identified, namely, 
PTGS2, CYP2C9, HSDL2, HSD17B3, ACSL4, and CYP2C18.

Finally, the GeneMANIA website predicted an interaction 
network between the six hub genes and genes with similar functions 
(Figure  6C). Six hub genes and 20 functionally similar proteins 
were identified.

3.7 Construction of regulatory network

We used the ENCORI database to obtain microRNAs associated 
with the hub genes PTGS2, CYP2C9, HSDL2, HSD17B3, ACSL4, and 
CYP2C18. The constructed mRNA-miRNA regulatory network is 
shown in Figure 7A. Four hub genes and 28 miRNAs were identified 
(Table 4).

The ChIPBase database was used to construct the regulatory 
network of TFs in hub genes. The mRNA-TF regulatory network is 
shown in Figure 7B. Eight hub genes and 40 TFs were identified in this 
regulatory network (Table 5).

3.8 Validation of differentially expressed 
hub genes and ROC curve analysis

A grouping comparison chart was constructed to evaluate the 
differences in the expression of six hub genes between the 
Endometriosis and Control groups in the combined GEO datasets 
(Figure 8A). The analysis revealed statistically significant differences 
in the expression levels of high and low. Statistically significant 
differences were observed in the expression levels of six hub genes 
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(ACSL4, CYP2C18, CYP2C9, HSD17B3, HSDL2, and PTGS2) between 
the Endometriosis and Control groups of the combined GEO datasets 
(p < 0.001). An ROC curve of expression levels of hub genes in the 
integrated GEO datasets is shown in Figures 8B–G. The expression 
levels of the six hub genes in the Endometriosis and Control groups 
were classified with high accuracy (0.7 < AUC < 0.9).

3.9 ssGSEA immune analysis

The abundance of 28 immune cell types was calculated using the 
ssGSEA algorithm. The group comparison diagram is shown in 
Figure  9A. Seven immune cells, namely, activated CD4 + T cells, 
gamma-delta T cells, CD56 dim natural killer cells, eosinophils, 
monocytes, natural killer T cells, and plasmacytoid dendritic cells, 
were significantly different between the Endometriosis and Control 
groups (p < 0.05). Correlation heatmaps of the immune infiltration of 
these cell types in the integrated GEO datasets are shown in 
Figure 9B. The association of six hub genes with these immune cells 
was analyzed using a correlation bubble chart (Figure 9C). The TOP1-
positive and TOP1-negative correlation between hub genes and 
immune cells is shown in Figures 9D,E. ACSL4 showed the strongest 
positive correlation with effector memory CD8 T cells (r = 0.704, 
p < 0.05) (Figure 9D), whereas HSDL2 showed the strongest negative 
correlation with activated CD8 T cells (r = −0.687, p < 0.05) 
(Figure 9E).

4 Discussion

Endometriosis is a chronic gynecological disorder characterized by 
the presence of endometrial-like tissue outside the uterus; it results in 

inflammation, pain, and infertility (1). Despite the high prevalence of 
endometriosis, its pathogenesis remains unclear. This complicates both 
diagnosis and treatment. Current therapeutic approaches, including 
hormonal therapy and surgical interventions, often provide temporary 
relief. Furthermore, they have side effects and a notably high recurrence 
rate post-surgery (3). Because the symptoms associated with 
endometriosis are frequently misattributed to dysmenorrhea, a condition 
commonly experienced by adolescent girls and young women, significant 
delays in diagnosis can occur (4). This underscores the pressing need to 
elucidate the mechanisms underlying the pathogenesis of this disease 
and identify novel diagnostic markers. Endometriosis involves complex 
interactions between genetic, hormonal, and environmental factors (5). 
Recent studies have highlighted the role of metabolic dysregulation, 
particularly fatty acid metabolism, in the progression of this disease (7). 
However, the correlation between endometriosis and fatty acid 
metabolism remains largely understudied.

Endometriosis is a dynamic disease characterized by time-series 
changes in gene expression. Different stages of the disease involve 
distinct biological processes and molecular mechanisms, with fatty 
acid metabolism-related genes playing a key role (11). In the early 
stages, upregulation of fatty acid metabolism-related genes may help 
control local inflammatory responses and promote the repair of 
damaged tissue. For instance, these genes can increase the synthesis 
of anti-inflammatory substances and inhibit the production of 
pro-inflammatory factors, thereby reducing the inflammatory 
response. This mechanism is crucial for early response to disease 
progression. However, as the disease progresses, the expression of 
these genes may decline, leading to lipid metabolism imbalances and 
promoting the development of chronic inflammation and 
tissue remodeling.

Fluctuations in hormone levels significantly impact the regulation 
of fatty acid metabolism. In particular, estrogen and progesterone 

TABLE 2 Results of GO and KEGG enrichment analysis for FAMRDEGs.

Ontology ID Description Gene ratio Bg ratio p value p adj q value

BP GO:0006631 fatty acid metabolic process 9/17 401/18888 1.68E-11 1.22E-08 6.97E-09

BP GO:0001676 long-chain fatty acid metabolic process 5/17 109/18888 3.42E-08 1.24E-05 7.10E-06

BP GO:0120254 olefinic compound metabolic process 5/17 162/18888 2.48E-07 4.52E-05 2.58E-05

BP GO:0051223 regulation of protein transport 5/17 440/18888 3.29E-05 0.003424 0.001956

BP GO:0019369 arachidonic acid metabolic process 4/17 58/18888 1.85E-07 4.49E-05 2.56E-05

MF GO:0020037 heme binding 3/17 142/18522 0.000277 0.004808 0.001568

MF GO:0046906 tetrapyrrole binding 3/17 152/18522 0.000339 0.004808 0.001568

MF GO:0016705

oxidoreductase activity, acting on paired 

donors, with incorporation or reduction of 

molecular oxygen

3/17 179/18522 0.000546 0.006464 0.002108

MF GO:0008392 arachidonic acid epoxygenase activity 2/17 16/18522 9.44E-05 0.00427 0.001393

MF GO:0008391 arachidonic acid monooxygenase activity 2/17 18/18522 0.00012 0.00427 0.001393

KEGG hsa05204 Chemical carcinogenesis – DNA adducts 3/13 71/8840 0.000134 0.006702 0.006209

KEGG hsa04726 Serotonergic synapse 3/13 115/8840 0.000558 0.013944 0.012917

KEGG hsa00590 Arachidonic acid metabolism 2/13 61/8840 0.003479 0.053821 0.049856

KEGG hsa00830 Retinol metabolism 2/13 68/8840 0.004306 0.053821 0.049856

KEGG hsa00061 Fatty acid biosynthesis 1/13 18/8840 0.026167 0.22962 0.212701

GO, Gene Ontology; BP, Biological Process; CC, Cellular Component; MF, Molecular Function; KEGG, Kyoto Encyclopedia of Genes and Genomes; FAMRDEGs, Fatty Acid Metabolism-
Related Differentially Expressed Genes.
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FIGURE 4

GO and KEGG enrichment analyses for FAMRDEGs. (A) A bubble plot of GO and KEGG enrichment analysis results for BP, MF, and biological pathway 
(KEGG) in FAMRDEG. GO and KEGG terms are shown on the abscissa. (B–D) GO and KEGG enrichment analysis results for the network diagram of 
FAMRDEGs showing BP (B), KEGG (C), and MF (D). Lighter red and light brown nodes represent items, and nodes represent molecules. The attachment 
shows the genes and their corresponding access nodes. Larger pathway nodes indicate greater enrichment of the pathways in genes. The color of the 
gene node indicates its logFC. Red and blue represent upregulated and downregulated gene expression, respectively. The bubble size and color 
represent the number of genes and the size of the adj. p-value, respectively. A deeper red color indicates a smaller adj. p-value, whereas a bluer color 
indicates a larger adj. p-value. The screening criteria for GO and KEGG enrichment analyses were adj. p < 0.05 and FDR value q < 0.25, and the 
Benjamini–Hochberg p-value correction method was used. FAMRDEGs, fatty acid metabolism-related differentially expressed genes; GO, Gene 
Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; BP, biological process; MF, molecular function.
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affect the synthesis, oxidation, and transportation of fatty acids. At 
different stages of the disease course, hormonal changes will directly 
affect the expression patterns of the genes, resulting in different 
clinical manifestations. For example, when hormone levels are 

elevated, the expression of related genes may promote an increase in 
fatty acid synthesis, which may be inhibited by a decrease in hormone 
levels. In addition, signaling pathways in cells are also closely related 
to changes in gene expression (12). For example, activation of 
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FIGURE 5

GSEA for the combined dataset. (A) Mountain map display of four biological functions from the GSEA of combined GEO datasets. (B–E) GSEA results 
for genes with downregulated (B,C) and upregulated (D,E) expression. The screening criteria for GSEA were adj. p < 0.05 and FDR value q < 0.25, and 
the Benjamini–Hochberg p-value correction method was used. GSEA, gene set enrichment analysis.
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inflammatory signaling pathways affects the expression of fatty acid 
metabolism-related genes, leading to changes in metabolites that may 
further promote disease progression. Together, these findings suggest 
that the pathological characteristics of endometriosis are closely 
linked to dynamic changes in gene expression, which may have 
distinct biological significance at different stages.

Seventeen FAMRDEGs were identified in the present study. These 
genes were significantly involved in arachidonic acid and fatty acid 
metabolic processes. GeneMANIA predicted a complex interaction 
network between six hub genes and 20 functionally similar proteins. 
The integration of gene expression data and functional analyses 
highlighted the potential application of hub genes related to fatty acid 
metabolism as diagnostic markers and therapeutic targets in 
endometriosis. This approach could improve the diagnosis and 
treatment of endometriosis, potentially leading to personalized and 
effective therapeutic interventions. Identifying the key regulatory 
genes and pathways involved in fatty acid metabolism could provide 
new insights into the pathogenesis of this disease. PTGS2, CYP2C9, 
HSDL2, HSD17B3, ACSL4, and CYP2C18 were identified as hub genes 
in this study. Prostaglandin endoperoxidase synthase 2 (PTGS2) 
encodes COX-2 (13) that is overexpressed in the ectopic endometrium 
of women with endometriosis compared to that in the normal 
endometrium of women without the disease (14). PTGS2 emerged as 
the central hub gene in the present study, exhibiting the highest score 

among the identified FAMRDEGs. This gene plays an important role 
in the inflammatory processes associated with endometriosis, 
contributing to the progression and physiological manifestation of the 
disease (15).

Prostaglandin lactone synthase (PTGS2) (16) is a hub gene with 
significantly upregulated expression in patients with endometriosis, 
driving prostaglandin synthesis. This process intensifies local 
inflammatory and pain, a hallmark of endometriosis. PTGS2 activity 
is closely linked to chronic inflammation, pain perception, and 
pathological changes, further promoting disease progression. In 
addition, our study also found that the two cytochrome P450 enzymes 
(17), namely, CYP2C9 and CYP2C18, play an important role in fatty 
acid metabolism. Their expression not only influences hormone 
metabolism but may also disrupt the biological function of the 
endometrium, highlighting their role in fatty acid metabolism 
disorders and associated pathophysiological states.

This overexpression was correlated with elevated levels of 
prostaglandins, which are potent mediators of inflammation and pain. 
Moreover, PTGS2 is regulated by various factors, including hormonal 
therapy, which is a common treatment for endometriosis. Hormone 
therapy can enhance the expression of PTGS2, which may explain why 
it does not cure this disease (18). In addition, PTGS2 polymorphisms 
are linked to an increased risk of endometriosis, with genetic 
susceptibility mediated by inflammatory pathways (19). Similarly, the 

TABLE 3 Results of GSEA for combined datasets.

ID Set size Enrichment 
score

NES p value p adjust q value

HSIAO HOUSEKEEPING GENES 326 −0.64948 −3.26751 1.00E-10 9.95E-09 7.43E-09

REACTOME EUKARYOTIC TRANSLATION ELONGATION 68 −0.77561 −3.16842 1.00E-10 9.95E-09 7.43E-09

REACTOME EUKARYOTIC TRANSLATION INITIATION 93 −0.72453 −3.14164 1.00E-10 9.95E-09 7.43E-09

WP CYTOPLASMIC RIBOSOMAL PROTEINS 67 −0.76639 −3.109 1.00E-10 9.95E-09 7.43E-09

KEGG RIBOSOME 65 −0.76707 −3.09318 1.00E-10 9.95E-09 7.43E-09

REACTOME RESPONSE OF EIF2AK4 GCN2 TO AMINO ACID 

DEFICIENCY
77 −0.73949 −3.0839 1.00E-10 9.95E-09 7.43E-09

REACTOME NONSENSE MEDIATED DECAY NMD 89 −0.70339 −3.02811 1.00E-10 9.95E-09 7.43E-09

REACTOME SRP DEPENDENT COTRANSLATIONAL PROTEIN 

TARGETING TO MEMBRANE
86 −0.70743 −3.00935 1.00E-10 9.95E-09 7.43E-09

REACTOME SELENOAMINO ACID METABOLISM 81 −0.712 −2.9979 1.00E-10 9.95E-09 7.43E-09

REACTOME INFLUENZA INFECTION 125 −0.65741 −2.97902 1.00E-10 9.95E-09 7.43E-09

REACTOME REGULATION OF EXPRESSION OF SLITS AND ROBOS 134 −0.63804 −2.91137 1.00E-10 9.95E-09 7.43E-09

REACTOME CELLULAR RESPONSE TO STARVATION 113 −0.65122 −2.89995 1.00E-10 9.95E-09 7.43E-09

REACTOME TRANSLATION 197 −0.60453 −2.89103 1.00E-10 9.95E-09 7.43E-09

REACTOME RRNA PROCESSING 145 −0.61885 −2.84159 1.00E-10 9.95E-09 7.43E-09

KIM ALL DISORDERS DURATION CORR DN 127 −0.61318 −2.78356 1.00E-10 9.95E-09 7.43E-09

PECE MAMMARY STEM CELL UP 98 −0.63343 −2.77538 1.00E-10 9.95E-09 7.43E-09

CHNG MULTIPLE MYELOMA HYPERPLOID UP 38 −0.77545 −2.7727 1.00E-10 9.95E-09 7.43E-09

REACTOME ACTIVATION OF THE MRNA UPON BINDING OF THE 

CAP BINDING COMPLEX AND EIFS AND SUBSEQUENT BINDING 

TO 43S

47 −0.72904 −2.74679 1.00E-10 9.95E-09 7.43E-09

REACTOME SIGNALING BY ROBO RECEPTORS 175 −0.5808 −2.73332 1.00E-10 9.95E-09 7.43E-09

YAO TEMPORAL RESPONSE TO PROGESTERONE CLUSTER 17 145 −0.58658 −2.69339 1.00E-10 9.95E-09 7.43E-09

GSEA, Gene Set Enrichment Analysis; NES, Controlized Enrichment Score.
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upregulation of HSD17B3 expression may increase the risk of 
endometriosis (20).

At the same time, acid alcohol esterase 1 (ASAH1) and lipase 2 
(HSDL2) play crucial roles in fatty acid hydrolysis and metabolism. 
Changes in their expression directly impact intracellular energy 
metabolism, inflammatory response, and tissue remodeling, 
collectively influencing the biological characteristics and disease 
progression of endometriosis. The involvement of these central genes 
in regulating inflammation and fatty acid metabolism provides 
important clues for our understanding of the complex biology of 

endometriosis and may become key targets for future research and 
treatment. Therefore, elucidating their roles in inflammation and 
tissue remodeling could enhance our understanding of disease 
mechanisms and provide potential strategies for 
personalized treatment.

Our study identified several biological pathways closely linked to 
endometriosis through GO and KEGG enrichment analysis, offering 
key insights into the disease’s pathogenesis. Pathways associated with 
fatty acid metabolism, including long-chain fatty acid metabolism and 
arachidonic acid metabolism, revealed the effects of lipid metabolism 

FIGURE 6

Interaction network analysis for key genes. (A) PPI network of FAMRDEGs, as calculated using the STRING database. (B) The PPI network of the top six 
FAMRDEGs (PTGS2, CYP2C9, HSDL2 HSD17B3, ACSL4, and CYP2C18). The circle color (from red to yellow) represents the score (from high to low). 
(C) GeneMANIA forecasts the interaction network for hub genes and other genes of similar functions. Lines with different colors represent co-
expression and shared information, such as protein domains. The Hub circle represents the hub genes identified in the network, while the colored 
attachments indicate genes with similar functions. Corresponding to the color of each connection reflects different types of functional relationships, 
such as co-expression or shared protein domains.
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on inflammatory responses. The activation of these pathways may 
elevate intracellular fatty acid levels, thereby intensifying the local 
inflammatory environment. Notably, fatty acid metabolites such as 
prostaglandins play a crucial role in modulating immune responses 
and promoting endometrial growth, potentially exacerbating the 
pathological status of endometriosis. This observation aligns with 
previous studies that underscore the fundamental role of arachidonic 
acid metabolism in the inflammatory processes associated with 
endometriosis. Jiang et al. (21) demonstrated that arachidonic acid 
metabolism is the most significantly enriched pathway among the 
common DEGs identified across various subtypes of endometriosis. 
This suggests the essential role of this metabolic process in the 
inflammatory pathogenesis of the disease. Upregulation of the 
expression of genes involved in the arachidonic acid pathway indicates 
a heightened inflammatory response, which is a hallmark of 
endometriosis. In addition, the role of fatty acid metabolism in 
endometriosis has been corroborated by metabolomic studies. Ortiz 
et  al. (22) reviewed the metabolomic profiles of patients with 
endometriosis and identified significant alterations in lipid metabolism, 

TABLE 4 mRNA-miRNA interaction of key genes.

mRNA miRNA

ACSL4 hsa-miR-15a-5p

ACSL4 hsa-miR-19a-3p

ACSL4 hsa-miR-19b-3p

ACSL4 hsa-miR-26b-5p

ACSL4 hsa-miR-33a-5p

ACSL4 hsa-miR-93-5p

ACSL4 hsa-miR-96-5p

ACSL4 hsa-miR-182-5p

ACSL4 hsa-miR-200b-3p

ACSL4 hsa-miR-186-5p

ACSL4 hsa-miR-200c-3p

ACSL4 hsa-miR-106b-5p

ACSL4 hsa-miR-301a-3p

ACSL4 hsa-miR-339-5p

ACSL4 hsa-miR-429

ACSL4 hsa-miR-33b-5p

ACSL4 hsa-miR-301b-3p

ASAH1 hsa-miR-27a-3p

ASAH1 hsa-miR-214-3p

ASAH1 hsa-miR-27b-3p

ASAH1 hsa-miR-134-5p

ASAH1 hsa-miR-299-3p

ASAH1 hsa-miR-337-3p

ASAH1 hsa-miR-495-3p

ASAH1 hsa-miR-193b-3p

ASAH1 hsa-miR-656-3p

CRYL1 hsa-miR-1296-5p

PTGS2 hsa-miR-128-3p

miRNA, MicroRNA.

TABLE 5 mRNA-TF interaction of key genes.

mRNA TF

ACSL4 AR

ACSL4 CEBPA

ACSL4 CEBPB

ACSL4 EGR1

ACSL4 ERG

ACSL4 FOXA1

ACSL4 GATA1

ACSL4 GATA2

ACSL4 SPI1

ASAH1 CEBPB

ASAH1 CTCF

ASAH1 ELF1

ASAH1 ERG

ASAH1 FOXA1

ASAH1 FOXA2

ASAH1 GABPA

ASAH1 HNF4A

ASAH1 HOXB13

ASAH1 POLR2A

ASAH1 SPI1

ASAH1 TBP

CRYL1 SPI1

CRYL1 ERG

CRYL1 FOXA1

CRYL1 FOXA2

CRYL1 RELA

ETFB AR

ETFB EGR1

ETFB ELF1

ETFB EP300

ETFB ERG

ETFB ESRRA

ETFB FOS

ETFB FOSL2

ETFB FOXA1

ETFB FOXA2

ETFB GABPA

ETFB HNF4A

ETFB HOXB13

ETFB JUN

ETFB JUND

ETFB MAX

ETFB MYC

ETFB NR3C1

(Continued)
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including those of fatty acids. These metabolic changes demonstrate 
the impact of the disease on cellular processes, such as energy 
production, oxidative stress, and inflammation. The identification of 
specific metabolites could reveal non-invasive biomarkers for early 
diagnosis and further elucidate the pathophysiology of endometriosis.

At the same time, the enrichment results indicate that abnormal 
activity in key signaling pathways is directly linked to cell proliferation 
and survival, potentially dysregulating the cell cycle, thereby 
promoting disordered proliferation and migration of endometrial cells 
and increasing the formation of abnormal endometrial tissue. 
Meanwhile, signaling pathways associated with apoptosis, such as 
enrichment of apoptosis signaling pathways, indicate changes in cell 
survival mechanisms in the disease. The activation of 
pro-inflammatory cytokines may suppress normal apoptosis, thereby 
enhancing the survival and persistence of endometrial cells.

In this study, we focused on identifying genetic and molecular 
factors associated with fatty acid metabolism in endometriosis. 
However, external influences such as diet, hormone fluctuations, and 
lifestyle factors are crucial in disease occurrence and progression. 
These factors may have profound effects on fatty acid metabolism and 
play a crucial role in the occurrence and development of the disease. 
Studies have shown that eating habits (23) significantly affect lipid 
metabolism. A diet rich in omega-3 fatty acids (such as fish and nuts) 
can reduce chronic inflammation, which is often associated with the 
pathological processes of endometriosis. By inhibiting the synthesis 
of inflammatory mediators, omega-3 fatty acids may help alleviate 
symptoms and slow disease progression.

Antioxidant intake may improve lipid metabolism by reducing 
oxidative stress, which could influence the risk of developing 
endometriosis. Hormone levels, especially estrogen and progesterone 
(24), play a crucial role in regulating fatty acid metabolism. Estrogen 
can enhance the synthesis and transport of fatty acids by activating 
genes related to fat metabolism, thereby changing the function of fat 
cells (hormone fluctuations not only affect metabolism but also affect 
the expression of identified genes, thereby further interfering with the 
progress of the disease).

Lifestyle factors such as physical activity and environmental 
exposure can also affect fatty acid metabolism and disease severity. 
Lack of exercise is often associated with obesity, which may induce 
inflammatory responses and aggravate the symptoms of 
endometriosis. In addition, endocrine disruptors in the environment 
may affect hormone balance and further change metabolic pathways.

GSEA results indicate upregulation of lipid metabolism and 
toxicity-related pathways, a finding that has important clinical and 
therapeutic implications, especially in the management and 
intervention of endometriosis. Upregulation of lipid metabolism 
suggests that in a pathological state, the accumulation of fatty acids 
and related metabolites may lead to intensification of the inflammatory 
response, which is considered a key factor in promoting the 
development of endometriosis. Therefore, therapeutic strategies for 
lipid metabolism may help relieve local inflammation, thereby 
reducing patient symptoms and improving quality of life.

On the other hand, upregulation of toxic pathways suggests that 
apoptosis and stress responses may be imbalanced. In endometriosis, 
ectopic cells may be in a state of persistent stress, resulting in changes 
in cell physiological function. Recognizing the interaction of these 
toxic pathways can provide clues to novel therapeutic strategies, such 
as the use of antioxidants to combat cellular oxidative stress, or the use 
of small molecules to target specific toxic signaling pathways to restore 
normal cell function and slow disease progression.

The immune landscape of endometriosis is intricate and 
encompasses various immune cell types that considerably affect 
disease pathogenesis. In our study, ssGSEA revealed a correlation 
between endometriosis and several immune cell types, including 
activated CD4 + T cells, gamma-delta T cells, CD56 dim natural killer 
cells, eosinophils, monocytes, natural killer T cells, and plasmacytoid 
dendritic cells. The peritoneal fluid of women with endometriosis has 
a higher concentration of activated CD4 + T cells than that of healthy 
controls, suggesting an altered immune response in these patients. 
Furthermore, the peritoneal fluid of women with endometriosis 
displays increased levels of immunosuppressive cytokines, such as 
IL-10 and IL-12, which may inhibit the activity of activated CD4 + T 
cells and contribute to immune evasion by endometriotic lesions (25). 

TABLE 5 (Continued)

mRNA TF

ETFB NRF1

ETFB POLR2A

ETFB RELA

ETFB RUNX1

ETFB RUNX1T1

ETFB SMAD3

ETFB SMARCA4

ETFB SP1

ETFB SPI1

ETFB STAT3

ETFB USF1

ETFB YY1

HSD17B3 AR

HSD17B3 CEBPB

HSD17B3 CTCF

HSD17B3 FOXA1

HSD17B3 HOXB13

HSD17B3 RAD21

HSD17B3 SMC3

HSD17B3 STAG1

HSDL2 CTCF

HSDL2 EGR1

HSDL2 NRF1

PTGS2 FOXA1

PTGS2 USF1

PTGS2 CEBPA

PTGS2 CEBPB

PTGS2 ERG

UROD GATA1

UROD NRF1

UROD BCL11A

TF, Transcription factors.
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The presence of these cytokines correlated with a reduction in 
peritoneal lymphocytes, particularly within the HLA-DR + CD4 + T 
cell subpopulation, further indicating an impaired immune response 
(26). In addition, the interactions between T cells and extracellular 
matrix (ECM) proteins are modified during endometriosis. Activated 
T cells from women with endometriosis show increased adhesion to 
ECM proteins, such as collagen IV and fibronectin. This suggests that 

these interactions might contribute to the pathogenesis of the disease 
by facilitating the implantation and survival of ectopic endometrial 
tissue. This enhanced adhesion could be  a result of the altered 
expression of surface antigens on T cells. However, no significant 
differences in these antigens were observed between patients with 
endometriosis and healthy controls (27). These results indicate a close 
correlation between activated CD4 + T cells and endometriosis, which 
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FIGURE 9

Immune infiltration analysis by ssGSEA algorithm. (A) Group comparison plot of immune cell infiltration in the Endometriosis and Control groups in 
combined GEO datasets. (B) A correlation heatmap of immune cell abundance. (C) A bubble plot showing the correlation between hub genes and 
immune cell infiltration in combined GEO datasets. (D) A scatter plot showing TOP1-positive correlation between hub genes and immune cells. (E) A 
scatter plot showing TOP1-negative correlation between hub genes and immune cells. ns represents p ≥ 0.05; *p < 0.05; **p < 0.01; and ***p < 0.001. 
r < 0.3, r = 0.3–0.5, r = 0.5–0.8, and r > 0.8 were considered weak or irrelevant, weak, moderate, and strong correlation, respectively. Light red and 
light blue represent the Endometriosis and Control groups, respectively. Red indicates a positive correlation, whereas blue indicates negative 
correlation. The depth of the color represents the strength of the correlation. ssGSEA, single-sample gene set enrichment analysis; EMs, endometriosis.
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is consistent with our results. In the present study, ACSL4 had the 
strongest positive correlation with effector memory CD4 + T cells. In 
contrast, HSDL2 showed the strongest negative correlation with 
activated CD8 + T cells. These results indicate that hub genes (ACSL4 
or HSDL2) are promising therapeutic targets for endometriosis.

Endometriosis (EMs) is a disease characterized by chronic 
inflammation and immune imbalances; a growing number of studies 
have revealed the key role of immune cells, especially T cell subsets 
(28), in the occurrence and development of the disease. In this study, 
we observed a potential correlation of effector memory CD8 + T cells 
in endometriosis tissues, suggesting that it may be an important factor 
affecting the immune microenvironment.

Effector memory CD8 + T cells (Tem) are a long-term survival 
subpopulation of T cells that are highly specific and can quickly recognize 
and respond to specific antigens. Typically, these cells quickly activate 
immune responses when the body is re-exposed to the same antigen, 
enhancing the body’s defense. However, in the context of endometriosis, 
these cells may be continuously activated by prolonged exposure to 
antigens in ectopic endometrial tissue. Effector memory CD8 + T cells 
are able to secrete pro-inflammatory cytokines (29) such as interferon-γ 
(IFN-γ) and tumor necrosis factor-α (TNF-α), thereby mediating local 
inflammatory responses and increasing tissue damage. This 
inflammatory environment may not only promote the development of 
ectopic lesions but may also be closely related to the pain symptoms of 
the disease, as inflammatory mediators can directly or indirectly activate 
pain-related neural pathways.

Fatty acid synthase 4 (ACSL4) plays a crucial role in fatty acid 
metabolism and is closely linked to immune cell infiltration in 
endometriosis, mainly because ACSL4 plays a key role in fatty acid 
metabolism. ACSL4 influences the polarization of immune cells, 
especially in macrophages and T cells (30). Specifically, ACSL4 
promotes the enhancement of anti-inflammatory response by 
promoting the synthesis of specific fatty acids (such as arachidonic 
acid), affecting the polarization process of macrophages, causing them 
to polarize to M2. This suggests that ACSL4 is not only involved in 
regulating fatty acid metabolism but also directly affects the function 
and infiltration patterns of immune cells, making them play a more 
effective role in the microenvironment of endometriosis. At the same 
time, ACSL4 further regulates the response of immune cells by 
changing the lipid composition of the cell membrane (31), which can 
significantly affect the migration, proliferation, and activation of 
immune cells, which is directly related to local inflammatory 
responses. In endometriosis, the expression of ACSL4 may be closely 
related to the synthesis of pro-inflammatory cytokines, which will lead 
to increased infiltration of immune cells in ectopic tissues, aggravating 
local inflammatory responses and corresponding symptoms. 
Therefore, understanding the specific mechanisms of ACSL4  in 
immune cell infiltration will help uncover the pathological 
mechanisms of endometriosis and provide new targets for future 
therapeutic strategies. Follow-up studies can further explore the 
improvement of clinical symptoms in patients with endometriosis by 
regulating ACSL4 expression activities, which will be  a potential 
therapeutic development direction.

Despite our comprehensive analyses, this study has some 
limitations. First, this study did not combine wet laboratory validation. 
Rather, it relied only on bioinformatics analyses. Therefore, further 
experimental validation is needed to confirm our findings. Second, 
the sample size was small. Therefore, more samples are needed for 

validation. In addition, there was a lack of clinical validation analyses 
to ensure that the findings have practical applications.

In our study, key molecular features associated with endometriosis 
were identified through bioinformatics analysis and computational 
tools using publicly available gene expression dataset. Specifically, 
we  downloaded endometriosis-related datasets (GSE120103 and 
GSE25628) from the GEO database, and batch processing was 
performed using the R package SVA to obtain the integrated gene 
expression dataset. Subsequently, differential analysis was performed 
using the R package limma to identify 405 differentially expressed 
genes. At the same time, six hub genes were screened from the 
differential genes through the MCC algorithm of the CytoHubba 
plug-in of the Cytoscape software. These six hub genes present a 
certain accuracy in the verification model, with an average AUC > 0.7. 
This suggests that they have high accuracy in the region of patients 
with endometriosis and healthy individuals. Therefore, our research 
not only reveals potential biomarkers but also provides a theoretical 
basis for future clinical applications.

However, owing to time and resource limitations, we have not yet 
carried out laboratory verification work. We  plan to add relevant 
experiments to future studies to verify the function and mechanism 
of identified hub genes through in vitro and in vivo experiments; this 
will further enhance the application value of our research results and 
facilitate future research and treatment of endometriosis.

In this study, we aimed to explore the molecular mechanisms of 
endometriosis by analyzing the GSE120103 and GSE25628 datasets. 
Endometriosis is a complex gynecological disease with unclear 
pathogenesis, and so understanding its molecular basis is crucial to 
developing effective diagnostic and therapeutic methods. Our core 
analytical steps included identifying and screening differentially 
expressed genes (DEGs). By comparing the expression profiles of 
healthy tissues and lesion tissues, a series of genes that were significantly 
differentially expressed in endometriosis were successfully screened. 
Subsequently, the CytoHubba plug-in of the Cytoscape software was 
used along with the MCC algorithm to screen six hub genes from 
differential genes. These genes have important centrality in the network 
and likely play a key role in the development of endometriosis.

To verify the clinical application value of these hub genes, 
we constructed a validation model; the results showed that the average 
AUC of these genes was >0.7  in patients with endometriosis and 
healthy individuals, indicating that they have good predictive 
capabilities and potential biomarker effects.

A larger sample size would better represent genetic diversity and 
variability in a wider patient population. However, owing to time and 
resource constraints, we are currently unable to obtain a larger volume 
of sample data. Future research will consider incorporating more 
samples in a bid to further explore the complex heterogeneity and 
potential therapeutic targets of endometriosis. Moreover, we plan to 
include samples from patients of different ethnicities to more 
comprehensively explore the heterogeneity of endometriosis.

In conclusion, we systematically integrated and analyzed two GEO 
datasets and identified 17 DEGs related to fatty acid metabolism using 
a series of bioinformatics methods. The PPI network identified six hub 
genes: PTGS2, CYP2C9, HSDL2, HSD17B3, ACSL4, and CYP2C18. 
Moreover, ssGSEA immune infiltration analysis revealed that ACSL4 
showed the strongest positive correlation with effector memory CD8 
T cells, whereas HSDL2 showed the strongest negative correlation with 
activated CD8 T cells. These findings not only enrich our understanding 
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of the molecular mechanisms of the disease but also provide valuable 
insights for the development of new diagnostic markers and therapeutic 
targets in the future. We  are committed to further experimental 
validations and clinical application transformations in future studies.
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