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Background: Diabetic kidney disease (DKD) is one of the common microvascular 
complications of diabetes. The exploration of serum biomarkers holds promise 
for improving the efficiency and accuracy of early DKD diagnosis. This study 
aims to investigate the diagnostic value of transforming growth factor-β1 
(TGF-β1) and cystatin C (CysC) in DKD patients.

Methods: A total of 126 patients with type 2 diabetes mellitus (T2DM) diagnosed 
at Dongzhimen Hospital, Beijing University of Chinese Medicine, between 
May 2021 and March 2023 were enrolled. Patients were categorized based on 
proteinuria levels and estimated glomerular filtration rate (eGFR). Correlation 
analyses were conducted to examine the relationships between serum TGF-β1, 
CysC, and clinical parameters. Logistic regression was applied to identify 
correlation factors for DKD and renal function impairment in T2DM patients. 
Furthermore, receiver operating characteristic (ROC) curve analysis was 
performed to assess diagnostic efficacy.

Results: Significant differences in TGF-β1 and CysC levels were observed across 
groups with varying proteinuria levels. CysC was positively correlated with 
TGF-β1 (r = 0.640, p < 0.001). TGF-β1 has been associated with proteinuria levels 
in T2DM patients. Each unit increase in TGF-β1 was associated with a 1.122-fold 
and 1.470-fold higher odds of the presence of microalbuminuria and proteinuria, 
respectively, in the normal proteinuria (NP) group. TGF-β1 and CysC showed 
varying diagnostic performance. TGF-β1 better distinguished microalbuminuria 
group (MP) from NP, while CysC alone was less effective. T2DM patients with 
impaired renal function exhibited significantly higher CysC and TGF-β1 levels 
compared to those with normal renal function. CysC emerged as an associated 
factor of renal function decline (OR = 2.255, p = 0.008). CysC demonstrated 
superior diagnostic efficacy compared to TGF-β1  in predicting renal function 
impairment (AUC = 0.974).

Conclusion: CysC and TGF-β1 can serve as potential biomarkers for assessing 
renal impairment and proteinuria in T2DM patients. Their combined evaluation 
demonstrates diagnostic value and clinical application potential.
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1 Introduction

Diabetes mellitus is a chronic metabolic disorder. According 
to the IDF Diabetes Atlas, type 2 diabetes mellitus (T2DM) 
accounts for more than 90% of all diabetes cases globally, with an 
incidence rate that continues to rise annually (1). Diabetic kidney 
disease (DKD) is one of the primary microvascular complications 
of T2DM and has become the leading cause of end-stage renal 
disease (ESRD) (2). Early diagnosis is critical for the prevention 
and treatment of DKD (3). However, the current gold standard of 
renal biopsy is invasive, non-replicable, and carries a risk of 
bleeding, making it unnecessary for clinical DKD diagnosis. 
Glomerular filtration rate (GFR) and proteinuria are key 
parameters for evaluating kidney function and the severity of 
chronic kidney disease (CKD). However, these changes are not 
specific to DKD. Moreover, GFR calculated based on serum 
creatinine levels often remains unremarkable in the early stages of 
DKD (2, 4). The sensitivity and accuracy of microalbuminuria in 
assessing renal disease onset and progression in T2DM patients 
have also been increasingly questioned (5–7). This often results in 
delayed diagnosis and intervention for DKD, and once overt 
nephropathy develops, it irreversibly progresses to 
ESRD. Therefore, researchers have been seeking new biomarkers 
for DKD to improve early diagnostic accuracy and enhance the 
ability to predict disease progression.

DKD lesions may involve the glomeruli, tubules, interstitium, 
and vasculature, ultimately leading to irreversible renal fibrosis. 
Transforming growth factor-beta1 (TGF-β1) is a recognized 
profibrotic factor involved in glomerulosclerosis, tubulointerstitial 
fibrosis, and tubular epithelial cell transdifferentiation, playing a 
crucial role in the progression of CKD (8). Under DKD 
pathological conditions, factors such as hyperglycemia and renin-
angiotensin system (RAS) activation stimulate the production of 
TGF-β1  in tubular cells, podocytes, mesangial cells, and 
glomerular endothelial cells (9–12). TGF-β1 has been identified 
as a key pathogenic factor in DKD progression (13). Serum 
cystatin C (CysC), unaffected by race or sex, is emerging as a 
potential alternative to serum creatinine for assessing kidney 
function (14). However, some studies suggest that its utility in 
early DKD evaluation remains controversial (7, 15–17). 
Additionally, elevated CysC expression triggered by TGF-β1 
appears to be a common feature of the fibrotic process (18). Meta-
analyses of several randomized controlled trials have confirmed 
that increased serum levels of TGF-β1 and CysC are associated 
with an elevated risk of DKD (19, 20), highlighting their 
significance in the onset and progression of DKD. However, 
systematic studies on the diagnostic value of TGF-β1 and CysC in 
DKD patients and their correlation with clinical parameters 
remain limited.

This study aims to investigate the expression characteristics of 
TGF-β1 and CysC in patients with varying degrees of renal 
impairment, analyze their correlation with clinical parameters, 
and evaluate their diagnostic value. This provides new insights 
and evidence for early diagnosis and monitoring of 
DKD. Furthermore, by analyzing the relationship between these 
biomarkers and disease progression, this study seeks to deepen 
understanding of disease mechanisms and identify potential 
therapeutic targets.

2 Methods

2.1 Study design and population

Patients diagnosed with T2DM at Dongzhimen Hospital, Beijing 
University of Chinese Medicine, from May 2021 to March 2023 were 
selected as study subjects. The study was approved by the Ethics 
Committee of Dongzhimen Hospital, Beijing University of Chinese 
Medicine (Approval No. 2022DZMEC-062-03), and informed consent 
was obtained from all participants. The study procedures are detailed 
in Figure 1.

2.2 Inclusion and exclusion criteria

Inclusion criteria: (1) Age between 30 and 90 years. (2) Diagnosis 
of T2DM based on the Guidelines for the Prevention and Treatment 
of Type 2 Diabetes in China (2020 Edition) (21); diagnosis of DKD 
based on the 2007 National Kidney Foundation (NKF-KD/OQI) 
Guidelines (22), the 2020 Clinical Practice Guideline for the 
Evaluation and Management of CKD by the Kidney Disease: 
Improving Global Outcomes (KDIGO) organization (23) and the 2021 
Chinese Clinical Guidelines for the Diagnosis and Treatment of 
Diabetic Kidney Disease (24). (3) Availability of complete clinical 
data. (4) Voluntary signing of an informed consent form.

Exclusion criteria: (1) Patients who had undergone dialysis or 
kidney transplantation. (2) Patients with primary or secondary 
nephropathy. (3) Patients with urinary tract infections or other acute 
or chronic inflammatory conditions. (4) Patients with abnormal liver 
function, autoimmune diseases, malignancies, hematologic disorders, 
or mental illnesses. (5) Patients who had experienced trauma, surgery, 
or psychological stress within the past 6 months.

2.3 Grouping strategies

2.3.1 Grouping strategy 1
The T2DM patients were categorized into three distinct groups based 

on their urinary albumin-to-creatinine ratio (UACR), which serves as an 
indicator of the severity of albuminuria. The groups included: the normal 
proteinuria group (NP group) (UACR <30 mg/g, n = 30), the 
microalbuminuria group (MP group) (UACR ranging from 30 to 
300 mg/g, n = 31), and the proteinuria group (P group) (UACR 
>300 mg/g, n = 65).

2.3.2 Grouping strategy 2
In a second classification, patients with T2DM were divided into 

two categories according to their estimated glomerular filtration rate 
(eGFR). These were: the normal renal function group (NRF group) 
(eGFR ≥90 mL/min/1.73 m2, n = 44) and the group with decreased 
renal function (DRF group) (eGFR <90 mL/min/1.73 m2, n = 82).

2.4 Data collection

2.4.1 Participant characteristics
Clinical data were collected, including age, gender, height, weight, 

systolic blood pressure (SBP), and diastolic blood pressure (DBP). 
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Body mass index (BMI) was calculated as weight divided by the square 
of height (kg/m2).

2.4.2 Laboratory testing
All patients were required to fast for more than 8 h. A single 

venous blood sample was collected from each patient on the second 
day after admission, in the early morning, after fasting. The blood 
sample was processed for centrifugation within 2 h of collection. Key 
biochemical parameters, including fasting plasma glucose (FPG), total 
protein (TP), urea, serum creatinine (Scr), uric acid (UA), and CysC, 
were quantified using an automated biochemical analyzer (Beckman 
Coulter, AU5821, United States). Complete blood count (CBC) was 
performed using an automated hematology analyzer (Beckman 
Coulter, DXH900, United States). The level of interleukin-6 (IL-6) was 
measured by chemiluminescence assay with an electrochemical 
luminescence assay (Roche Diagnostics, cobas e401). Five milliliters 
morning urine sample was collected, and UACR was measured using 
an automated biochemical analyzer (Beckman Coulter, AU5800, 
United States) by nephelometric immunoassay.
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2.4.3 TGF-β1 measurement
Fasting venous blood samples were collected from all participants 

early on the second morning after admission and placed in 

anticoagulant tubes. The samples were centrifuged at 3,000 r/min at 
4°C for 10 min, and the supernatant serum was aliquoted into EP 
tubes, labeled, and stored at −80°C. The TGF-β1 ELISA Kit (Wuhan 
Elabscience Biotechnology Co., Ltd., E-EL-0162) was used to 
determine the TGF-β1 concentration. The procedure was strictly 
followed according to the instructions. The intra-assay and inter-assay 
coefficients of variation were both <10%. For each plate, a standard 
curve (0–2,000 pg/mL, R2 > 0.99) and dual blank controls were set. 
The detailed operational procedure is provided in the 
Supplementary material.

2.5 Statistical analysis

All statistical analyses were performed using SPSS 26.0. The 
normality distribution was assessed using the Shapiro–Wilk test 
(n < 50) or the Kolmogorov–Smirnov test (n ≥ 50). p > 0.05 and 
the Q–Q plot indicates an approximate normal distribution, the 
data is considered to follow a normal distribution. For normally 
distributed data, comparisons between two groups were conducted 
using independent sample t-tests, and comparisons among 
multiple groups were performed using one-way analysis of variance 
(ANOVA). Non-normally distributed data were analyzed using 
nonparametric tests, with comparisons between two groups 
conducted using the Mann–Whitney U test and comparisons 
among multiple groups using the Kruskal–Wallis test. Categorical 
data were analyzed using the chi-square test. Bonferroni correction 
was applied to adjust p-values for multiple comparisons within 
groups. Pearson or Spearman rank correlation tests were used to 

FIGURE 1

Diagram of the study design.
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assess relationships. Logistic regression analysis was conducted to 
identify correlated factors for DKD in T2DM patients. The area 
under the receiver operating characteristic (ROC) curve (AUC) 
was used to evaluate the diagnostic value. p < 0.05 was considered 
statistically significant.

3 Results

3.1 Analysis based on proteinuria groups

3.1.1 Baseline characteristics of patients by 
different levels of proteinuria

A total of 126 T2DM patients were enrolled in this study and 
classified into groups based on proteinuria levels: NP group (n = 30), 
MP group (n = 31), and P group (n = 65). No statistically significant 
differences were observed among the three groups in terms of age, 
gender, BMI, or DBP (p > 0.05). Significant differences in laboratory 
parameters, including Hb, PLT, FPG, UA, TP, Scr, and eGFR, were 
found among the three groups. Particularly, UA, Scr, and 24-UTP 
levels in the P group were significantly higher than other two groups 
(p < 0.001). Furthermore, SII, IL-6, and UACR showed highly 
significant differences among the three groups (p < 0.001) (Table 1). 
Serum CysC concentrations in each group were as follows: NP 
group, 9.583 ± 3.150 (10 mg/L); MP group, 9.410 ± 2.373 (10 mg/L); 

P group, 34.98 ± 15.46 (10 mg/L). Significant differences in serum 
CysC concentrations were observed among the three groups 
(p < 0.001), with CysC levels in the P group significantly higher than 
those in the NP and MP groups (p < 0.001) (Figure 2A). Serum 
TGF-β1 concentrations were as follows: NP group, 
21.455 ± 9.790 ng/mL; MP group, 28.881 ± 7.115 ng/mL; P group, 
42.041 ± 9.532 ng/mL. Significant differences in TGF-β1 
concentrations were detected among the three groups (p < 0.001) 
(Figure 2B).

3.1.2 Correlation of TGF-β1 and CysC with clinical 
indicators

Serum levels of TGF-β1 and CysC demonstrated complex 
correlations with multiple physiological markers. TGF-β1 exhibited 
significant positive associations with CysC (r = 0.640) (Figure  3A). 
TGF-β1 exhibited significant negative correlations with eGFR 
(r = −0.611; Figure 3B), age, Hb, and TP, while demonstrating positive 
correlations with 24-UTP (r = 0.507), UACR (r = 0.386; Figure 3C), PLT, 
UA, IL-6, SII, and SBP (Table 2). Multivariate linear regression analysis 
incorporating these covariates revealed that TGF-β1 remained 
significantly associated with PLT, 24-UTP, and UACR (Table 2). Similarly, 
CysC demonstrated strong positive correlations with 24-UTP (r = 0.585), 
UACR (r = 0.658; Figure 3E), IL-6, SII, UREA, UA, and SBP, along with 
significant inverse correlations with eGFR (r = −0.888; Figure 3D), FPG, 
Hb, and TP. Multivariate regression analysis adjusting for these variables 

TABLE 1 Baseline characteristics of patients grouped by proteinuria levels.

Variable NP group (n = 30) MP group (n = 31) P group (n = 65) p-value

NDKD (n = 30) DKD (n = 96)

Age (years) 58.8 ± 11.616 58.87 ± 11.575 60.12 ± 11.145 0.817

Gender 0.213

  Male (%) 17 (56.67) 17 (54.84) 46 (70.77)

  Female (%) 13 (43.33) 14 (45.16) 19 (29.23)

Durations (years) 10.47 ± 7.09 12.75 ± 7.16 17.38 ± 6.90 <0.001

BMI (kg/m2) 24.93 (22.69, 27.235) 25.54 (23.63, 29.76) 25.56 (22.97, 28.06) 0.798

SBP (mmHg) 134.8 ± 18.357 132.1 ± 18.846 144.02 ± 18.785*## 0.007

DBP (mmHg) 81.03 ± 14.371 78.13 ± 14.435 77.25 ± 10.364 0.388

Hb (g/L) 145.17 ± 15.757 140.35 ± 21.827 105.15 ± 20.136**## <0.001

PLT (109/L) 224.13 ± 49.309 236.39 ± 63.964** 235.52 ± 79.082**## 0.262

FPG (mmol/L) 10.825 (8.3825, 15.855) 10.07 (7.06, 14.49) 7.82 (6.345, 11.13)** 0.006

UREA (mmol/L) 5.67 (5.10, 6.86) 5.59 (4.42, 7.48) 11.53 (8.42, 14.70)6**## <0.001

UA (μmol/L) 342.05 (284.35, 410.475) 295.4 (266.8, 407.4) 396 (329.7, 434.425)**## <0.001

TP (g/L) 71.35 (66.25, 76.55) 73.3 (65.8, 75.3) 63.75 (59.325, 66.875)**## <0.001

Scr (μmol/L) 63.25 (53.4, 83.15) 65.4 (60.7, 73) 334.6 (133.7, 476.8)**## <0.001

eGFR (mL/min/1.73m2) 98.33 (83.83, 106.88) 97.25 (85.28, 116.87) 39.72 (22.57, 54.25)**## <0.001

IL6 (pg/mL) 2.85 (1.5, 4.77) 2.98 (1.55, 5.78) 5.31 (3.53, 7.26)**## <0.001

SII 488.84 (345.93, 790.99) 491.17 (398.47, 715.83) 595.82 (491.74, 957.48) 0.002

24-UTP (mg) 96.5 (51, 139) 174 (114, 246) 3,754 (1567.25, 6,861)**## <0.001

UACR (mg/g) 15 (10, 16.25) 150 (100, 180) 800 (800, 1,500)**## <0.001

BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; WBC, white blood cell count; Hb, hemoglobin; PLT, platelet count; FPG, fasting plasma glucose; UA, uric 
acid; TP, total protein; Scr, serum creatinine; eGFR, estimated glomerular filtration rate; IL6, interleukin-6; SII, systolic index of inflammation; CysC, cystatin C; 24-UTP, 24-h urinary total 
protein; UACR, urine albumin creatinine ratio; TGF-β1, transforming growth factor beta 1. Compared with normal proteinuria group, *p < 0.05 and **p < 0.01; compared with 
microproteinuria group, #p < 0.05 and ##p < 0.01.
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confirmed that CysC maintained significant associations with eGFR and 
UACR (Table 3).

3.1.3 Logistic regression analysis of TGF-β1 and 
CysC (grouped by proteinuria)

Univariate logistic regression analysis showed that TGF-β1 may be a 
factor influencing the occurrence of microproteinuria (p = 0.003); SBP, Hb, 
FPG, UREA, UA, TP, Scr, eGFR, IL6, TGF-β1, and CysC may be factors 
influencing the occurrence of proteinuria (p < 0.05) 
(Supplementary Table S1). After adjusting for factors such as SBP, Hb, FPG, 
UREA, UA, TP, Scr, eGFR, SII and IL6, it was found that TGF-β1 has been 
associated with proteinuria levels in T2DM patients. Each unit increase in 
TGF-β1 was associated with a 1.122-fold and 1.470-fold higher odds of the 
presence of microalbuminuria and proteinuria, respectively, in the NP 

group. In contrast, CysC showed no clinical significance after adjustment 
(see Table 4).

3.1.4 Logistic regression analysis of serum TGF-β1 
and CysC for DKD

The NP group was defined as the NDKD group, while the MP 
group and P group were defined as the DKD group. Using the presence 
of DKD as the dependent variable (NDKD = 0, DKD = 1), univariate 
logistic regression analysis indicated that Hb, UREA, TP, Scr, eGFR, 
IL-6, TGF-β1, and CysC were potential factors influencing DKD 
(p < 0.05) (Supplementary Table S2). Multivariate logistic regression 
analysis revealed that, after adjusting for SBP, Hb, FPG, UREA, UA, 
TP, Scr, eGFR, IL-6, and SII, elevated serum TGF-β1 showed a 
significant association with DKD. Each unit increase in serum TGF-β1 

FIGURE 2

Expression levels of CysC and TGF-β1. (A) CysC. (B) TGF-β1. Compared with NP group, *p < 0.05 and **p < 0.01; compared with MP group, #p < 0.05 
and ##p < 0.01.

FIGURE 3

Correlation of TGF-β1 and CysC with clinical indicators. (A) Correlation between TGF-β1 and CysC. (B) Correlation between TGF-β1 and eGFR. 
(C) Correlation between TGF-β1 and UACR. (D) Correlation between CysC and eGFR. (E) Correlation between CysC and UACR.
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TABLE 2 Correlation between TGF-β1 and clinical indicators.

Variable Correlation analysis Multiple linear regression

r p-value B p-value

Age (years) −0.200 0.025 −0.084 0.461

BMI (kg/m2) 0.037 0.678 — —

SBP (mmHg) 0.266 0.003 0.041 0.439

DBP (mmHg) 0.025 0.784 — —

Hb (g/L) −0.436 <0.001 0.04 0.517

PLT (109/L) 0.300 0.001 0.051 0.002

FPG (mmol/L) −0.101 0.259 — —

UREA (mmol/L) 0.614 <0.001 −0.027 0.934

UA (μmol/L) 0.316 <0.001 −0.002 0.856

TP (g/L) −0.334 <0.001 0.047 0.750

eGFR (mL/min/1.73m2) −0.611 <0.001 −0.012 0.844

IL6 (pg/mL) 0.226 0.011 0.045 0.708

SII 0.267 0.003 −0.001 0.767

24-UTP (mg) 0.507 <0.001 0.001 0.025

UACR (mg/g) 0.386 <0.001 0.006 0.048

TABLE 3 Correlation between CysC and clinical indicators.

Variable Correlation analysis Multiple linear regression

r p-value B p-value

Age (years) 0.032 0.718 — —

BMI (kg/m2) 0.026 0.770 — —

SBP (mmHg) 0.253 0.004 0.005 0.821

DBP (mmHg) −0.164 0.066 — —

Hb (g/L) −0.720 <0.001 −0.018 0.448

PLT (109/L) −0.066 0.465 — —

FPG (mmol/L) −0.280 0.002 −0.059 0.416

UREA (mmol/L) 0.864 <0.001 0.261 0.050

UA (μmol/L) 0.487 <0.001 0.007 0.174

TP (g/L) −0.464 <0.001 0.065 0.278

eGFR (mL/min/1.73m2) −0.888 <0.001 −0.144 <0.001

IL6 (pg/mL) 0.264 0.003 0.009 0.847

SII 0.247 0.005 −5.38 × 10−6 0.993

24-UTP (mg) 0.585 <0.001 0.001 0.210

UACR (mg/g) 0.658 <0.001 0.001 0.002

TABLE 4 Multivariate logistic regression analysis of TGF-β1 and CysC.

Group TGF-β1 (ng/mL) CysC (10 mg/L)

OR (95% CI) p-value OR (95% CI) p-value

NP group 1 1

MP group 1.122 (1.028–1.225) 0.010 1.060 (0.769–1.46) 0.721

P group 1.470 (1.049–2.061) 0.025 2.194 (0.765–6.293) 0.144
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was associated with a 1.151-fold higher likelihood of DKD occurrence 
in T2DM patients (Table 5).

3.1.5 Diagnostic value of serum TGF-β1 and CysC 
for DKD

To comprehensively assess the diagnostic potential of TGF-β1 
and CysC, we conducted ROC analysis across multiple comparison 
groups (Figures  4–6 and Table  6). In the MP group versus NP 
group comparison, TGF-β1 demonstrated an AUC of 0.791, while 
CysC showed a modest AUC of 0.502, and their combined 
detection failed to enhance diagnostic accuracy. Notably, in the P 
group versus NP group, both TGF-β1 (AUC = 0.927) and CysC 
(AUC = 0.968) exhibited exceptional diagnostic performance, with 
their combined detection achieving an impressive AUC of 0.984. 
Similarly, when comparing P group and MP groups, TGF-β1 
(AUC = 0.881) and CysC (AUC = 0.977) displayed significant 
individual diagnostic capabilities, and their combined analysis 
further elevated the AUC to 0.982. In the DKD versus NDKD 
group comparison, TGF-β1 yielded an AUC of 0.883, CysC an 

AUC of 0.816, and their combined analysis resulted in an AUC 
of 0.912.

3.2 Analysis based on eGFR groups

3.2.1 Baseline characteristics of patients by eGFR 
levels

Patients were divided into the NRF group (n = 44) and the DRF 
group (n = 82) based on eGFR. No significant differences were 
observed between the two groups in terms of gender and BMI. The 
DRF group had significantly higher age and SBP compared to the NRF 
group, while DBP, Hb, and TP were significantly lower in the DRF 
group (p < 0.05). In terms of metabolic indicators, the DRF group had 
higher UA levels and lower FPG levels compared to the NRF group 
(p < 0.05). Regarding renal function and proteinuria, the DRF group 
exhibited significantly higher Scr, UREA, 24-UTP, and UACR 
(p < 0.001). In terms of inflammation markers, IL-6 and SII were 
significantly elevated in the DRF group (p < 0.01) (Table 7). CysC 

TABLE 5 Logistic regression analysis of serum TGF-β1 and CysC for DKD.

Group TGF-β1 (ng/mL) CysC (10 mg/L)

OR (95% CI) p-value OR (95% CI) p-value

NDKD group 1 1 1

DKD group 1.151 (1.056–1.254) 0.001 1.052 (0.760–1.458) 0.758

FIGURE 4

ROC curve analysis of the diagnostic performance of TGF-β1 in different groups. (A) MP group vs. NP group. (B) P group vs. NP group. (C) P group vs. 
MP group. (D) DKD group vs. NDKD group.
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FIGURE 5

ROC curve analysis of the diagnostic performance of CysC in different groups. (A) MP group vs. NP group. (B) P group vs. NP group. (C) P group vs. MP 
group. (D) DKD group vs. NDKD group.

FIGURE 6

ROC curve analysis of the diagnostic performance of TGF-β1 + CysC in different groups. (A) MP group vs. NP group. (B) P group vs. NP group. (C) P 
group vs. MP group. (D) DKD group vs. NDKD group.
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levels were significantly elevated in the DRF group (30.320 ± 16.550 
vs. 8.318 ± 1.830 (10 mg/L), p < 0.001) (Figure  7A). TGF-β1 was 
significantly elevated in the DRF group (37.249 ± 12.569 vs. 
27.663 ± 10.138 ng/mL, p < 0.001) (Figure 7B).

3.2.2 Univariate and multivariate logistic 
regression analysis of TGF-β1 and CysC

The presence or absence of renal function decline was set as the 
dependent variable (NRF = 0, DRF = 1), with age, SBP, DBP, Hb, FPG, 

TABLE 6 Diagnostic performance of TGF-β1 and CysC across different disease groups.

Group Index AUC p-value 95% CI Optimal 
cut-off 
value

Sensitivity Specificity Youden 
index

MP group vs. 

NP group

TGF-β1 0.791 <0.001 0.671–0.911 21.70 ng/mL 0.936 0.633 0.569

CysC 0.502 0.977 —— —— —— —— ——

TGF-β1 + CysC 0.791 <0.001 0.671–0.911 —— 0.936 0.633 0.569

P group vs. 

NP group

TGF-β 0.927 <0.001 0.858–0.997 29.10 ng/mL 0.939 0.867 0.805

CysC 0.968 <0.001 0.936–0.999 14.45 (10 mg/L) 0.923 0.9667 0.890

TGF-β1 + CysC 0.984 <0.001 0.959–1.000 —— 0.954 0.967 0.921

P group vs. 

MP group

TGF-β1 0.881 <0.001 0.810–0.952 35.43 ng/mL 0.815 0.903 0.719

CysC 0.977 <0.001 0.953–1.000 14.15 (10 mg/L) 0.923 0.936 0.859

TGF-β1 + CysC 0.982 <0.001 0.953–1.000 —— 0.939 1.000 0.939

DKD vs. 

NDKD

TGF-β1 0.883 <0.001 0.806–0.960 29.10 ng/mL 0.793 0.867 0.658

CysC 0.816 <0.001 0.743–0.889 14.45 (10 mg/L) 0.646 0.9667 0.613

TGF-β1 + CysC 0.912 <0.001 0.858–0.965 —— 0.875 0.8333 0.708

NP, normal proteinuria; MP, microalbuminuria; P, proteinuria; DKD, diabetic kidney disease; NDKD, no diabetic kidney disease; AUC, area under the curve; 95% CI, 95% confidence interval.

TABLE 7 Comparison of baseline characteristics of patients grouped by eGFR.

Variable NRF group (n = 44) DRF group (n = 82) Z/χ2/t p-value

Age (years) 54.98 ± 10.456 61.93 ± 11.027 3.433 0.001

Gender 1.299 0.254

  Male (%) 25 (56.82) 55 (67.07)

  Female (%) 19 (43.18) 27 (32.93)

BMI (kg/m2) 26.157 ± 3.795 25.621 ± 3.627 −0.778 0.438

SBP (mmHg) 135 (115, 144) 143.5 (130.25, 155) −3.077 0.002

DBP (mmHg) 81.480 ± 13.941 76.700 ± 11.331 −2.081 0.040

Hb (g/L) 143.570 ± 21.118 112.490 ± 23.667 −7.29 <0.001

PLT (109/L) 241 (196, 276) 223 (195, 252.25) −1.269 0.204

FPG (mmol/L) 10.53 (7.83, 15.82) 9.6 (7.04, 12.445) −2.835 0.005

UREA (mmol/L) 5.49 (4.8125, 6.4025) 13.305 (7.875, 23.9) −7.152 <0.001

UA (μmol/L) 318.368 ± 78.615 414.757 ± 89.782 5.992 <0.001

TP (g/L) 70.777 ± 6.743 64.085 ± 8.031 −4.706 <0.001

Scr (μmol/L) 60.7 (51.9, 68.6) 97.95 (79.4, 167.65) −8.595 <0.001

eGFR (mL/min/1.73m2) 103.7611 (96.893, 116.501) 58.878 (33.767, 75.285) −9.232 <0.001

IL6 (pg/mL) 3.06 (1.5, 6.87) 3.855 (2.545, 6.0725) −3.085 0.002

SII 491.167 (341.667, 715.826) 548.084 (427.025, 928.193) −2.83 0.005

CysC (10 mg/L) 8.1 (7.0, 9.7) 17.4 (12.05, 24.45) −8.751 <0.001

24-UTP (mg) 138 (70, 212) 1,002 (171.25, 3,920) −7.039 <0.001

UACR (mg/g) 80 (15, 150) 550 (85, 800) −4.756 <0.001

TGF-β1 (ng/mL) 27.663 ± 10.138 37.249 ± 12.569 4.354 <0.001

BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; WBC, white blood cell count; Hb, hemoglobin; PLT, platelet count; FPG, fasting plasma glucose; UA, uric 
acid; TP, total protein; Scr, serum creatinine; eGFR, estimated glomerular filtration rate; IL6, interleukin-6; SII, systolic index of inflammation; CysC, cystatin C; 24-UTP, 24-h urinary total 
protein; UACR, urine albumin creatinine ratio; TGF-β1, transforming growth factor beta 1.
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UREA, UA, TP, IL6, SII, 24-UTP, UACR, CysC, and TGF-β1 as 
independent variables. Univariate logistic regression analysis revealed 
that age, SBP, DBP, Hb, FPG, UREA, UA, TP, 24-UTP, UACR, CysC, and 
TGF-β1 may be factors contributing to renal function decline (p < 0.05). 
In multivariate analysis, after adjustment, only CysC showed a significant 
independent association (OR = 2.255, 95% CI: 1.240–4.103, p = 0.008), 
indicating that for every 10-unit increase in CysC, the likelihood of renal 
function decline in NRF patients increases by 2.255 times (see Table 8).

3.2.3 Diagnostic value of serum TGF-β1 and CysC 
in predicting renal function decline in T2DM 
patients

The AUC for using TGF-β1 alone to predict renal function decline 
was 0.726, suggesting it has some diagnostic value. The AUC for CysC 
alone was 0.974, demonstrating significantly superior diagnostic 
performance, with an optimal cutoff value of 11.55 (10 mg/L), 
corresponding to a sensitivity of 0.89 and specificity of 0.955. The 
combined detection of TGF-β1 and CysC yielded an AUC similar to that 

of CysC alone, indicating that combined testing did not further enhance 
diagnostic performance. In summary, CysC alone demonstrated 
significantly superior diagnostic efficacy in predicting renal function 
decline compared to TGF-β1, and combined testing had a similar effect 
to CysC alone. This suggests that CysC can serve as an important 
marker for predicting renal function decline (see Figure 8 and Table 9).

4 Discussion

DKD is characterized by thickening of the glomerular basement 
membrane, mesangial matrix proliferation, interstitial fibrosis, and 
chronic inflammatory responses, leading to gradual renal 
dysfunction. TGF-β1 plays a key regulatory role in these processes 
(13, 25–27). CysC is a cysteine protease inhibitor expressed and 
secreted by all nucleated cells, which is ultimately cleared by the 
kidneys. Serum CysC is a sensitive marker of both acute and chronic 
renal function changes (28, 29). Cysteine protease is a key substance 

FIGURE 7

Expression levels of CysC and TGF-β1 in different eGFR groups. (A) CysC. (B) TGF-β1.

TABLE 8 Univariate and multivariate logistic regression analysis of TGF-β1 and CysC.

Independent variable Univariate Multivariate

OR (95% CI) p-value OR (95% CI) p-value

Age (years) 1.059 (1.022–1.098) 0.002 1.253 (0.995–1.579) 0.056

SBP (mmHg) 1.034 (1.012–1.056) 0.002 0.988 (0.916–1.066) 0.759

DBP (mmHg) 0.968 (0.938–0.999) 0.043 1 (0.897–1.115) 1.000

Hb (g/L) 0.943 (0.923–0.964) <0.001 1.014 (0.923–1.115) 0.769

FPG (mmol/L) 0.933 (0.868–1.002) 0.057 0.964 (0.754–1.232) 0.769

UREA (mmol/L) 1.743 (1.359–2.235) <0.001 0.837 (0.437–1.602) 0.590

UA (μmol/L) 1.014 (1.008–1.02) <0.001 1.012 (0.994–1.03) 0.203

TP (g/L) 0.886 (0.836–0.939) <0.001 1.053 (0.905–1.225) 0.503

IL6 (pg/mL) 1.044 (0.988–1.104) 0.122 0.903 (0.746–1.094) 0.298

SII 1.000 (1.000–1.001) 0.229 1.001 (0.999–1.004) 0.289

24-UTP (mg) 1.002 (1.001–1.002) <0.001 1 (0.999–1.001) 0.971

UACR (mg/g) 1.005 (1.002–1.007) <0.001 1.004 (0.999–1.009) 0.098

CysC (10 mg/L) 2.489 (1.626–3.809) <0.001 2.255 (1.240–4.103) 0.008

TGF-β1 (ng/mL) 1.072 (1.035–1.11) <0.001 0.934 (0.81–1.078) 0.350
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involved in the recycling and remodeling of basement membrane and 
extracellular matrix components (30). Studies have shown that 
dysregulation of CysC and cysteine proteases plays an important 
pathological role in fibrosis, and CysC may serve as an effective 
biomarker for organ fibrosis (18). TGF-β1 promotes the production 

and secretion of CysC (31, 32) (Figure  9). Therefore, this study 
explored the diagnostic value of TGF-β1 and CysC in patients with 
DKD and their correlation with clinical indicators. The research 
findings indicate that these two biomarkers have significant value in 
the early diagnosis and disease assessment of DKD.

FIGURE 8

ROC curve for predicting renal function decline. (A) TGF-β1. (B) CysC. (C) TGF-β1 + CysC.

TABLE 9 Diagnostic performance of TGF-β1 and CysC in predicting renal function decline.

Index AUC p-value 95% CI Optimal cut-
off value

Sensitivity Specificity Youden 
index

TGF-β1 0.726 <0.001 0.637–0.815 35.43 ng/mL 0.634 0.864 0.498

CysC 0.974 <0.001 0.952–0.996 11.55 (10 mg/L) 0.890 0.955 0.845

TGF-β1 + CysC 0.974 <0.001 0.952–0.996 — 0.890 0.955 0.845

AUC, area under the curve; 95% CI, 95% confidence interval.

FIGURE 9

TGF-β1 and CysC in the pathogenesis of DKD. Hyperglycemia, hypertension, hyperlipidemia, inflammation, oxidative stress, and other factors can 
damage renal cells (podocytes, mesangial cells, endothelial cells, tubular cells, and macrophages), upregulating the expression of TGF-β1 and CysC. 
TGF-β1 promotes CysC production, and together, they contribute to extracellular matrix accumulation, mesangial expansion, and thickening of the 
glomerular basement membrane, ultimately leading to glomerulosclerosis and tubulointerstitial fibrosis.
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4.1 Diagnostic value of TGF-β1

Serum TGF-β1 has been associated with proteinuria levels in 
T2DM patients. TGF-β1 levels show a significant positive correlation 
with proteinuria severity, consistent with previous studies (33, 34). 
Multivariate logistic regression analysis reveals that each unit increase 
in TGF-β1 was associated with a 1.122-fold and 1.470-fold higher 
odds of the presence of microalbuminuria and proteinuria, 
respectively, in the NP group. TGF-β1 demonstrates good diagnostic 
performance for DKD and different degrees of proteinuria. Impaired 
resolution of inflammation is a major driver of DKD progression (35). 
We  found that TGF-β1 is significantly positively correlated with 
inflammatory markers of DKD, such as IL-6 and SII (36). In studies 
using the LLC-PK1 cell model of DKD, the protective effect of the 
antidiabetic drug liraglutide may be associated with the inhibition of 
TGF-β1, and further in vitro and in vivo studies are needed to clarify 
its specific mechanism of action (37). Collectively, these findings 
suggest that TGF-β1 may serve as a biomarker for DKD, providing 
predictive insights into the progression of kidney disease. Similarly, 
previous studies have confirmed that serum TGF-β1 levels are also 
correlated with renal function in other types of CKD (such as IgA 
nephropathy, hypertensive nephropathy) (38–41). Its diagnostic 
efficacy in different kidney diseases warrants further investigation.

4.2 Diagnostic value of CysC

This study demonstrated a significant association between serum 
CysC levels and renal function decline in T2DM patients. Each 
10-unit elevation in CysC concentration was associated with a 2.255-
fold increased likelihood of renal deterioration. ROC curve analysis 
demonstrated an AUC of 0.974 for CysC in diagnosing renal function 
decline in T2DM patients, with a sensitivity of 91.5%, consistent with 
findings from Ren et al. (17). Additionally, CysC showed a significant 
positive correlation with proteinuria. However, ROC curve analysis 
revealed an AUC of only 0.502 for CysC in distinguishing MP from 
NP groups, indicating limited efficacy in diagnosing 
microalbuminuria. This is consistent with the study by Visinescu et al. 
(42): there was no significant difference in serum CysC levels between 
the normal albuminuria group and the microalbuminuria group. This 
phenomenon may be attributed to the relatively short and similar 
duration of diabetes (10–12 years) in the two groups of subjects in this 
study. It is known that a longer duration of diabetes is a factor 
contributing to increased CysC levels, which may lead to kidney 
damage. Moreover, a review of previous literature suggests that 
fluctuations in CysC levels may not solely reflect renal function (43). 
And in clinical practice, it is often used in conjunction with serum 
creatinine to assess GFR (44). However, its limitations should 
be  carefully considered: corticosteroid treatment and abnormal 
thyroid hormone levels (particularly subclinical thyroid dysfunction) 
can cause significant fluctuations in CysC concentrations (28, 45). It 
is noteworthy that there is a significant comorbid relationship and 
bidirectional pathophysiological association between thyroid 
dysfunction and chronic kidney disease (46). In terms of detection 
technology, there is currently no standardized reference system for 
CysC testing internationally, and the bias in testing systems poses 
challenges to the clinical interpretation of single CysC measurements. 
Continuous dynamic monitoring is necessary to improve the 

reliability of results (44, 47–50). In contrast, CysC demonstrated good 
diagnostic performance for identifying proteinuria. This finding aligns 
with the results of Li et al. (51), suggesting that CysC may not be an 
effective biomarker for early DKD detection. However, numerous 
studies have shown that serum CysC is more sensitive than 
albuminuria in early DKD, and equations using CysC for eGFR 
calculation outperform those using creatinine (42, 52, 53). For 
diagnosing NDKD and DKD, CysC yielded an AUC of 0.816. While 
lower than that of TGF-β1, it still exhibited good diagnostic efficacy. 
This suggests that combined diagnostic approaches may enhance the 
accuracy of disease evaluation.

4.3 Clinical application of TGF-β1 and 
CysC

In the clinical management of DKD, the establishment of early 
evaluation is of significant importance for delaying disease 
progression. In the assessment of DKD, both CysC and TGF-β1 
have their respective advantages in application. TGF-β1 is 
associated with microalbuminuria and inflammatory markers, 
showing promise in the early detection of DKD. CysC is more 
significantly elevated when renal function declines, further 
reinforcing the current KDIGO guidelines recommending the use 
of CysC for eGFR in diabetes (54). The diagnostic efficacy of 
combined assessment of CysC and TGF-β1 is superior to or at 
least equal to that of individual assessments, with the combined 
testing strategy demonstrating outstanding ability in 
distinguishing patients with severe proteinuria. Future efforts 
should focus on further optimizing the combined diagnostic 
model, incorporating dynamic monitoring and stratified 
management, to enhance its clinical feasibility and accuracy. 
Moreover, its utility in longitudinal studies should be evaluated, 
providing a more comprehensive diagnosis and treatment plan for 
DKD patients.

5 Limitations

This study has several limitations: (1) The sample size is relatively 
limited, and a more detailed stratified analysis could not 
be  performed. (2) The study did not include non-diabetic CKD 
patients as a control group, which somewhat limits the applicability 
of the findings. (3) The cross-sectional design limits the ability to 
infer causality and may introduce confounding factors that could 
affect the results. (4) Although key clinical variables were adjusted, 
the potential impact of other factors, such as the treatment with 
renin-angiotensin-aldosterone system (RAAS) inhibitors and 
sodium-glucose cotransporter 2 (SGLT2) inhibitors, on biomarker 
levels could not be fully excluded. Future studies should expand the 
sample size, conduct multicenter research, and design studies with 
multiple control groups (including healthy control group, 
non-diabetic CKD group, and diabetic nephropathy group) to 
validate the disease specificity of the biomarkers and enhance the 
generalizability of the findings. Longitudinal study designs should 
be adopted, with multiple follow-ups and data collection at different 
time points, enabling the analysis of the trend of variable changes 
over time.
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6 Conclusion

This study confirms the diagnostic value of CysC and TGF-β1 in 
DKD. The combined detection of both biomarkers provides new 
methods for early diagnosis, disease monitoring, and prognosis 
evaluation of DKD. However, these findings still require further 
research to validate and refine.
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