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Purpose: Fetal growth restriction (FGR) is a significant concern for clinicians and

pregnant women, as it is associated with increased fetal and neonatal mortality

and morbidity. Although ultrasound has been the gold standard for many years

to define FGR, it remains less than ideal for early detection of FGR. Placental

dysfunction is a key factor in the development of FGR. The objective of this

study is to achieve the early detection of FGR through the utilization of placental

ultrasound images.

Methods: A retrospective analysis was conducted using 80 placental ultrasound

images from 40 FGR fetuses and 40 normal fetuses matched for gestational

age. Approximately 300 texture features were extracted from the placental

images using key texture feature selection and histogram of oriented gradients

(HOG) extraction methods. These features were then re-encoded using a

bag-of-visual-words model with weight scaling, resulting in more e�ective

features. The encoded image features were used to train a classifier, and

ensemble prediction techniques were used to improve classification accuracy.

Result: In this study, we applied the proposed method alongside several popular

image classificationmethods for predicting FGR. The proposedmethod achieved

the best experimental results, with an accuracy of 70% and an F1 score of

0.7653. We also compared di�erent feature extraction methods separately, and

the experimental results showed that HOG feature extraction is more suitable for

feature extraction of ultrasound placental images. Finally, we plotted the receiver

operating characteristic (ROC) curve with an area under the curve (AUC) value

of 0.80.

Conclusion: To enable early prediction of FGR, we propose a visual

bag-of-words model based on weight scaling for analyzing placental ultrasound

images in the early stages—before significant fetal impairment occurs. The

proposed model shows strong potential to assist doctors in making preliminary

assessments, thereby facilitating earlier intervention. This can help reduce the

risk of harm to both fetuses and pregnant women.

KEYWORDS
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1 Introduction

Fetal growth restriction (FGR) refers to the failure to achieve expected physiological

development which may lead to fetal deformities even fetal death (1, 2). According to a

previous study, the prevalence of FGR is on the rise, with a global incidence rate as high as

10% by 2024 (3). Early intervention strategies, such as medication administration during
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the initial stages of pregnancy, have been shown to mitigate fetal

morbidity and reduce risks to maternal health. Therefore, it is

particularly important to achieve early detection of FGR.

FGR can be caused by multiple factors, including maternal

diseases, fetal abnormalities, and placental dysfunction. Research

has increasingly identified placental dysfunction as a key

factor in the development of FGR (4, 5). When there is

dysfunction in placental function, pathological alterations

may manifest. These alterations can be identified using

diagnostic imaging modalities such as ultrasound or magnetic

resonance imaging, facilitating subsequent investigation and

evaluation (6, 7). It inspired us if we can learn pattern from

placenta ultrasound and associate it with its corresponding

fetal FGR results, then we may achieve early detection

of FGR.

FGR detection with placental ultrasound image is essentially

an image classification task. In recent years, a variety of image

classification models have been developed, with a primary focus on

utilizing neural networks (8–10). However, neural network models

require a significant amount of training data, which is frequently

limited in this domain.

It is worth noting that, following the direction of healthcare

professionals, it has been observed that the distinction between

FGR and placental images of healthy fetuses is contingent upon

the varying repetition times of regions of interest (ROIs) exhibiting

distinct textures. Specifically, placental images of FGR tend to

show short rod-like textures, while placental images of normal

fetuses typically have dot-like textures. To take advantage of

this feature, we came up with the idea of using a visual word

bag model.

However, ultrasound imaging exhibits reduced resolution. In

the early stage, the structural distinctions between the placenta of

fetuses with FGR and that of normal fetuses are slight, resulting in

minimal variations in pattern within ultrasound images. When the

texture difference between FGR and normal images is very small,

existing BOVW models are difficult to accurately encode them.

Moreover, the long gestational period results in a limited number of

data samples. Hence, a method which is able to maximize learning

patterns from a small number of samples and accurately associate

them with corresponding FGR results is desired.

To address the above issues, this study proposes a weighted

bag of visual word (WBOVW) model for detecting fetal growth

restriction at an early stage with 2-fold ideas:

(a) encoding placental ultrasound with a novel weighted bag of

visual word model;

(b) learning association knowledge of the encoded placental

ultrasound image and its corresponding FGR result using

ensemble classifiers.

The contribution of this study is as follows:

(a) achieving FGR detection at early pregnancy with only placental

ultrasound images;

(b) providing a weighted bag of visual word method.

Experimental results on real ethically certified data collected by

a hospital indicate that the proposed method can detect FGR at an

early stage.

2 Materials and methods

2.1 Data

From January 2019 to November 2023, ultrasound images of

placenta from normal fetuses and FGR fetuses at a gestational age

(GA) range of 20–32 weeks were collected from The Eight Affiliated

Hospital of Sun Yat-sen University. All scans were performed using

GE Voluson E8 or E10 machines (GE Healthcare, Zipf, Austria),

equipped with a GE RM6C volumetric probe (frequency: 4–8

MHz). The images were obtained by three sonographers, each with

at least 6 years of fetal ultrasound examination experience. All

patients signed the informed consent form for a fetal ultrasound

examination. This retrospective study was approved by the Ethics

Committee of The Eighth Affiliated Hospital of Sun Yat-sen

University (2023-055-01).

A total of 80 cases were enrolled in this study, including 40

normal fetuses and 40 FGR fetuses where the placentas were at

maturity level 0-I. For FGR fetuses, we included the data before

the first diagnosis of FGR on clinical. Exclusion criteria applied

to 80 cases were structural fetal anomalies, multiple pregnancies,

abnormal insertion of placenta umbilical cord, single umbilical

artery, and fetal anomalies other than FGR. A sonographer with

more than 6 years’ experience of fetal ultrasound examination

conformed ROI. The ROI was locked in a circular area with a

diameter of 2 cm near the insertion point (Figure 1).

2.2 Framework

The proposed WBOVW model, illustrated in Figure 2,

comprises two primary components: the establishment of a visual

word bag library and image encoding classification. Construction

of visual word bag library: We will use training set images to

build this visual word bag library. Note that the input of WBOVW

is placental ultrasound images. In each image, a ROI is marked

by imaging physicians. The ROIs are segmented from images

as the preprocessed image and feed to the key points feature

extraction module. It selects key points from ROI with scale-

invariant feature transform (SIFT) and learns features of each key

point with histograms of oriented gradients (HOG). Afterward, the

Gaussian mixture model (GMM) is used to construct visual words

based on the extracted image block features of each ROI. Image

encoding classification: This part will use a visual word bag library

to feature encoding all images. Each image undergoes the same

preprocessing and feature extraction stages as mentioned above.

The extracted features of each image will be calculated for similarity

with visual words and encoded with weight scaling. The encoded

image features can be trained through a classifier, and finally,

ensemble prediction is used to improve classification accuracy.

2.3 Key feature extract

Key point selection with SIFT key point detection: Scale-

invariant feature transform (SIFT) is an efficient method for finding

key points on different scale spaces (11). Notably, in placental
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FIGURE 1

Sample of placental ultrasound images. (a, c) Are placental ultrasound images with FGR, and (b, d) are normal placental ultrasound images.

ultrasound images, regions of interest (ROIs) designated by the

data provider may vary in size. The precision of features extracted

directly from the image is influenced by both the image size and the

semantic arrangement of features. Therefore, we first employ SIFT

key point detection to identify key points in each image.

The SIFT algorithm first applies a Gaussian filter to the image

for filtering:

L(x, y, σ ) = G(x, y, σ )⊗ I(x, y), (1)

where I(x, y) is the input image, G(x, y, σ ) is the Gaussian filter, ⊗
represents filtering operations, and L(x, y, σ ) is the filtered image.

The Gaussian filter is defined as follows:

G(x, y, σ ) =
1

2πσ 2
e
− (x−m/2)2+(y−n/2)2

2σ2 , (2)

where σ represents the standard deviation of the Gaussian

distribution, m and n denote the size of the Gaussian filter, and x

and y represent the positions of the corresponding elements.

To find the extreme points of the image, by subtracting the

adjacent image matrices in the same scale space, the Gaussian

difference scale space can be obtained as follows:

D(x, y, σ ) = L(x, y, kσ )− L(x, y, σ ), (3)

where k is the scale factor. The Difference of Gaussians (DoG)

model is illustrated in Figure 3.

After establishing the DoG, we search for local extrema points.

Each pixel is compared with its neighbors to check whether it

is larger or smaller than all its neighbors. The adjacent point is

composed of 8 adjacent points of the same scale and 9 × 2 points

of adjacent scales up and down, a total of 26 points. This results in

key points at different scales in the image, increasing diversity in

BOVW construction.

2.3.1 Key point feature extraction with HOG
The domains of different sizes around each key point were

selected based on their scale size, and HOG feature extraction was

performed on this domain (12). First, the domain was divided into

4 × 4 = 16 sub-regions and the pixel gradient size and direction

were calculated in each sub-region.

Gx(x, y) = I(x+ 1, y)− I(x− 1, y), (4)

Gx(x, y) = I(x, y+ 1)− I(x, y− 1), (5)

G(x, y) =
√

G2
x + G2

y , (6)

ϕ(x, y) = arctan
Gy(x, y)

Gx(x, y)
, (7)

where G (x, y) denotes the gradient size representing pixels, and Φ

(x, y) denotes the gradient direction of pixels.

Then, we divide the range of 0◦-180◦ into nine intervals:

(0◦, 20◦), (20◦, 40◦),..., (160◦, 180◦). For each sub-region, the

gradient size is accumulated and normalized based on the interval

corresponding to the pixel gradient direction value. Finally, the
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FIGURE 2

Overall framework of our method.

feature descriptors of 16 sub-regions were concatenated together to

obtain Vi,j, representing the feature vector of key point j in image i.

2.4 Encoder

2.4.1 Building the bag of visual words with
Gaussian mixture model

Through key feature representation component, we obtained

feature matrix ViR
min for i-th placenta ultrasound image, wheremi

represents the number of key points in image i, and n represents the

feature vector of the key points. With Vi, the key feature of the i-th

placenta ultrasound image can be represented. However, it cannot

be utilized for prediction directly since (a) Vi has different size;

and (b) the order of ROIs recorded by V brings additional spatial

semantic information.

To fully utilize the key features, a method that can recode them

is required. BOVW (13, 14) has proven to be effective in recoding

features. The feature encoding technique employed by BOVW

relies on statistical analysis which can eliminate the influence of

semantic order. Traditional BOVWmethods typically use k-means

clustering to cluster the feature vectors. However, in this study,

the clustering model employed is the GMM (15), which not only

incorporates the distance information of the sample points but also

includes information about the number of sample points and their

variances. We use GMM to cluster the key points of all images in

the training set to construct BOVW.

In GMM, it is assumed that the data are composed of several

Gaussian distributions. The formula for the Gaussian mixture

model is as follows:

P(Vi,j) =
∑K

k=1
π
k
N(Vi,j|uk,6k), (8)
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FIGURE 3

Overview of DOG.

where ukdenotes the mean factor of Gaussian distribution,
∑

k is

the covariance, πkis the weight of each Gaussian model, and K is

the number of Gaussian models.

Note that the goal of GMM is to maximize the likelihood

function as follows:

L =
∏I

i=1

∏Ji

j=1
P(Vi,j), (9)

where I is the number of images, and Ji is the number of key

points in i-th image. Hence, these parameters in Equation 8, i.e.,

ui,
∑

i, and πi, can be derived with Expectation-Maximization

(EM) algorithm. By implementing the aforementioned process, a

dictionary can be obtained for supporting image encoding.

2.4.2 Encoding input placental ultrasound image
Recalling that we use the GMM to calculate the probability

of key points belonging to each cluster, which includes distance

information, covariance information, and weight information.

Ideally, each key point should be assigned to a specific cluster, which

means that the probability of belonging to a specific cluster class

should be relatively high. However, due to the low resolution of

medical images and the influence of noise, some key points may fall

at the intersection of certain clusters. It belongs to different cluster

classes with similar probabilities, and weighted statistics based on

this method may not be conducive to classification. To reduce the

impact of noise, we propose a weight scaling statistical method in

this study. The feature encoding part is shown in Figure 4.

First, we use the trained GMM to perform probability

prediction on each key point in the image.

pi,j,k = πkN(Vi,j|uk,
∑

k
), (10)

where pi,j, k is the probability of Vi,j belonging to the k-th cluster.

The labels of each cluster are identified to which the key points

belong based on probability values. Let Pi,j be a length K vector,

e.g., pi,j,1, . . . , pi,j,k, . . . , pi,j,k,. A length K vector, e.g., Qi,j= (qi,j,1,

. . . , qi,j,k, . . . , qi,j,k), is proposed to encode the j-th key point of i-th

image, where qi,j,kǫ{0, 1} and
∑

qi,j,k = 1. Moreover, qi,j,k = 1 if pi,j,k
is the maximum among all ps. Then, the weight scaling formula is

as follows:

Ui =
∑ J

j=1α ∗ Pi,j + (1− α) ∗ Qi,j

J
, (11)

where Ui represents the re-encoded features of image i, and α is a

weight scaling hyperparameter.

The above approach can cause feature points to move toward

the corresponding cluster center. There are significant differences

in histogram statistics for key points located at certain cluster

boundaries. When α = 1, it becomes a probability-weighted

Frontiers inMedicine 05 frontiersin.org

https://doi.org/10.3389/fmed.2025.1529666
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Dong et al. 10.3389/fmed.2025.1529666

FIGURE 4

Feature encoding.

average, and when α = 0, it becomes a class-weighted statistic.

Introducing the α hyperparameter allows for better adjustment,

depending on different datasets and their specific requirements.

After feature encoding, each image has a corresponding feature

vector Ui with same dimension.

2.5 FGR predictor

Currently, many models use fully connected neural networks

for classification. However, when the amount of data is small, there

is a risk of overfitting. Therefore, it is not suitable for tasks such

as FGR prediction. In machine learning, support vector machines

(SVMs) use “kernel functions” to map data from the original

feature space to a higher-dimensional feature space, making the

data linearly separable in that space. It can be used to solve

binary classification tasks. In addition, BLS involves mapping

input features through non-linear transformations to a higher-

dimensional feature space where data becomemore easily separable

and classifiable (16, 17). It can be seen as a variant of fully connected

neural networks, but while fully connected neural networks focus

on constructing deep architectures, BLS focuses on constructing

wide architectures, as shown in Figure 5.

BLS does not directly input the original feature vectors into the

network. Instead, it first expands the original features through a

feature mapping layer.

Zzi = φ(Ui ∗Wzi + βzi), zi = 1....n, (12)

where Wzi and βzi are parameters, Φ represents the non-

linear transformation, and Zzi represents the l-th node after the

mapping node.

The nodes obtained in the previous step are then passed

through an enhancement layer to obtain Hl. Finally, Zl and Hl are

concatenated, and the concatenated result is passed through linear

and non-linear transformations to output the predicted values.

Hhl = ξ ([Z1Z2 ...Zn] ∗Whl + βhl), hl = 1, ....m, (13)

where ζ represents the non-linear transformation, andWhl and βhl

are parameters.

YBLS = [Z1, ...Zn|H1, ...Hm]W
m = AWm, (14)

where Wm represents the parameters, and YBLS represents the

predicted probabilities from the BLS classifier.

The parameter Wm can be obtained through optimization and

inverse matrix solution.

argmin
Wm

: ||AWm − YBLS||22 + ε||W||22, (15)

Wm = (εI + AAT)
−1

ATYBLS, (16)

where ε is the regularization parameter.

In broad learning, as the width increases, the risk of overfitting

becomes more severe, and a larger amount of data is required. In

fact, the accuracy of an ensemble of multiple smaller models may

be higher than that of a single large model. BLS and SVM adopt

different mapping methods to enhance data separability. In this

study, we integrate these two classifiers for predictive modeling

in medical tasks, aiming to improve the robustness of the model.

The SVM classifier can record the distance of each sample to the

hyperplane. We use the sigmoid function to convert this distance

into a probability value. On the other hand, the last layer of the

BLS outputs the score values for each class for each sample. We

normalize the output values using softmax to convert them into

probability values. Finally, we can use λ and 1-λ as weights to

combine the probability values of the two models. The resulting

combined probability is used for ensemble prediction. By adjusting

the hyperparameter λ, we can control the mixing ratio of the

two models.

Yi,j =
exp(YBLS

i,j ) ∗ λ
∑1

j=0 exp(Y
BLS
i,j )

+
1 ∗ (1− λ)

1+ exp(−dist(YSVM
i,j , L))

, (17)

In the formula, YBLS
i,j represents the score assigned by the BLS

classifier to sample i for class j, -dist (YSVM
i,j ,L) represents the

distance from the hyperplane when sample i is predicted as class

j by SVM, L represents the constructed hyperplane by SVM, and

Yi,j represents probability of sample i belonging to class j.
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FIGURE 5

Structure of broad learning system.

3 Result

3.1 Experiment settings

3.1.1 Implement details
To evaluate the performance of the models, we used a cross-

validation method, using a ratio of 6:2:2 for the training set

to validation set to test set. This experiment has been repeated

at least 10 times or more. All outcome indicators are obtained

from the test set. In image preprocessing, wavelet transform is

utilized for denoising. Due to the unstable position and angle

of the ultrasound probe during image acquisition, as well as

the small image dataset, we also adopt brightness variation,

contrast transformation, random rotation, and random cropping

as augmentation methods for each image. Note that we did not

use operations such as random scaling and affine transformation

as this would disrupt the original texture details of the placental

image. To enhance the texture of the images, we used histogram

equalization for texture enhancement. We obtained optimal model

parameters through many experiments, as shown in Figure 6. We

set the number of clusters in the bag-of-visual-words model to 128

(k= 128). In the weight scaling stage, we set α = 0.15.

3.1.2 Feature extraction selection
In terms of feature extraction methods, we selected mainstream

image feature extraction methods for experiments, as shown in

Figure 7. The accuracy of LBP and Harr-like feature extraction

methods is relatively low, and the addition of the BOVW model

for encoding does not improve the accuracy. This may be because

the two methods mentioned above did not extract significantly

different features and did not form clear clustering clusters,

resulting in a smaller improvement in feature encoding. The SIFT

feature extraction method has the best performance, with an

FIGURE 6

Heatmap of variation in the e�ect of di�erent number of visual

words and weight scaling ratio on model performance.

accuracy of 63.07%. After BOVW feature encoding, the effect has

been improved by 4.6%. SURF and ORB are improved algorithms

of SIFT, which are much faster than SIFT but have lower accuracy.

3.2 Experiment results

3.2.1 Ablation experiment
To understand the effectiveness of each component of the

proposed model, we first conduct an ablation experiment. The

experimental results are listed in Table 1. From this, we can

conclude that each component has a positive contribution to

the final prediction accuracy. For instance, with the addition
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FIGURE 7

Comparison of feature extraction methods.

TABLE 1 Results of the ablation experiment.

SIFT K-means GMM GMM-scaled Accuracy

√
63.07%

√ √
67.68%

√ √
69.33%

√ √
70.68%

of traditional BOVW feature encoding, the accuracy is 67.68%.

After changing the clustering method to GMM clustering, the

accuracy was significantly improved because GMM clustering can

fit clusters of any shape. When we introduce our proposed GMM-

scaled encoding, the accuracy is 70.68%, which is 1.35% higher

than GMM.

Figure 8 shows our experiment on selecting the mixing ratio

of the classifier. The models all selected SIFT and GMM scaled as

feature extraction and encoding. The highest accuracy is achieved

when the mixing ratio is λ = 0.3. When the performance of each

model is good, model integration often brings a certain degree

of accuracy improvement. We chose SVM and BLS as integrated

models because their principles are similar, both of which remap

features through non-linear transformations.

3.2.2 Comparison against state-of-the-art models
The involved models are listed in Table 2. The comparative

models, i.e., M1-M6, for the proposed model, i.e., M7, are

deep learning-based models or BOVW variations. The

experimental results are listed in Table 3; from this, we have

the following findings:

To conduct a comprehensive comparison, a number of widely

utilized lightweight image classification models, denoted as M1–

M3, were chosen for evaluation. In medical scenarios characterized

by limited sample sizes, the utilization of lightweight models

possessing fewer parameters can help mitigate issues related to

overfitting. Notably, among these models, M3 (MobileNetV3)

FIGURE 8

Mixing ratio of classifier.

TABLE 2 Involved models.

No. Description

M1 GhostNet (18)

M2 ShuffleNetV2 (19)

M3 MobileNetV3 (20)

M4 BOVWmodel with distance and angle information (13)

M5 The improving bag-of-visual-words model via combining deep features

with feature difference vector (21)

M6 The bag of visual words using neural network classifier for detection of

COVID-19 in X-ray (14)

M7 The FGR prediction model proposed in this study.

TABLE 3 Comparison of experimental results.

Model Accuracy Recall Precision F1-Score

M1 65.56% 69.45% 76.71% 0.7289

M2 65.83% 69.97% 78.43% 0.736

M3 66.10% 70.20% 79.30% 0.7448

M4 65.27% 69.45% 76.71% 0.7290

M5 68.05% 71.33% 79.30% 0.7510

M6 67.78% 71.33% 77.58% 0.7432

M7 70.68% 73.21% 80.17% 0.7653

M7 outperforms all its peers on all evaluation metrics.

demonstrated the highest accuracy but only 66.10%. This finding

implies that neural network models may encounter challenges

in effectively extracting relevant features from ultrasound

placental images.

To validate the proposed bag-of-visual-words (BOVW)

approach, we chose to employ various iterations of the BOVW

model, including M4–M6. Notably, the M5 variant demonstrated

superior performance, achieving an accuracy rate of 68.05%, which

signifies an improvement of 1.95% compared to M3. These results
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FIGURE 9

Confusion matrix.

indicate the effectiveness of the BOVWmodel in feature extraction

from placental ultrasound images. In addition, our model M7

yielded the most favorable results, with an accuracy of 70.68% and

an F1 score of 0.7653.

3.2.3 Confusion matrix and ROC
This study further evaluates the clinical trial value of the

proposed algorithm and draws the confusion matrix and receiver

operating characteristic (ROC) curve. The confusion matrix,

as depicted in Figure 9, illustrates the classification accuracy

of each category, with the diagonal representing the accuracy.

Figure 10 displays the ROC curve, a commonly utilized tool

for assessing classifier performance and effectively distinguishing

between positive and negative classes. In Figure 10, it exhibits an

area under the curve (AUC) value of 0.80.

4 Discussion

From the experiment results, we have the following

understanding of the proposed method:

(1) Detecting FGR through placental ultrasound images is

essentially an image classification task. However, the noise

caused by ultrasound leads to inaccurate representation. The

experiment shows that our proposed encoding mode weakens

the impact of noise and improves classification accuracy.

(2) This model for detecting FGR through images has the

feasibility of clinical application. Assisting doctors in auxiliary

diagnosis can reduce their workload. In some areas where

medical equipment is underdeveloped, this application has a

higher value.

(3) Obtaining cross-sectional images from ultrasound video

streams and delineating ROI in the images requires

professional expertise. We can find a method in subsequent

FIGURE 10

ROC.

work to assist doctors in delineating ROI and searching

for cross-sectional areas. In addition, we can also combine

placental image information and other biometric information

for multimodal detection of FGR.

5 Contributions

To predict fetal growth restriction at an early stage, we

propose a visual bag-of-words model based on weight scaling

for analyzing placental ultrasound images of pregnant women in

the early stages of pregnancy. Specifically, we introduce weight

scaling during the feature encoding stage and design an ensemble

classifier for FGR prediction. Through ablation experiments

and comparative analysis, we validate the effectiveness of our

approach, achieving an accuracy of 70% in predicting FGR using

limited samples. The proposed model shows its potential to

assist doctors in making preliminary assessments during early

pregnancy, which greatly helps with treatment and allows patients

to receive treatment as soon as possible, reducing the harm to

pregnant women.
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