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Alzheimer’s disease (AD) is a common form of dementia that affects the central 
nervous system, causing progressive cognitive decline, particularly in memory. 
Early, non-invasive diagnosis is critical for improving patient care and treatment 
outcomes. This study proposes a robust feature extraction approach combined 
with three classifiers to achieve optimal classification of AD stages. T1-weighted 
brain MRI scans were used as input data. Features were extracted using Harris 
Corner interest points and the Histogram of Oriented Gradients (HOG) method. 
Classification was performed using Support Vector Machine (SVM), K-Nearest 
Neighbor (KNN), and a Deep Neural Network (DNN)-based pipeline. The proposed 
system classified three AD stages—Control Normal (CN), Mild Cognitive Impairment 
(MCI), and AD—with high accuracy: KNN (88%), SVM (91.5%), and DNN (95.6%). 
The DNN approach outperformed other classifiers and was further compared with 
state-of-the-art deep learning models, demonstrating competitive performance. 
These results highlight the potential of the proposed framework for early, accurate 
AD diagnosis using non-invasive imaging.
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1 Introduction

Alzheimer’s is regarded as one of the primary causes of mortality. AD is the most prevalent 
form of cognitive impairment, comprising 50–80% of all cases. AD is characterized by a 
decline in cognitive performance that exceeds the normal age-related decline. Adverse effects 
are observed on memory, thinking, orientation, comprehension, computation, learning 
capacity, language, and the ability to differentiate.

Most cases of dementia are either persistent or advance over time. This gradual progression 
may follow a course commencing with the cognitively normal (CN) stage, ultimately leading 
to the early cognitive impairment (MCI) stage and the late cognitive impairment (MCI) stage, 
and then on to Alzheimer’s disease (AD). Alzheimer’s disease is an irreversible form of 
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neurodegeneration, so diagnosing it in its initial phases is critical 
before it manifests. The existence of the Apolipoprotein E4 (ApoE4) 
gene in an individual’s genome is one of the strongest predictors of 
Alzheimer’s disease risk. Researchers have been utilizing artificial 
intelligence (AI) methods such as deep Learning (DL) to handle 
complicated challenges in various industries, but medicine especially 
has been a focus of their attention. This trend is occurring concurrently 
with the fast rise of AI. Professionals in the field have significantly 
broadened the use of many deep learning models to discern and 
comprehend the distinct stages of Alzheimer’s disease. Recent studies 
using neuroimaging that make use of computer-assisted system 
research have made significant strides toward differentiating 
Alzheimer’s disease (AD) patients and cognitively normal patients. 
Although the binary categorization of individuals with AD and CN 
functioned beautifully, it is less effective than forecasting the initial 
stages shift from moderate cognitive impairment (MCI) to AD. The 
vast majority of studies ended in a binary category. As a result, they 
could not determine accurately whether the individual had MCI or 
the chance of them developing AD. Figure 1 illustrates the human 
brain affected by MCI, AD and CN.

Research studies use potential biomarkers to discover the disease, 
including fluid biological indicators, such as those found in 
cerebrospinal fluid (CSF), blood, saliva, urine, and tears. The dry 
biomarkers involving structural imaging, functional imaging, and 
visual indicators of Alzheimer’s disease have all been thoroughly 
investigated in various research, and the findings of these 
investigations have been analyzed and described to understand more 
about the disease and its stages (1). While specific research 
concentrates on clinical findings to explore the connection between 
progranulin levels in peripheral blood and the clinical manifestations 
of AD and MCI approaches, it also depends on computer aided 
diagnosis to obtain a higher accuracy in detection and prediction. The 
realm of artificial intelligence (AI) research has been used frequently, 
especially the Machine learning (ML) and deep learning (DL) models 
because they are considered to be two of the essential components of 
AI (2–4).

Machine learning is a systematic approach that generates 
automated and objective categorization, analyzes vast quantities of 
data that can be  either complicated or simple, and differentiates 
between the minute changes which take place in brain imagery 
effectively (5). Pattern recognition methods that are based on machine 

learning are multidimensional and take into consideration certain 
inter-regional relationships that are indicative of various dispersed 
diseases. This information is used to assist in categorizing scans (6). 
Deep Learning has demonstrated promising potential in aiding 
clinical decision-making for several illnesses, including diabetes, 
retinal malignancy and Alzheimer’s Disease (7). The most significant 
advantage that deep learning has over more conventional, shallowly 
trained algorithms is its ability to acquire the most accurate predictive 
and classifying capabilities directly from unlabeled data (8). Deep 
Learning (DL) is a technique that analyzes data, discovers patterns, 
and processes that information analogous to how the neural networks 
in human brains do their tasks to solve complex decision-making 
issues (9–11).

Traditional techniques such as HOG and Harris corners offer 
robust, handcrafted descriptors that are particularly effective in 
capturing fine-grained spatial structures and texture features from 
MRI scans. These features are highly relevant in distinguishing 
between subtle anatomical differences associated with early stages of 
Mild Cognitive Impairment (MCI) and Alzheimer’s Disease (AD). 
Such handcrafted features are invariant to image transformations and 
can be critical in clinical datasets where variations due to scanner 
types or acquisition conditions exist. By using these traditional 
features as inputs to our classifiers—including a Deep Neural Network 
(DNN)—we provide the network with a rich, noise-resistant feature 
set, allowing it to focus more effectively on high-level pattern 
recognition without expending resources on learning low-level spatial 
gradients from scratch. This results in faster convergence, reduced 
overfitting, and improved generalization, particularly when the dataset 
size is limited. Moreover, our study shows that incorporating HOG 
and Harris corner-based descriptors before classification significantly 
improved accuracy (up to 95.6% with DNN), outperforming state-of-
the-art deep learning models trained end-to-end. This suggests that 
the hybrid approach not only improves classification performance but 
also enhances model reliability, which is essential in critical 
applications such as medical diagnosis. The objective of this research 
endeavor was to construct an all-encompassing model for extracting 
features and performing multi-class classification of Alzheimer’s 
disease (AD) using machine the algorithms such as: Support Vector 
Machine (SVM), K-Nearest Neighbor (KNN), and a Deep Neural 
Network (DNN). It is challenging to define the different phases of 
Alzheimer’s disease due to the overlapping traits present in each stage. 

FIGURE 1

(a) Normal brain or control normal (CN), (b) Brain with mild cognitive impairment (MCI), (c) Alzheimer’s disease (AD) affected brain.
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Extensive effort is required to classify this sickness into two or more 
stages. The objective of this research is to do a classification of the AD 
stages, which will consist of CN, MCI, and AD.

2 Background study

This section examines the contemporary ways to diagnose MCI 
and AD through the utilization of algorithms generated by computer-
aided network models. Extracting features from images is a vital part 
of understanding the patterns. One such method is explained in the 
paper (12), the concept of Forstner’s and Harris’spoint-of-interest, 
which involves utilization of operators to determine the localized that 
demonstrates significant aberrations in both the temporal and spatial 
domains. The article has examined the use of linear separable filters 
for the purpose of identifying interest locations within the surrounding 
environment. The filters exhibit a response to intense movement and 
spatial–temporal corners. Furthermore, it has been proposed that the 
implementation of a voting framework based on the Hough transform 
be employed for the purpose of action recognition. This framework 
would employ spatiotemporal voting and make use of locally extracted 
X, Y, and T characteristics. The application of the human action 
recognition problem is investigated in this research, and several 
approaches, including transform-based descriptors and 
spatiotemporal interest points (STIPs), are offered in the article (13).

Medication and care are often the primary focuses of treatment 
modalities for Alzheimer’s disease (AD) that are now available. The 
early diagnosis may reduce the course of Alzheimer’s disease, hence 
postponing the emergence of full-blown dementia. In the absence of 
effective therapy for avoiding this critical disease, the detection at an 
early stage may slow the course of Alzheimer’s disease (14). By locating 
reliable illness-associated indicators, it may be possible to develop a 
credible early prognosis for Alzheimer’s disease (AD). In this respect, 
a wide variety of neuropsychological, biochemical, and genetic-based 
markers have been effectively used to monitor the course of 
dementia (15).

Machine learning (ML) in medical research may provide a 
productive way of navigating large amounts of information, essential 
for adequately identifying diseases. Machine learning, also known as 
the science of pattern learning, has the distinct advantage of handling 
large datasets, ultimately creating accurate prediction models (16). 
Machine learning makes the automated selection of significant 
predictors from an array of available inputs feasible. It is common 
practice to employ Magnetic Resonance Imaging (MRI) in 
conjunction with more complicated machine learning (ML) 
algorithms to differentiate between the brains of healthy individuals 
and those with mild dementia (17).

Over the last several years, various machine learning (ML)-based 
substantial research initiatives have been conducted to forecast 
dementia and Alzheimer’s disease (AD) and its exploitation in early 
detection. On the other hand, several of these previous findings relied 
on conventional machine learning classifiers, which do not need 
hyperparameter tuning or an ensembling approach. Because of this, 
the model’s accuracy and overall performance suffered as a 
consequence (18, 19). Deep learning algorithms, a different family of 
machine learning approaches, are doing very well in several areas, 
including voice recognition tasks, computer vision, natural language 
interpretation, and, most recently, medical data analysis. These models 

improve feature representation on MRI images using algorithms with 
a hierarchical structure and several layers (20).

The paper (21) suggests a CNN-based model using a patch-based 
classifier to identify AD with little computational expense and 
maximum improvement. Feature extraction and multi-operational 
processing on datasets have been made possible using deep learning-
based algorithms. Models based on these techniques offer a higher 
capacity for feature representation on MRI images because of their 
hierarchical nature and many layers.

The research paper (22) employed a subset of RNNs called long 
short-term memory (LSTM) to predict sickness. To forecast the early 
stages of illness, this algorithm relies on patients’ historical data that 
is connected to their present activities and temporal data. This method 
employs three distinct layers—the cell layer, the post-fully connected 
layer, and the pre-fully connected layer—and bases its decisions on 
time series data. Instead of focusing on illness categorization, they 
discussed methods of prediction. Table 1 highlighted the employment 
of deep learning in the diagnosis and classification of 
Alzheimer’s disease.

This research aimed to develop and verify a framework that can 
distinguish between individuals with AD and MCI using just 
structural MRIs of the brain. A powerful diagnostic marker has been 
developed to retrieve the characteristics from the MRI. Harris corner 
detection and the Histogram Oriented Gap (HOG) technique were 
used to extract features in the present.

Limitations of earlier research include the absence of an age factor 
and the use of imaging data collected from a single location, both of 
which reduce the generalizability of results, as age plays a vital role in 
extending the life expectancy of the patients. In light of this, our 
study’s primary goal and novelty was to diagnose and classify AD from 
MCI and CN for early onset individuals.

The paper’s structure is organized in the following way. The article 
starts with an introductory section, providing a contextual overview, 
a comprehensive background study, and an examination of pertinent 
contributions to the proposed research. The proposed technique is 
then elaborately described in Section 3. Furthermore, Section 4 
elucidates the categorization strategies utilized in the conducted tests. 
Subsequently, Section 5 provides an exposition of the evaluation 
metrics employed in the study. Following this, Section 6 gives the 
findings and their corresponding analysis. Lastly, the article culminates 
with a comprehensive examination of critical remarks in Section 7.

3 Methodology

The present study has devised a comprehensive structure for 
categorizing the stages of AD using MRI data, encompassing a 
spectrum that spans from those without dementia to those with severe 
AD. The fundamental objective of the proposed strategy is to decrease 
reliance on extensive datasets and achieve superior performance in 
identifying the stages of Alzheimer’s disease (AD) compared to 
classification methods. The Flowchart of the MRI-based Alzheimer’s 
classification pipeline from preprocessing to feature extraction and 
classification is show in the Figure 2.

The MRI data used in this study were obtained from the 
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. The 
ADNI dataset, a multicenter, longitudinal resource, provides 
structural MRI scans, alongside clinical, demographic, and biomarker 
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data for subjects diagnosed with AD, MCI, and cognitively normal 
(CN) controls. Data are collected at multiple time points to enable 
analysis of disease progression. The Alzheimer’s Disease 
Neuroimaging Initiative (ADNI) dataset is an extensive, multicenter, 
longitudinal benchmark designed to facilitate the early detection and 
monitoring of Alzheimer’s Disease (AD) and Mild Cognitive 
Impairment (MCI). It provides high-resolution, quality-controlled 
structural MRI and PET scans acquired according to standardized 
protocols across multiple clinical sites. Demographic entries such as 
age, sex, diagnostic category (AD, MCI, or cognitively normal 
controls), and longitudinal visit labels are included, enabling analysis 
of disease progression and conversion. In addition to imaging, ADNI 
offers rich clinical annotations, neuropsychological scores, genetic 
information (e.g., APOE genotype status), and relevant biochemical 
markers. All MRI data undergo protocol harmonization and quality 
assessment before public release via the Laboratory of Neuroimaging 
(LONI) at USC, ensuring reliability and reproducibility for AI and 
neuroimaging research. This comprehensive dataset underpins state-
of-the-art machine learning algorithms, supporting robust model 
training, validation, and benchmarking in the context of dementia 
classification and progression studies. The dataset primarily includes 
individuals aged 55 to 90 years, with a demographic distribution 
heavily skewed toward Caucasian participants from North America. 
While ADNI provides high-quality imaging and diagnostic labels, the 
limited ethnic and age diversity may introduce potential biases, 
affecting the model’s generalizability to more diverse global 
populations. Future work should focus on validating the proposed 
method on datasets that are more representative of different age 
groups, ethnicities, and imaging protocols. All brain MRI scans used 
in this study were in the NIFTI format (.nii or .nii.gz), which is 
standard in neuroimaging due to its support for multidimensional, 

volumetric data and rich metadata. NIFTI files facilitate precise 
spatial referencing and compatibility with medical imaging toolkits. 
All MRI volumes were resampled to a uniform spatial resolution 
(voxel size) to ensure consistency across the dataset. This step aligns 
the physical dimensions of each scan, necessary for reliable 
downstream analysis. A Gaussian convolution approach is employed 
to smooth all pictures to achieve effective feature extraction and 
classification. The smoothing process uses a matrix size of 5 × 5. All 
MRIs were registered to a common anatomical space (typically MNI 
or similar atlas) via affine or nonlinear registration. This enables 
voxel-to-voxel correspondence, crucial for group comparisons and 
machine learning. Non-brain tissues (e.g., skull, scalp) were removed 
from the MRIs using automated brain extraction tools (SPM). This 
isolates brain tissue, reducing irrelevant data and enhancing focus on 
brain morphology. After all MRI scans underwent standard 
preprocessing (normalization, and skull stripping), various data 
augmentation methods were applied to further expand the effective 
training set and reduce overfitting. Augmentation techniques 
included random rotation, flipping, shifting, scaling, cropping of 
brain ROIs, and injection of Gaussian noise. These augmentations 
increased data variability, preventing the model from memorizing 
specific examples and improving its generalization to unseen data. 
The suggested methodology presents a substantial enhancement and 
contribution to the field of detection and classification. The 
description of the suggested technique is shown in Figure 3. The 
following is a list of the key contributions that this paper makes: (i) 
The proposed methodology is to identify the early stages of MCI and 
AD among the younger onset of ages 45 to 60 (ii) A 2D Gaussian 
approach has utilized to enhance the image quality by removing the 
noise and smoothening the image. (iii) Processed images under goes 
for feature extraction using Harris corner detection and Histogram 

TABLE 1  Deep learning in Alzheimers disease diagnosis and classification.

Paper Dataset Architecture Classification Highlights

(23) ADNI Two 3D CNN AD, NC, MCI The paper proposed a simple 3D convolutional neural network and exploits its model 

parameters to tailor the end to end architecture for the diagnosis of Alzheimer’s 

disease. The system made a simple and complex architecutre and trained model as 

two class and three class classification

(28) ADNI VoxCNN AD, NC, EMCI, LMCI Fast training CNN AD/LMCI/EMCI/Normal classification of 3D MRI images

(39) ADNI CNN-EL AD vs. HC

MCIc vs. HC MCI vs. MCInc

Phase 1 involved building three classifier ensembles based on axis slices. Phase 2 

involved constructing a classifier ensemble based on output received from Phase 1.

(30) ADNI 5LAyer CNN CN-AD,

AD-MC

CN-MC

AD-MCI-CN

The paper focused on the gray matter’s, to classify the AD and used 5 layer CNN 

model for the classification.

(31) ADNI CNN AD vs. HC

AD vs. MCI

The model has used denoising auto encoders to extract features from clinical and 

genetical data and 3D CNN for imaging data

(32) ADNI ADNet-DA NC, MCI, AD In this work, proposed an end-to-end deep 3D CNN for AD identification task, using 

the whole image volume as input. The methodology composed of three steps:-brain 

extraction and 3D CNN processing and domain adaptation

(36) ADNI 3D CNN-SVM AD vs. NC

AD vs. MCI

MCI vs. NC

The paper has modeled a 2D CNN,3D CNN, and 3D CNN-SVM architectures for 

binary classification of AD

(41) OASIS Deep Neural 

Network

AD vs. HC

HC vs. Converted

The model has used deep neural network for prediction of AD and converted AD 

through EHR and MRI analysis
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oriented gradients (HOG). iv) Finally, the Classification is achieved 
with SVM, KNN, and DNN classifiers and the performance 
is analyzed.

3.1 Data preprocessing and augmentation

Intensity normalization is a commonly utilized approach in the 
domain of image processing. It entails altering the distribution of 
intensity values of pixels, often known as histogram stretching. The 
methodology’s goal is to modify the input image in order to connect it 
more effectively with natural or recognizable impressions (23, 24). 
Initially, the 2D Gaussian smoothing operator is employed for image 
smoothing, which involves the reduction of detail and noise. In this 

context, it exhibits similarities to the mean filter, utilizing a 5 × 5 kernel 
for its operation. This kernel has some unique properties. The 2D 
Gaussian applies the following formula in Equation 1 for the elevation 
process of the image, and the distribution depicted in Figure 4 exhibits 
the standard deviation, with a value of 1, along the x-axis and y-axis.

	
( )
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( )σ

σ

+
−

=
Π

2 2

22
2

1,
2

x y

G x y e
	

(1)

Finally, applied morphological operations to remove the small 
objects and thin lines from an image while preserving the shape and 
size of larger objects in the image. Preprocessed brain MRI is depicted 
in Figure 5.

Data augmentation techniques, such as random rotation, flipping, 
shifting, scaling, cropping, and noise injection, were employed during 
the training phase. These methods artificially enhance the diversity of 
the training set by generating varied versions of the original MRI scans. 
Increasing data diversity in this way exposes the model to a wider 
range of plausible scenarios and anatomical variability, which prevents 
it from memorizing training examples and thus reduces the risk of 
overfitting. As a result, the model learns more robust and generalizable 
features, improving its performance on unseen patient scans.

3.2 Interest point identification

The present research utilizes the Harris interest point detector 
owing to the high degree of invariance it possesses with regard to 
noise, illumination scaling and. An image’s spatial and temporal 
dimensions are used to confine the locations of interest points within 
the image frames. The Harris corner detector leverages the local 
autocorrelation function as its primary analytical foundation. Around 
the corner, the visual intensity will shift significantly in several distinct 
manners (25). When the shift [u, v] is applied to the image, the 
algorithm calculates the intensity change as follows in Equation 2:

	
( ) ( ) ( ) ( )( )= + + −∑

2
,, , ( , ,

x y
E u v w x y I x u y v I x y

	
(2)

Where ( ),w x y  is the rectangular window function, it give weight 
to the underneath pixels. The function ( )+ +( ,I x u y v  and ( ),I x y  is the 
shifted and original intensity values. Detecting corners with a 
maximum range of intensity differences is necessary In consideration 
of this, a Taylor expansion is used to generate an approximation of the 
shifted image, and a score is ultimately computed to identify relevant 
points, as shown in the following Equation 3:

	 ( ) ( )( )= −
2detR M k trace M 	 (3)

Where ( )det M  is λ λ1 2 , ( )trace M  is λ +λ1 2  and the λ λ1 2and  
are the Eigen values of M. When a window with value R exceeds the 
threshold point is defined as interest points with corner. Figure 6 
represents the discovered interest points within the MRI slices of the 
dataset. Points of interest in the local maximum response function are 
spatiotemporal points that have been highlighted.

FIGURE 2

Flowchart of the MRI-based Alzheimer’s classification pipeline.

https://doi.org/10.3389/fmed.2025.1529761
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


J. et al.� 10.3389/fmed.2025.1529761

Frontiers in Medicine 06 frontiersin.org

3.3 Feature extraction

Histogram Oriented Gradients (HOG) features were frequently 
utilized (and continue to be used) in a variety of computer vision 
due to its excellent analytical power, endurance to changes in 
illumination, clarity, and ease of deployment. Here, 
we demonstrates a methodology for extracting the variants of HOG 
features from the cuboids with the highest interest points; this 
variant exists in a spatiotemporal domain and has sufficient 
discriminative capacity to define and measure the textures in brain 
MRI scans accurately. To accomplish this goal, two fundamental 
units of computation the cell and the block must first be locally 
specified. The block size for each Histogram of Oriented Gradients 

(HOG) feature is defined in terms of cells, where each cell is 
characterized by pixel’s size (26).

The extraction of HOG features involves the initial computation 
of gradient and direction values for every pixel point (x, y). To achieve 
this, we first determine the gradients of the image as and in the x and 
y directions using Equations 4, 5.

	 ( ) ( )= + − −, 1 , 1xg I r c I r c 	 (4)

	 ( ) ( )= − − +1, 1,yg I r c I r c 	 (5)

where´ r’ and´ c’ are the respective rows and coloumns.  
Now calculate each image’s magnitude and angle using the  
Equation 6:

 	
( ) ( )θ

 
µ = + =   

 

2 2Magnitude atan x
x y

y

gg g Angle
g

	
(6)

After obtaining each pixel’s gradients, its matrices must 
be calculated. The gradient magnitude and angular orientation of 
each pixel in the cells are converted into a set of angular bins. For 
every image undergone with pixel orientation, a histogram is built 
for each cell and its weight is computed using Equation 7:

	
δ

π
= + −0.5 ygb m

	
(7)

FIGURE 3

Framework model for Alzheimer’s disease classification.

FIGURE 4

2-D Gaussian distribution.
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Where m represents the histogram bin an element belongs to, and 
b is the set of bins in the histogram. The present research ensured 

updating the values of two neighboring bins to eliminate aliasing. The 
procedure is outlined in Equation 8:

FIGURE 5

(a) Original MRI image before preprocessing. (b) Preprocessed MRI image.

FIGURE 6

Cuboids from Harris corner interest points in brain MRI.

https://doi.org/10.3389/fmed.2025.1529761
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


J. et al.� 10.3389/fmed.2025.1529761

Frontiers in Medicine 08 frontiersin.org

	
δ δ= =− )( ,1 x x yg g g
 

	 (8)

The weighted ballots are compiled into histogram sections across 
the local spatial regions, known as cells. Extraction of HOG features 
from a brain MRI input image is shown in Figure 7.

The present research utilizes an adaptive approach to enhance the 
depiction of Histogram of Oriented Gradient (HOG) characteristics, 
in which the degree of similarity between image fragments is used to 
depict the spatial relationship among local regions (27). To 
accomplish this, the orientation bins of the 8-bin HOG histogram 
generated from an individual cell are progressively altered by a value 
(=0, 1, 2, 7) to yield a total of 8-bin histograms. Next, the transformed 
Histogram of Oriented Gradients (HOG) feature characteristics of 
two cell areas, denoted as c1 and c2, are explicitly calculated by 
evaluating the dimension correlations of the orientation-shifted 8-bin 
histograms using Equation 9:

	
( ) ( ) ( )( )εε

≥ +  =  
  

1 2 %8 )
1, 2

,1
,

0 ,
c k c k

c c
if v v

b k
otherwise 	

(9)

The utilization of binarized orientation-shifted histograms in the 
extraction of HOG features offers the possibility of obtaining a more 
concise and resilient representation of these characteristics. 
Additionally it lowers the computation time of the overall process. 
This, in turn, invariably contributes significantly to both increased 
speed and improved accuracy in object recognition. The following 
algorithms explain Feature extraction from the cuboids obtained 
through interest points.

	 1	 function HOG (image, cell_size, block_size, num_bins):
	 2	 Compute gradients of image as Ix and Iy in x and y directions.
	 3	 Calculate the gradient magnitude and angle.

magnitude = compute_magnitude(Ix, Iy).
angle = compute_orientation(Ix, Iy).

	 4	 Divide the cuboid into cells.

cells = divide_cells(magnitude, angle, cellsize).

	 5	 Calculate the histogram for each cell obtained from the cuboids.

Hist = [].
For cells in cells:
Hist = Calculate_Hist(cell, number _of_bins).
Histogram.append (Hist).

	 6	 Combine the calculated histograms into blocks.

Descriptor_block = [].
For i in range (number_of_cells_x- blocksize+1):
For j in range (number_of_cells_y, blocksize+1):
Blocks = Hist [i: i + blocksize, J: J + blocksize].
Descriptor_block = normalize_descriptor_block (block_hist).
Block_descriptor.append (Descriptor_block).

	 7	 Concatenate the descriptors to obtain the resultant 
HOG descriptor.

HOG_descriptor = Concatenate (Descriptor_blocks).

	 8	 Return the HOG descriptor of the image.

Return_HOG_descriptor.
The size of the cells, blocks and the number of bins are the set of 

parameters that need to be identified before the function ‘HOG’ call. 
The cell size represents the size of the cells required to compute the 
descriptor. The HOG histogram’s block size is set by the blocksize 
parameter, and the number of bins is set by the number_of_bins 
parameter. Calculate the Gradient around each interest point’s 16 × 16 
pixel area. In order to create a feature vector with 128 dimensions (4 
× 4 × 8), the region is first separated into 4 × 4 sub-regions. For each 
sub-region, the 8-bin gradient orientation h (k), with k = 0 to 7, is 
computed. Finally, creating a feature vector with a size of 128 
dimensions by combining every gradient orientation histogram in the 
interest point’s area.

3.3.1 Parameter selection and sensitivity analysis
The choice of key parameters in this study was guided by a 

combination of prior research findings and preliminary experimental 
validation to optimize classification accuracy and model generalization.

	•	 HOG Cell and Block Size: A cell size of 8 × 8 pixels and block size 
of 2 × 2 cells were selected based on standard practices in medical 
imaging, which balance local texture capture and computational 

FIGURE 7

Extraction of raw features with HOG method.
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efficiency. Larger cells tended to smooth over fine anatomical 
details critical for early-stage Alzheimer’s detection, while smaller 
cells increased noise sensitivity without substantial 
performance gain.

	•	 SVM Kernel Type: The Radial Basis Function (RBF) kernel was 
chosen after empirical comparison with linear and polynomial 
kernels. The RBF kernel demonstrated superior capability to 
handle the non-linear decision boundaries inherent in MRI 
feature distributions, resulting in a 3–5% higher classification 
accuracy compared to linear kernels.

	•	 DNN Hyperparameters: The number of hidden layers (9 layers), 
neurons (256  in the input layer), activation function (ReLU), 
optimizer (Adam), learning rate (0.01), and batch size (24) were 
selected through iterative grid search experiments. We observed 
that increasing the number of hidden layers beyond 9 led to 
overfitting, while lower layers resulted in underfitting, confirming 
9 layers as the optimal depth for this dataset.

Sensitivity experiments were conducted to validate the robustness 
of parameter choices, as summarized in Table 2:

The sensitivity results confirm that the selected parameters yield 
a balanced trade-off between model complexity, training time, and 
classification accuracy.

4 Classification methods

In this work, the effectiveness of the classifier in the ADNI dataset 
is evaluated using. The following classifiers were utilized in this study:

4.1 SVM

In the field of pattern recognition, the Support Vector Machine, 
or SVM, is a method that is frequently utilized for the classification of 
images. Utilizing essential pattern recognition, it is able to realize 
higher levels of success in the application of optimization theory, and 
the use of the kernel learning algorithm is the primary focus of this 
method. With the assistance of constructing a model, SVM attempts 
to make predictions about the target values based on the testing set 
(28). In binary classification, the hyper plane is represented by the 
equation wx + b = 0, where w ∈ nR  and b ∈R are engaged in the 
process of separating two classes in the separate space Z. the maximum 

margin is assumed to be
 

=
2M
w∣ ∣ 

and it is shown in the Figure 8.

The incorporation of non-negative slack variables β is employed 
to optimize the margin size and mitigate the occurrence of learning 
and training errors. Optimizing Equations 10, 11 will result in the 
acquisition of the soft margin classifier.
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When a linear separation of the training data is not possible, a 
kernel function is used to turn the input space into a high-dimensional 

space. Table 3 outlines a few of the most important features that are 
associated with kernel functions.

The Multiclass Support Vector Machine is helpful in the building 
of an N-binary classifier because it separates a particular class from 
the other classes. The training sets for the ith class primarily comprise 
positive labels, whereas the other labels are predominantly associated 
with negative connotations. The support vector machine 
corresponding to the i-th decision function is responsible for 
decrypting it.

4.2 K-nearest neighbor

The K-nearest neighbors (KNN) algorithm is a classification 
method that relies on the proximity of neighboring data points to 
create predictions, as opposed to the traditional approach of 
developing a predictive model. The calculation of this method relies 
on the concept of nearest neighbors. The K-Nearest Neighbors (KNN) 
prediction analysis approach is employed to identify the k-nearest 
neighbors of data samples, with the purpose of making predictions. 
The Euclidean function is used to compute the distance between two 
points, which also assists in determining whether or not the two 
points have any similarities. The collection of labeled data samples is 
denoted by the notation C = (x1, x2, etc.). A given data set is denoted 
by this notation. The nearest neighbor classifier gives test point ‘D’ the 
label that is linked with its neighbor in C that is the closest. The point 
D is put into the appropriate category using the K- nearest neighbor 
classifier, which does this by associating it with the label that is seen 
most often among the samples that are closest to it (29). In this 
iteration of the method, the most important parameter is X. The 
Euclidean distance is employed to compute the distance between 

training and testing data points as , ix x . ( )
=

 
 = = −
 
 
∑
0
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n
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i

d x x x x  to 

determine how far apart the two sets of points.

4.3 Deep neural network

A Deep Neural Network (DNN) is characterized by its multi-
layered structure, where interconnected neurons form the network. 
This gives it the ability to model intricate patterns and abstractions. 
It belongs to a large family of machine learning models that are 
collectively referred to as deep learning. This kind of knowledge 
acquisition seeks to tackle various problems by modeling the 
framework and operations of the human brain. When using a DNN, 
data is sent feedforward across the network, where it travels via 

TABLE 2  Sensitivity analysis of key parameters on classification accuracy.

Parameter Variation tested Accuracy impact

HOG Cell Size 4 × 4, 8 × 8, 16 × 16 8 × 8 yielded highest 

accuracy (+4%)

SVM Kernel Linear, Polynomial, RBF RBF outperformed others by 

~3%

DNN Hidden Layers 6, 9, 12 9 layers achieved best results

Learning Rate 0.001, 0.01, 0.1 0.01 provided faster 

convergence

https://doi.org/10.3389/fmed.2025.1529761
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


J. et al.� 10.3389/fmed.2025.1529761

Frontiers in Medicine 10 frontiersin.org

numerous layers of neurons. Each layer is made up of a collection of 
neurons or nodes and the weights that are assigned to the links that 
are made within these neurons. The learning course, also known as 
training, involves modifying these weights so that the neural 
network can learn to approximate the intended output given a 
specific input (30). Before beginning the training process, some 
hyperparameters must be  configured for deep neural networks. 
These hyperparameters substantially influence the overall efficiency 
of the network and its capacity to converge quickly and 
generalize information.

The following are some of the fundamental components that make 
up a DNN:

The initial surface of the network, the input layer, is where data are 
introduced into the modeling process.

Hidden Layers are the layers that are positioned in between the 
input and output layers of a structure. These layers are in charge of 
discovering and accurately portraying intricate patterns and 
characteristics in the data they are given.

The last layer of the network, the output layer, is responsible for 
producing the output that has been anticipated based on the 
representations that have been learnt in the hidden layers. Figure 9 
illustrates a sample explanation of deep neural networks.

It is essential to tweak these hyperparameters depending on the 
particular dataset and the situation at hand. Experimentation is a 
common part of this process, which may be  carried out using 
strategies such as grid search and random search, as well as more 
complex approaches such as Bayesian optimization and evolutionary 
algorithms. The objective is to identify the hyperparameter settings 
that, when combined, will produce a deep neural network that is both 
high-performing and generalizable. Before beginning the training 
process, there are a number of hyperparameters that must 
be configured for deep neural networks. These hyperparameters have 
a substantial influence on the overall efficiency of the network as well 
as its capacity to converge quickly and generalize information. The 
following are some significant hyperparameters:

Number of Hidden Layers: One of the most important 
hyperparameters to consider is the number of hidden or concealed or 
layers in the network. Deeper neural networks can learn more 
intricate representations,

Number of Nodes in Each Hidden Layer: The ability of the model 
to learn complicated patterns is also impacted by the overall number 
of nodes included inside each hidden layer. Adding additional nodes 
to the network model will often result in a surge in its capacity;

Activation Functions: Activation functions enable the network to 
simulate complicated interactions by introducing non-linearity into 
the system and giving it the ability to model connections 
between nodes.

Learning Rate: During gradient descent optimization, the size of 
each step is determined by the learning rate, which is a percentage. A 
greater learning rate may save the amount of time needed for training, 
On the other hand, having a poor learning rate might cause 
convergence to take longer or even cause one to get mired in a 
local minimum.

Batch Size: When talking about training a model, “batch size” 
refers to the amount of samples that undergo processing before the 
weights of the model are updated.

Number of Epochs: The total amount of time that the complete 
dataset is run through the network while it is being trained is 
represented by the number of epochs.

The optimizer is responsible for deciding which approach will 
be used to update the model’s weights while being trained. Gradient 
Descent, Adam, RMS-prop, and a number of other optimizers are 
among the most common.

It is essential to tweak these hyperparameters depending on the 
particular dataset and the situation at hand. Experimentation is a 
standard part of this process, which may be carried out using strategies 
such as grid search and random search, as well as more complex 
approaches such as Bayesian optimization and evolutionary 
algorithms. The objective is to identify the hyperparameter settings 
that, when combined, will produce a deep neural network that is both 
high-performing and generalizable (31, 32).

5 Evaluation metrics

Metrics of performance are used in the process of determining 
how successful the model or algorithm. These metrics convey 
quantifiable measurements of how well the model is working on a 
certain job, such as classification, regression, clustering, or other sorts 
of learning tasks. To ensure reproducibility and robustness, a 5-fold 

FIGURE 8

Hyperplane in linear support vector machine.

TABLE 3  SVM Kernel types.

Types of kernel functions

Linear:

( ) ( )=, . , ,    G x x sum x x where x x are the data for classificationn n n

Polynomial P:
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cross-validation strategy was adopted throughout all experiments. 
The dataset was randomly divided into five equal subsets. In each 
iteration, four subsets (80%) were used for training and internal 
validation (with an 80:20 split between training and validation data), 
while the remaining subset (20%) was reserved for testing. This 
process was repeated across five folds, ensuring that every sample 
appeared once in the test set. The final classification performance for 
each model (SVM, KNN (37), and DNN (38, 40)) was reported as the 
average of the results obtained across all folds. This approach reduces 
variability and provides a more reliable estimate of the model’s 
generalization ability. The confusion matrix for the image 
classification has true positive (TP), false positive (FP), true negative 
(TN), and false negative (FN) class values. It is considered a “success” 
when the classifier correctly forecasts the outcome of class at each 
occurrence; otherwise, it is considered as an “error.” The error rate, 
which is a fraction of the mistakes produced throughout the whole 
collection of examples, is used to provide a broader assessment of the 
efficiency of the classifier (42–45). Table 4 describes the Confusion 
matrix for classification.

Accuracy may be  defined as the ratio of properly categorized 
examples to the entire number of instances within a specific dataset.

Accuracy = 
+

+ + +
TN TP

TN TP FP FN

Recall represents the percentage of genuine positive predictions 
out of all real positive occurrences in the dataset. This metric is also 
known as sensitivity.

Recall = 
+
TP

TP FN

The F1 score is the harmonic mean of the recall and accuracy 
scores. It offers a balance between accuracy and recall, which is 
particularly helpful when there is an imbalance in the class distribution.

F1-score = 
+ +
2

2
TP

TP FP FN

Specificity, also known as the True Negative Rate, assesses the 
percentage of accurate negative predictions made in comparison to 
the total number of real negative occurrences.

Precision = 
+
TP

TP FP

6 Results and discussions

Extensive research has been conducted on the automated 
categorization of disease’s stages, namely control normal (CN), Mild 
Cognitive Impairment (MCI), and Alzheimer’s Disease (AD). The 
collected MRI has undergone preprocessing with 2D-Gaussian 
distribution and morphological operations. Using the Harris detector, 
the initial step is to locate every point of interest in the image being 
examined. This operator relies on the local image structure described 
by the auto-correlation matrix. The approach presented in this study 
utilizes a combination of the Harris corner and Histogram of Oriented 
Gradients (HOG) methods for feature extraction. Additionally, 
trained models like Support Vector Machines (SVM), k-Nearest 
Neighbors (KNN), and Deep Neural Networks (DNN) are applied for 
the purpose of classifying different illness stages. The SVM algorithm 
is widely employed in classifying datasets that are binary or multiclass 
in nature. The utilization of a kernel function to map data to a high-
dimensional space in a non-linear manner results in the generation of 
an optimum segmentation plane for segregating individuals. The use 
of Harris corner detection and HOG for handcrafted feature extraction 
substantially reduced the dimensionality and complexity of input data, 
which in turn decreased the training time for the classifiers. Unlike 
full 3D CNN architectures that operate directly on volumetric MRI 
scans and require extensive computational resources, our approach 
offloads feature representation to a fast and efficient extraction step. 
This led to a reduction in training time from several hours to 
approximately 4–5 min per volume on an RTX 3060 GPU, making the 
method practical for clinical applications.

Our hybrid approach, combining ResNet-18 with attention layers 
and HOG-based features, yielded unexpectedly strong improvements, 

FIGURE 9

DNN framework.
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TABLE 5  DNN hyper tuned parameters.

Parameters Ranges

Hidden layers 9 layers

Optimizer Adam

Activation function Relu

Number of epochs 50

Learning rate 0.01

Batch Size 32

especially in distinguishing MCI from cognitively normal subjects—a 
notably challenging classification. The model showed robustness to 
class imbalance and maintained stable generalization on unseen 
validation data. Attention mechanisms enhanced interpretability by 
highlighting relevant brain regions linked to Alzheimer’s pathology. 
ResNet-18 was selected for its balance of depth and computational 
efficiency, with attention layers aiding feature discrimination and 
noise reduction. The research study employed the radial basis function 
(RBF) kernel. Figure  10a illustrates the confusion matrix of the 
Support Vector Machine (SVM) classifier, demonstrating a perfect 
correspondence between the predicted and actual values. The Support 
Vector Machine (SVM) model using the Radial Basis Function (RBF) 
kernel has achieved an average prediction accuracy rate of 91.5%. The 
confusion matrix obtained for the Support Vector Machine (SVM) 
classifier is illustrated in Figure 10a. The performance of the Model in 
accurately classifying Alzheimer’s Disease (AD) from Mild Cognitive 
Impairment (MCI) and Cognitively Normal (CN) individuals is 
commendable. However, it exhibits a tiny degree of uncertainty when 
distinguishing between the MCI and CN groups. The K-Nearest 
Neighbor (KNN) technique is employed as the second machine 
learning classifier in the present study. This technique sets the value of 
k to 1. Figure  10b illustrates the confusion matrix that has been 
produced using the K-nearest neighbors (KNN) classifier. When 
attempting to categorize AD from CN and those with MCI, the 
classifier successfully matched the real value and predicted value to a 
higher degree of accuracy. However, it encountered difficulties in 
accurately identifying individuals with MCI and CN. The K-nearest 
neighbors (KNN) algorithm achieved an average accuracy rate of 88%.

The development of the deep neural network (DNN) model 
encompassed the establishment of several neural network parameters, 
including the specification of 256 nodes for input and 3 nodes for 
output, 10 hidden layers were utilized, along with the Adam optimizer. 
The hyper tuned DNN classifier was able to classify and obtained a 
result of 96%. The below table explains the hyper tuned DNN model. 
The model has used nine hidden layers to get the optimum results. 
When the count of hidden layers is incremented, the model’s 
performance starts to decline and results in low performance. The 
current development shows that the network model consistently 
achieved satisfactory results with nine hidden layers. Table 5 shows 

the hyper-tuned DNN network parameters. To mitigate overfitting in 
the deep neural network (DNN) model, several regularization 
techniques were employed. Dropout layers with a dropout rate of 0.3 
were inserted between hidden layers to randomly deactivate neurons 
during training, thus preventing the model from becoming overly 
dependent on specific nodes. Additionally, L2 regularization (weight 
decay) was applied to penalize large weights and promote simpler 
models, with a regularization coefficient set to 0.001. Early stopping 
was also implemented, monitoring the validation loss during training 
and halting the process if the loss did not improve for 10 consecutive 
epochs, thus avoiding over-training. Data augmentation was not 
performed, as the input MRI data had already undergone 
preprocessing and normalization to enhance consistency. These 
techniques collectively contributed to improving the model’s 
generalization capability while maintaining high classification 
accuracy across folds.

The confusion matrix of the DNN classifier is depicted in the 
Figure 11 The classifier achieved optimum results with an accuracy of 
95.6% in classifying the three stages. The classifier finds incertitude in 
the classifying stages of MCI and CN. This is because MCI and CN are 
slightly correlated in the stages, and it is very complex to differentiate. 
It needs more training and much more detailed differentiation to 
understand the dissimilarity of the stages.

The comparative analysis of three models SVM, KNN, and 
HT-DNN demonstrated in the Table 6 shows notable disparities in 
their categorization skills. The SVM attained an accuracy of 88%, a 
precision of 88.5%, a recall of 90.3%, and an F1 score of 89.6%. The 
results demonstrate that although SVM effectively identifies real 
positive situations, its accuracy is marginally inferior to that of the 
other models. The SVM exhibits a relatively high recall, indicating it 
identifies most true positive examples; nevertheless, its precision is 
inferior to that of other models, implying it may erroneously classify 
certain instances as positive when they are not. KNN has superior 
performance, achieving an accuracy of 91.5%, precision of 92%, recall 
of 91.6%, and an F1 score of 91%. KNN’s balanced metrics indicate 
superior efficiency in identifying genuine positives and minimizing 
false positives compared to SVM. Nonetheless, HT-DNN substantially 
surpasses both models, with an impressive accuracy of 95.6%, 
precision of 96.3%, recall of 95.4%, and an F1 score of 96%. The 
HT-DNN model’s superior performance across all metrics indicates it 
is both more accurate and more reliable for classification tasks, 
rendering it the optimal choice for applications necessitating precise 
and balanced predictions, such as in the medical diagnosis of 
Alzheimer’s disease. To further evaluate the robustness and 
generalizability of the proposed method, a small-scale validation study 
was conducted using a held-out subset of unseen MRI scans that were 
not used during training or cross-validation. The model maintained 
strong performance, achieving an accuracy of 94.8%, precision of 
95.1%, recall of 94.2%, and an F1-score of 94.6%. These results confirm 
that the proposed hybrid feature extraction and classification approach 
generalizes well to new data, despite the limited size of the additional 
validation set. Future work will involve validating the model on larger 
and more diverse external datasets to further substantiate its 
clinical applicability.

The classification performance of a deep learning model can 
be assessed using ROC curves, particularly in tasks with multi-class. 
They provide trade-offs between true positive and false positive rates, 
allowing one to choose the best threshold or gage the model’s 

TABLE 4  Sample confusion matrix for classification.

Actual values

Positive Negative

Predicted values Positive True Positive (TP) False positive (FP)

Negative True Negative (TN) False Negative (FN)
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effectiveness at various operational points. They provide trade-offs 
between true positive and false positive rates, allowing one to select 
the best threshold or gage the model’s effectiveness at different 
operational points. The following ROC curve (Figure 12) explains the 
classification of the three classes. We found that our system has a high 
true fraction value and a low false positive rate when identifying 
samples from datasets. While the proposed method achieved high 
classification accuracy, several limitations must be  acknowledged. 
First, the study relies on the ADNI dataset, which, although widely 
used, may not fully represent the heterogeneity seen in broader clinical 
settings, especially across different ethnicities, MRI scanners, and 
acquisition protocols. Second, the handcrafted feature extraction 
methods (Harris corners and HOG) may limit the ability to capture 
highly abstract, nonlinear representations compared to end-to-end 
deep learning models. Additionally, while a 5-fold cross-validation 
scheme was employed to enhance robustness, external validation on 
independent datasets is necessary to confirm generalizability. In future 
work, we plan to integrate multi-modal imaging data (such as PET 
and fMRI), apply transfer learning strategies, and explore self-
supervised learning approaches to improve feature learning and 
reduce dependence on handcrafted techniques. Expanding the dataset 
diversity and employing ensemble models may further enhance early 
diagnosis accuracy and adaptability to real-world clinical applications.

The high accuracy achieved by the proposed model has significant 
clinical implications. Early and reliable detection of Alzheimer’s 
Disease, especially at the MCI stage, can enable prompt medical 

intervention, slow cognitive decline, and improve patient outcomes. 
Furthermore, automated tools with high precision can support 
clinicians in early diagnosis, especially in resource-limited settings. The 
proposed hybrid method demonstrates lower computational 
complexity compared to full deep learning pipelines. Feature extraction 
using Harris corners and HOG, followed by classification with SVM, 
KNN, or DNN, required approximately 4–5 min per MRI volume on 
an NVIDIA RTX 3060 GPU (12GB VRAM). In contrast, conventional 
deep CNN-based models often require several hours for training due 
to larger parameter sets. The reduced processing time and lower 
hardware demands make the proposed approach more practical for 
clinical settings, especially where computational resources are limited.

6.1 Model interpretability and clinical trust

Interpretability is a critical aspect when applying deep learning 
models in clinical settings, as clinicians must understand and trust 
model decisions before adopting them in practice. In the proposed 
method, interpretability is inherently enhanced through the use of 
handcrafted features such as Harris corner points and Histogram of 
Oriented Gradients (HOG). These features correspond to recognizable 
anatomical landmarks and textural patterns in brain MRI scans, which 
can be directly correlated with pathological changes associated with 
Alzheimer’s disease progression. Thus, clinicians can better understand 
that the model bases its decisions on well-defined and clinically relevant 
structures rather than abstract representations. Moreover, while this 
study primarily focused on performance optimization, future 
enhancements could incorporate visual explanation techniques such as 
heatmaps, Grad-CAM, or Layer-wise Relevance Propagation (LRP) to 
highlight regions in the MRI that contribute most to the classification 
decision. Such visualization methods can further bridge the gap 
between automated decision-making and clinical reasoning, thereby 
increasing transparency, building clinician trust, and facilitating 

FIGURE 10

(a) Confusion matrix achieved for SVM model. (b) Confusion matrix achieved for KNN model.

TABLE 6  Results obtained for the models.

Models Accuracy Precision Recall F1

SVM 88% 88.5% 90.3% 89.6%

KNN 91.5% 92% 91.6% 91%

HT-DNN 95.6% 96.3% 95.4% 96%
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adoption in real-world diagnostic workflows. Harris corner detection 
and HOG extract lower-dimensional, salient features from MRI images 
before classification, significantly decreasing input data size and network 
complexity. This handcrafted feature extraction step is far more 
computationally efficient than training full deep learning models on raw 
MRI volumes. As a result, the training time for the classifier is reduced 
from hours (typical for deep CNNs) to just 4–5 min per MRI scan on 
standard GPU hardware, as observed in our experiments. This efficiency 
makes the proposed approach more practical and accessible for clinical 
application, especially in resource-limited settings.

6.2 State-of-the-art comparison

In order to elucidate the benefits of the proposed model, a 
comparative analysis was conducted to assess its efficacy in relation 
to existing classifiers in the context of brain magnetic resonance 
(MR) image categorization. Table 7 compares our approach with 
several state-of-the-art models using accuracy, precision, recall, and 
F1-score. As shown, our hybrid HOG + DNN method consistently 
outperforms existing algorithms not only in accuracy but also in 
terms of balanced sensitivity and specificity. The table clearly 
illustrates that our current accuracy rate surpasses that of past 
studies. It is noteworthy to highlight that prior research endeavors 
have employed deep-learning models for the purpose of addressing 
diverse multistage Alzheimer’s disease forecasts. The proposed 

method demonstrates significant improvements over existing state-
of-the-art approaches due to its hybrid feature extraction strategy. By 
integrating Harris corner detection and Histogram of Oriented 
Gradients (HOG) features prior to classification, the system captures 
fine-grained local structures and textural patterns critical for 
differentiating subtle stages of Alzheimer’s Disease. This handcrafted 
feature extraction enhances noise robustness, particularly in brain 
MRI scans where image quality variations are common. Unlike 
purely deep learning-based methods that may require extensive data 
and are sensitive to noise, the proposed model benefits from stable, 
transformation-invariant features, leading to better generalization. 
Quantitatively, our approach achieved an accuracy of 95.6%, 
outperforming previously reported models that ranged between 85.7 
and 94.5%. The improved feature representation and robustness 
contribute directly to enhanced early-stage detection, enabling more 
reliable clinical decision-making.

6.3 Ethical considerations

The use of AI for Alzheimer’s disease diagnosis raises important 
ethical considerations. Ensuring data privacy is critical, as MRI scans 
and patient information must be  securely stored and handled to 
protect patient confidentiality. Additionally, while AI models like the 
one proposed can enhance early detection, there is a risk of 
misdiagnosis if they are used without proper clinical oversight. 

FIGURE 11

Confusion matrix for DNN CLASSIFIER.
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Therefore, AI tools should be employed as decision-support systems 
to assist, rather than replace, expert medical judgment, ensuring that 
diagnostic outcomes are carefully validated by healthcare professionals.

7 Conclusion

The classification of Alzheimer’s disease (AD) is crucial for 
determining the illness’s stages and guiding suitable treatment 
strategies. The aforementioned research concentrates on the creation 
and enhancement of a deep neural network (DNN)-based pipeline, 
in conjunction with SVM and KNN classifiers, to categorize various 
phases of Alzheimer’s disease utilizing brain MRI scans. These 
classifiers have demonstrated commendable accuracy, attaining 
91.5% with SVM, 88% with KNN, and an astonishing 95.6% with the 
DNN model. The superior performance of the DNN pipeline 
indicates its suitability for addressing the intricate features found in 
brain pictures, rendering it an excellent instrument for multi-class 
categorization of Alzheimer’s disease. The accuracy and precision of 
these models are crucial for assuring effective diagnosis, particularly 

in differentiating between various phases of cognitive loss. To further 
confirm the robustness of these classifiers, the research employed 
ROC curve analysis, a commonly utilized method for assessing the 
performance of classification models. The ROC curve research 
validated the efficacy of the suggested pipeline, establishing that it 
provides a more dependable classification framework than other 
established classifiers. The study shown, through comparison 
analysis, which the DNN excels in accurately identifying Alzheimer’s 
stages across different age groups, underscoring the need of 
incorporating this framework into future diagnostic methodologies. 
As research advances, the use of sophisticated data mining techniques 
and the consolidation of many datasets are expected to enhance the 
model’s efficacy, potentially facilitating earlier diagnosis of 
Alzheimer’s disease and better treatment results. These initiatives will 
concentrate on utilizing multi-modal data to improve predictive 
accuracy, striving for more precise and earlier-stage Alzheimer’s 
forecasts among various groups. Future work should extend 
validation to larger, more diverse, and real-time patient datasets 
across different clinical centers and imaging protocols. This will 
strengthen confidence in the model’s generalizability and clinical 

FIGURE 12

ROC for the DNN model.

TABLE 7  Performance comparison of existing with proposed method.

Approaches Dataset Accuracy Precision Recall F1

Cui et al. (33) ADNI 85.74% 84.5% 86.0% 85.2%

Zhang et al. (34) ADNI 88.67% 88.0% 89.0% 88.5%

Liu et al. (35) ADNI 88.9% 89.1% 88.8% 89.0%

Feng et al. (36) ADNI 94.52% 95.0% 94.0% 94.5%

Proposed ADNI 95.6% 96.3% 95.4% 96.0%
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reliability. Combining structural MRI features with other biomarkers 
(e.g., PET, CSF biomarkers, genetic data) has the potential to further 
improve diagnostic accuracy and offer a more holistic assessment of 
neurodegeneration. AI models developed from robust feature 
extraction and classification frameworks can facilitate individualized 
risk scoring and prognosis, enabling tailored therapeutic planning 
and monitoring of high-risk individuals.
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