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Alzheimer's disease (AD) is a common form of dementia that affects the central
nervous system, causing progressive cognitive decline, particularly in memory.
Early, non-invasive diagnosis is critical for improving patient care and treatment
outcomes. This study proposes a robust feature extraction approach combined
with three classifiers to achieve optimal classification of AD stages. T1-weighted
brain MRI scans were used as input data. Features were extracted using Harris
Corner interest points and the Histogram of Oriented Gradients (HOG) method.
Classification was performed using Support Vector Machine (SVM), K-Nearest
Neighbor (KNN), and a Deep Neural Network (DNN)-based pipeline. The proposed
system classified three AD stages—Control Normal (CN), Mild Cognitive Impairment
(MCI), and AD—with high accuracy: KNN (88%), SVM (91.5%), and DNN (95.6%).
The DNN approach outperformed other classifiers and was further compared with
state-of-the-art deep learning models, demonstrating competitive performance.
These results highlight the potential of the proposed framework for early, accurate
AD diagnosis using non-invasive imaging.

KEYWORDS

histogram oriented gradients, Harris corner, Alzheimers’s disease, mild cognitive
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1 Introduction

Alzheimer’s is regarded as one of the primary causes of mortality. AD is the most prevalent
form of cognitive impairment, comprising 50-80% of all cases. AD is characterized by a
decline in cognitive performance that exceeds the normal age-related decline. Adverse effects
are observed on memory, thinking, orientation, comprehension, computation, learning
capacity, language, and the ability to differentiate.

Most cases of dementia are either persistent or advance over time. This gradual progression
may follow a course commencing with the cognitively normal (CN) stage, ultimately leading
to the early cognitive impairment (MCI) stage and the late cognitive impairment (MCI) stage,
and then on to Alzheimer’s disease (AD). Alzheimer’s disease is an irreversible form of
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neurodegeneration, so diagnosing it in its initial phases is critical
before it manifests. The existence of the Apolipoprotein E4 (ApoE4)
gene in an individual’s genome is one of the strongest predictors of
Alzheimer’s disease risk. Researchers have been utilizing artificial
intelligence (AI) methods such as deep Learning (DL) to handle
complicated challenges in various industries, but medicine especially
has been a focus of their attention. This trend is occurring concurrently
with the fast rise of Al. Professionals in the field have significantly
broadened the use of many deep learning models to discern and
comprehend the distinct stages of Alzheimer’s disease. Recent studies
using neuroimaging that make use of computer-assisted system
research have made significant strides toward differentiating
Alzheimer’s disease (AD) patients and cognitively normal patients.
Although the binary categorization of individuals with AD and CN
functioned beautifully, it is less effective than forecasting the initial
stages shift from moderate cognitive impairment (MCI) to AD. The
vast majority of studies ended in a binary category. As a result, they
could not determine accurately whether the individual had MCI or
the chance of them developing AD. Figure 1 illustrates the human
brain affected by MCI, AD and CN.

Research studies use potential biomarkers to discover the disease,
including fluid biological indicators, such as those found in
cerebrospinal fluid (CSF), blood, saliva, urine, and tears. The dry
biomarkers involving structural imaging, functional imaging, and
visual indicators of Alzheimer’s disease have all been thoroughly
investigated in various research, and the findings of these
investigations have been analyzed and described to understand more
about the disease and its stages (1). While specific research
concentrates on clinical findings to explore the connection between
progranulin levels in peripheral blood and the clinical manifestations
of AD and MCI approaches, it also depends on computer aided
diagnosis to obtain a higher accuracy in detection and prediction. The
realm of artificial intelligence (AI) research has been used frequently,
especially the Machine learning (ML) and deep learning (DL) models
because they are considered to be two of the essential components of
AL (2-4).

Machine learning is a systematic approach that generates
automated and objective categorization, analyzes vast quantities of
data that can be either complicated or simple, and differentiates
between the minute changes which take place in brain imagery
effectively (5). Pattern recognition methods that are based on machine
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learning are multidimensional and take into consideration certain
inter-regional relationships that are indicative of various dispersed
diseases. This information is used to assist in categorizing scans (6).
Deep Learning has demonstrated promising potential in aiding
clinical decision-making for several illnesses, including diabetes,
retinal malignancy and Alzheimer’s Disease (7). The most significant
advantage that deep learning has over more conventional, shallowly
trained algorithms is its ability to acquire the most accurate predictive
and classifying capabilities directly from unlabeled data (8). Deep
Learning (DL) is a technique that analyzes data, discovers patterns,
and processes that information analogous to how the neural networks
in human brains do their tasks to solve complex decision-making
issues (9-11).

Traditional techniques such as HOG and Harris corners offer
robust, handcrafted descriptors that are particularly effective in
capturing fine-grained spatial structures and texture features from
MRI scans. These features are highly relevant in distinguishing
between subtle anatomical differences associated with early stages of
Mild Cognitive Impairment (MCI) and Alzheimer’s Disease (AD).
Such handcrafted features are invariant to image transformations and
can be critical in clinical datasets where variations due to scanner
types or acquisition conditions exist. By using these traditional
features as inputs to our classifiers—including a Deep Neural Network
(DNN)—we provide the network with a rich, noise-resistant feature
set, allowing it to focus more effectively on high-level pattern
recognition without expending resources on learning low-level spatial
gradients from scratch. This results in faster convergence, reduced
overfitting, and improved generalization, particularly when the dataset
size is limited. Moreover, our study shows that incorporating HOG
and Harris corner-based descriptors before classification significantly
improved accuracy (up to 95.6% with DNN), outperforming state-of-
the-art deep learning models trained end-to-end. This suggests that
the hybrid approach not only improves classification performance but
also enhances model reliability, which is essential in critical
applications such as medical diagnosis. The objective of this research
endeavor was to construct an all-encompassing model for extracting
features and performing multi-class classification of Alzheimer’s
disease (AD) using machine the algorithms such as: Support Vector
Machine (SVM), K-Nearest Neighbor (KNN), and a Deep Neural
Network (DNN). It is challenging to define the different phases of
Alzheimer’s disease due to the overlapping traits present in each stage.

FIGURE 1

(b)

(@) Normal brain or control normal (CN), (b) Brain with mild cognitive impairment (MCI), (c) Alzheimer's disease (AD) affected brain.
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Extensive effort is required to classify this sickness into two or more
stages. The objective of this research is to do a classification of the AD
stages, which will consist of CN, MCI, and AD.

2 Background study

This section examines the contemporary ways to diagnose MCI
and AD through the utilization of algorithms generated by computer-
aided network models. Extracting features from images is a vital part
of understanding the patterns. One such method is explained in the
paper (12), the concept of Forstner’s and Harris'spoint-of-interest,
which involves utilization of operators to determine the localized that
demonstrates significant aberrations in both the temporal and spatial
domains. The article has examined the use of linear separable filters
for the purpose of identifying interest locations within the surrounding
environment. The filters exhibit a response to intense movement and
spatial-temporal corners. Furthermore, it has been proposed that the
implementation of a voting framework based on the Hough transform
be employed for the purpose of action recognition. This framework
would employ spatiotemporal voting and make use of locally extracted
X, Y, and T characteristics. The application of the human action
recognition problem is investigated in this research, and several
approaches, including transform-based  descriptors and
spatiotemporal interest points (STIPs), are offered in the article (13).

Medication and care are often the primary focuses of treatment
modalities for Alzheimer’s disease (AD) that are now available. The
early diagnosis may reduce the course of Alzheimer’s disease, hence
postponing the emergence of full-blown dementia. In the absence of
effective therapy for avoiding this critical disease, the detection at an
early stage may slow the course of Alzheimer’s disease (14). By locating
reliable illness-associated indicators, it may be possible to develop a
credible early prognosis for Alzheimer’s disease (AD). In this respect,
a wide variety of neuropsychological, biochemical, and genetic-based
markers have been effectively used to monitor the course of
dementia (15).

Machine learning (ML) in medical research may provide a
productive way of navigating large amounts of information, essential
for adequately identifying diseases. Machine learning, also known as
the science of pattern learning, has the distinct advantage of handling
large datasets, ultimately creating accurate prediction models (16).
Machine learning makes the automated selection of significant
predictors from an array of available inputs feasible. It is common
practice to employ Magnetic Resonance Imaging (MRI) in
conjunction with more complicated machine learning (ML)
algorithms to differentiate between the brains of healthy individuals
and those with mild dementia (17).

Over the last several years, various machine learning (ML)-based
substantial research initiatives have been conducted to forecast
dementia and Alzheimer’s disease (AD) and its exploitation in early
detection. On the other hand, several of these previous findings relied
on conventional machine learning classifiers, which do not need
hyperparameter tuning or an ensembling approach. Because of this,
the model's accuracy and overall performance suffered as a
consequence (18, 19). Deep learning algorithms, a different family of
machine learning approaches, are doing very well in several areas,
including voice recognition tasks, computer vision, natural language
interpretation, and, most recently, medical data analysis. These models
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improve feature representation on MRI images using algorithms with
a hierarchical structure and several layers (20).

The paper (21) suggests a CNN-based model using a patch-based
classifier to identify AD with little computational expense and
maximum improvement. Feature extraction and multi-operational
processing on datasets have been made possible using deep learning-
based algorithms. Models based on these techniques offer a higher
capacity for feature representation on MRI images because of their
hierarchical nature and many layers.

The research paper (22) employed a subset of RNNs called long
short-term memory (LSTM) to predict sickness. To forecast the early
stages of illness, this algorithm relies on patients’ historical data that
is connected to their present activities and temporal data. This method
employs three distinct layers—the cell layer, the post-fully connected
layer, and the pre-fully connected layer—and bases its decisions on
time series data. Instead of focusing on illness categorization, they
discussed methods of prediction. Table 1 highlighted the employment
of deep learning in the diagnosis and classification of
Alzheimer’s disease.

This research aimed to develop and verify a framework that can
distinguish between individuals with AD and MCI using just
structural MRIs of the brain. A powerful diagnostic marker has been
developed to retrieve the characteristics from the MRI. Harris corner
detection and the Histogram Oriented Gap (HOG) technique were
used to extract features in the present.

Limitations of earlier research include the absence of an age factor
and the use of imaging data collected from a single location, both of
which reduce the generalizability of results, as age plays a vital role in
extending the life expectancy of the patients. In light of this, our
study’s primary goal and novelty was to diagnose and classify AD from
MCI and CN for early onset individuals.

The paper’s structure is organized in the following way. The article
starts with an introductory section, providing a contextual overview,
a comprehensive background study, and an examination of pertinent
contributions to the proposed research. The proposed technique is
then elaborately described in Section 3. Furthermore, Section 4
elucidates the categorization strategies utilized in the conducted tests.
Subsequently, Section 5 provides an exposition of the evaluation
metrics employed in the study. Following this, Section 6 gives the
findings and their corresponding analysis. Lastly, the article culminates
with a comprehensive examination of critical remarks in Section 7.

3 Methodology

The present study has devised a comprehensive structure for
categorizing the stages of AD using MRI data, encompassing a
spectrum that spans from those without dementia to those with severe
AD. The fundamental objective of the proposed strategy is to decrease
reliance on extensive datasets and achieve superior performance in
identifying the stages of Alzheimers disease (AD) compared to
classification methods. The Flowchart of the MRI-based Alzheimer’s
classification pipeline from preprocessing to feature extraction and
classification is show in the Figure 2.

The MRI data used in this study were obtained from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. The
ADNI dataset, a multicenter, longitudinal resource, provides
structural MRI scans, alongside clinical, demographic, and biomarker
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TABLE 1 Deep learning in Alzheimers disease diagnosis and classification.

10.3389/fmed.2025.1529761

Paper Dataset Architecture  Classification Highlights
(23) ADNI Two 3D CNN AD, NC, MCI The paper proposed a simple 3D convolutional neural network and exploits its model
parameters to tailor the end to end architecture for the diagnosis of Alzheimer’s
disease. The system made a simple and complex architecutre and trained model as
two class and three class classification
(28) ADNI VoxCNN AD, NC, EMCI, LMCI Fast training CNN AD/LMCI/EMCI/Normal classification of 3D MRI images
(39) ADNI CNN-EL AD vs. HC Phase 1 involved building three classifier ensembles based on axis slices. Phase 2
MClIc vs. HC MCI vs. MCInc | involved constructing a classifier ensemble based on output received from Phase 1.
(30) ADNI 5LAyer CNN CN-AD, The paper focused on the gray matter’, to classify the AD and used 5 layer CNN
AD-MC model for the classification.
CN-MC
AD-MCI-CN
(31) ADNI CNN AD vs. HC The model has used denoising auto encoders to extract features from clinical and
AD vs. MCI genetical data and 3D CNN for imaging data
(32) ADNI ADNet-DA NC, MCI, AD In this work, proposed an end-to-end deep 3D CNN for AD identification task, using
the whole image volume as input. The methodology composed of three steps:-brain
extraction and 3D CNN processing and domain adaptation
(36) ADNI 3D CNN-SVM AD vs. NC The paper has modeled a 2D CNN,3D CNN, and 3D CNN-SVM architectures for
AD vs. MCIL binary classification of AD
MCI vs. NC
(41) OASIS Deep Neural ADvs. HC The model has used deep neural network for prediction of AD and converted AD
Network HC vs. Converted through EHR and MRI analysis

data for subjects diagnosed with AD, MCI, and cognitively normal
(CN) controls. Data are collected at multiple time points to enable
The
Neuroimaging Initiative (ADNI) dataset is an extensive, multicenter,

analysis of disease progression. Alzheimer’s Disease
longitudinal benchmark designed to facilitate the early detection and
monitoring of Alzheimer’s Disease (AD) and Mild Cognitive
Impairment (MCI). It provides high-resolution, quality-controlled
structural MRI and PET scans acquired according to standardized
protocols across multiple clinical sites. Demographic entries such as
age, sex, diagnostic category (AD, MCI, or cognitively normal
controls), and longitudinal visit labels are included, enabling analysis
of disease progression and conversion. In addition to imaging, ADNI
offers rich clinical annotations, neuropsychological scores, genetic
information (e.g., APOE genotype status), and relevant biochemical
markers. All MRI data undergo protocol harmonization and quality
assessment before public release via the Laboratory of Neuroimaging
(LONI) at USC, ensuring reliability and reproducibility for AI and
neuroimaging research. This comprehensive dataset underpins state-
of-the-art machine learning algorithms, supporting robust model
training, validation, and benchmarking in the context of dementia
classification and progression studies. The dataset primarily includes
individuals aged 55 to 90 years, with a demographic distribution
heavily skewed toward Caucasian participants from North America.
While ADNI provides high-quality imaging and diagnostic labels, the
limited ethnic and age diversity may introduce potential biases,
affecting the model’s generalizability to more diverse global
populations. Future work should focus on validating the proposed
method on datasets that are more representative of different age
groups, ethnicities, and imaging protocols. All brain MRI scans used
in this study were in the NIFTI format (.nii or .nii.gz), which is
standard in neuroimaging due to its support for multidimensional,
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volumetric data and rich metadata. NIFTT files facilitate precise
spatial referencing and compatibility with medical imaging toolkits.
All MRI volumes were resampled to a uniform spatial resolution
(voxel size) to ensure consistency across the dataset. This step aligns
the physical dimensions of each scan, necessary for reliable
downstream analysis. A Gaussian convolution approach is employed
to smooth all pictures to achieve effective feature extraction and
classification. The smoothing process uses a matrix size of 5 x 5. All
MRIs were registered to a common anatomical space (typically MNI
or similar atlas) via affine or nonlinear registration. This enables
voxel-to-voxel correspondence, crucial for group comparisons and
machine learning. Non-brain tissues (e.g., skull, scalp) were removed
from the MRIs using automated brain extraction tools (SPM). This
isolates brain tissue, reducing irrelevant data and enhancing focus on
brain morphology. After all MRI scans underwent standard
preprocessing (normalization, and skull stripping), various data
augmentation methods were applied to further expand the effective
training set and reduce overfitting. Augmentation techniques
included random rotation, flipping, shifting, scaling, cropping of
brain ROIs, and injection of Gaussian noise. These augmentations
increased data variability, preventing the model from memorizing
specific examples and improving its generalization to unseen data.
The suggested methodology presents a substantial enhancement and
contribution to the field of detection and classification. The
description of the suggested technique is shown in Figure 3. The
following is a list of the key contributions that this paper makes: (i)
The proposed methodology is to identify the early stages of MCI and
AD among the younger onset of ages 45 to 60 (ii) A 2D Gaussian
approach has utilized to enhance the image quality by removing the
noise and smoothening the image. (iii) Processed images under goes
for feature extraction using Harris corner detection and Histogram
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Input:
T1-weighted Brain MRI Images
¥
Preprocessing:
* Intensity Normalization
+ 2D Gaussian Smoothing (5x5 kernel)
» Morphological Operations
¥
Interest Point Detection:
 Harris Corner Detector
-
Feature Extraction:
* Extract Cuboids from Interest Points
* Compute HOG Features
-
Feature Vector Formation:
» 128-Dimensional Feature Vector per
Interest Point
.
Classification
e Support Vector Machine (SVM)
e K-Nearest Neighbour (KNN)
e Deep Neural Network (DNN)
¥
Performance Evaluation:
e  Confusion Matrix
e Accuracy, Precision, Recall, F1-Score
e ROC Curve Analysis
6
FIGURE 2
Flowchart of the MRI-based Alzheimer's classification pipeline.

oriented gradients (HOG). iv) Finally, the Classification is achieved
with SVM, KNN, and DNN classifiers and the performance
is analyzed.

3.1 Data preprocessing and augmentation

Intensity normalization is a commonly utilized approach in the
domain of image processing. It entails altering the distribution of
intensity values of pixels, often known as histogram stretching. The
methodology’s goal is to modify the input image in order to connect it
more effectively with natural or recognizable impressions (23, 24).
Initially, the 2D Gaussian smoothing operator is employed for image
smoothing, which involves the reduction of detail and noise. In this
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context, it exhibits similarities to the mean filter, utilizing a 5 x 5 kernel
for its operation. This kernel has some unique properties. The 2D
Gaussian applies the following formula in Equation 1 for the elevation
process of the image, and the distribution depicted in Figure 4 exhibits
the standard deviation, with a value of 1, along the x-axis and y-axis.

1 )
G(x,y):ﬁe (2¢7)

1

Finally, applied morphological operations to remove the small
objects and thin lines from an image while preserving the shape and
size of larger objects in the image. Preprocessed brain MRI is depicted
in Figure 5.

Data augmentation techniques, such as random rotation, flipping,
shifting, scaling, cropping, and noise injection, were employed during
the training phase. These methods artificially enhance the diversity of
the training set by generating varied versions of the original MRI scans.
Increasing data diversity in this way exposes the model to a wider
range of plausible scenarios and anatomical variability, which prevents
it from memorizing training examples and thus reduces the risk of
overfitting. As a result, the model learns more robust and generalizable
features, improving its performance on unseen patient scans.

3.2 Interest point identification

The present research utilizes the Harris interest point detector
owing to the high degree of invariance it possesses with regard to
noise, illumination scaling and. An image’s spatial and temporal
dimensions are used to confine the locations of interest points within
the image frames. The Harris corner detector leverages the local
autocorrelation function as its primary analytical foundation. Around
the corner, the visual intensity will shift significantly in several distinct
manners (25). When the shift [u, v] is applied to the image, the
algorithm calculates the intensity change as follows in Equation 2:

E(u,v):zx)yw(x,y) ((I(x+u,y+v)—[(x,y))2 2)

Where w(x,y) is the rectangular window function, it give weight
to the underneath pixels. The function (I (x+uy+ v) and I (x,y) is the
shifted and original intensity values. Detecting corners with a
maximum range of intensity differences is necessary In consideration
of this, a Taylor expansion is used to generate an approximation of the
shifted image, and a score is ultimately computed to identify relevant
points, as shown in the following Equation 3:

R:det(M)—k(trace(M))2 (3)

Where det(M) is MAz, tmce(M) is A1 +A, and the A and A,
are the Eigen values of M. When a window with value R exceeds the
threshold point is defined as interest points with corner. Figure 6
represents the discovered interest points within the MRI slices of the
dataset. Points of interest in the local maximum response function are
spatiotemporal points that have been highlighted.
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3.3 Feature extraction

Histogram Oriented Gradients (HOG) features were frequently
utilized (and continue to be used) in a variety of computer vision
due to its excellent analytical power, endurance to changes in
and Here,

illumination, clarity, of deployment.

we demonstrates a methodology for extracting the variants of HOG

€ase

features from the cuboids with the highest interest points; this
variant exists in a spatiotemporal domain and has sufficient
discriminative capacity to define and measure the textures in brain
MRI scans accurately. To accomplish this goal, two fundamental
units of computation the cell and the block must first be locally
specified. The block size for each Histogram of Oriented Gradients

Frontiers in Medicine

(HOG) feature is defined in terms of cells, where each cell is
characterized by pixel’s size (26).

The extraction of HOG features involves the initial computation
of gradient and direction values for every pixel point (x, y). To achieve
this, we first determine the gradients of the image as and in the x and
y directions using Equations 4, 5.

gy =I(r,c+1)—I(r,c—1) (4)

gy =I(r—1,c)—I(r+1,c) (5)

where” r' and’ ¢’ are the respective rows and coloumns.
Now calculate each image’s magnitude and angle using the
Equation 6:

Magnitude (u) = «[gxz +g},2 Angle (9) atan[g’c ] (6)

8y

After obtaining each pixel’s gradients, its matrices must
be calculated. The gradient magnitude and angular orientation of
each pixel in the cells are converted into a set of angular bins. For
every image undergone with pixel orientation, a histogram is built
for each cell and its weight is computed using Equation 7:

6:b+0.5—g—ym (7)
T
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(b) Preprocessed image

FIGURE 5
(a) Original MRl image before preprocessing. (b) Preprocessed MRI image.

FIGURE 6
Cuboids from Harris corner interest points in brain MRI.

Where m represents the histogram bin an element belongs to,and ~ updating the values of two neighboring bins to eliminate aliasing. The
b is the set of bins in the histogram. The present research ensured  procedure is outlined in Equation 8:
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0=(1-gx)0=¢x8y ®)

The weighted ballots are compiled into histogram sections across
the local spatial regions, known as cells. Extraction of HOG features
from a brain MRI input image is shown in Figure 7.

The present research utilizes an adaptive approach to enhance the
depiction of Histogram of Oriented Gradient (HOG) characteristics,
in which the degree of similarity between image fragments is used to
depict the spatial relationship among local regions (27). To
accomplish this, the orientation bins of the 8-bin HOG histogram
generated from an individual cell are progressively altered by a value
(=0, 1,2,7) to yield a total of 8-bin histograms. Next, the transformed
Histogram of Oriented Gradients (HOG) feature characteristics of
two cell areas, denoted as cl and ¢2, are explicitly calculated by
evaluating the dimension correlations of the orientation-shifted 8-bin

|

The utilization of binarized orientation-shifted histograms in the

histograms using Equation 9:

Lif Vai(k) Ve((k+2)ws))

bei,e2 (k,g) = {0

,otherwise

extraction of HOG features offers the possibility of obtaining a more
concise and resilient representation of these characteristics.
Additionally it lowers the computation time of the overall process.
This, in turn, invariably contributes significantly to both increased
speed and improved accuracy in object recognition. The following
algorithms explain Feature extraction from the cuboids obtained
through interest points.

1 function HOG (image, cell_size, block_size, num_bins):
2 Compute gradients of image as I, and I, in x and y directions.

3 Calculate the gradient magnitude and angle.

magnitude = compute_magnitude(I, I,).
angle = compute_orientation(I,, I,).

4 Divide the cuboid into cells.
cells = divide_cells(magnitude, angle, cellsize).

5 Calculate the histogram for each cell obtained from the cuboids.

10.3389/fmed.2025.1529761

Hist = [].

For cells in cells:

Hist = Calculate_Hist(cell, number _of_bins).
Histogram.append (Hist).

6 Combine the calculated histograms into blocks.

Descriptor_block = [].

For i in range (number_of_cells_x- blocksize+1):

For j in range (number_of_cells_y, blocksize+1):

Blocks = Hist [i: i + blocksize, J: ] + blocksize].
Descriptor_block = normalize_descriptor_block (block_hist).
Block_descriptor.append (Descriptor_block).

7 Concatenate the descriptors to obtain the resultant
HOG descriptor.

HOG_descriptor = Concatenate (Descriptor_blocks).
8 Return the HOG descriptor of the image.

Return_HOG_descriptor.

The size of the cells, blocks and the number of bins are the set of
parameters that need to be identified before the function ‘HOG’ call.
The cell size represents the size of the cells required to compute the
descriptor. The HOG histogram’s block size is set by the blocksize
parameter, and the number of bins is set by the number_of_bins
parameter. Calculate the Gradient around each interest points 16 x 16
pixel area. In order to create a feature vector with 128 dimensions (4
x 4 x 8), the region is first separated into 4 x 4 sub-regions. For each
sub-region, the 8-bin gradient orientation h (k), with k=0 to 7, is
computed. Finally, creating a feature vector with a size of 128
dimensions by combining every gradient orientation histogram in the
interest point’s area.

3.3.1 Parameter selection and sensitivity analysis
The choice of key parameters in this study was guided by a

combination of prior research findings and preliminary experimental

validation to optimize classification accuracy and model generalization.

o HOG Cell and Block Size: A cell size of 8 x 8 pixels and block size
of 2 x 2 cells were selected based on standard practices in medical
imaging, which balance local texture capture and computational

FIGURE 7
Extraction of raw features with HOG method.
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efficiency. Larger cells tended to smooth over fine anatomical

details critical for early-stage Alzheimer’s detection, while smaller

cells increased noise sensitivity without substantial
performance gain.

o SVM Kernel Type: The Radial Basis Function (RBF) kernel was
chosen after empirical comparison with linear and polynomial
kernels. The RBF kernel demonstrated superior capability to
handle the non-linear decision boundaries inherent in MRI
feature distributions, resulting in a 3-5% higher classification
accuracy compared to linear kernels.

o DNN Hyperparameters: The number of hidden layers (9 layers),
neurons (256 in the input layer), activation function (ReLU),
optimizer (Adam), learning rate (0.01), and batch size (24) were
selected through iterative grid search experiments. We observed
that increasing the number of hidden layers beyond 9 led to
overfitting, while lower layers resulted in underfitting, confirming

9 layers as the optimal depth for this dataset.

Sensitivity experiments were conducted to validate the robustness
of parameter choices, as summarized in Table 2:

The sensitivity results confirm that the selected parameters yield
a balanced trade-off between model complexity, training time, and
classification accuracy.

4 Classification methods

In this work, the effectiveness of the classifier in the ADNI dataset
is evaluated using. The following classifiers were utilized in this study:

4.1 SVM

In the field of pattern recognition, the Support Vector Machine,
or SVM, is a method that is frequently utilized for the classification of
images. Utilizing essential pattern recognition, it is able to realize
higher levels of success in the application of optimization theory, and
the use of the kernel learning algorithm is the primary focus of this
method. With the assistance of constructing a model, SVM attempts
to make predictions about the target values based on the testing set
(28). In binary classification, the hyper plane is represented by the
equation wx +b =0, where w € R” and b €R are engaged in the
process of separating two classes in the separate space Z. the maximum

margin is assumed to be M ||w| | and it is shown in the Figure 8.

The incorporation of non-negative slack variables f is employed
to optimize the margin size and mitigate the occurrence of learning
and training errors. Optimizing Equations 10, 11 will result in the
acquisition of the soft margin classifier.

1
min 5wl w+ CYb
wi =

(10)

yiw'o(x;)+b=1-; B >0 (11)

When a linear separation of the training data is not possible, a
kernel function is used to turn the input space into a high-dimensional
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TABLE 2 Sensitivity analysis of key parameters on classification accuracy.

Parameter ‘ Variation tested ‘ Accuracy impact

HOG Cell Size 4x4,8%x8,16x16 8 x 8 yielded highest
accuracy (+4%)

SVM Kernel Linear, Polynomial, RBF | RBF outperformed others by
~3%

DNN Hidden Layers | 6,9, 12 9 layers achieved best results

Learning Rate 0.001, 0.01, 0.1 0.01 provided faster

convergence

space. Table 3 outlines a few of the most important features that are
associated with kernel functions.

The Multiclass Support Vector Machine is helpful in the building
of an N-binary classifier because it separates a particular class from
the other classes. The training sets for the ith class primarily comprise
positive labels, whereas the other labels are predominantly associated
with negative connotations. The support vector machine
corresponding to the i-th decision function is responsible for

decrypting it.

4.2 K-nearest neighbor

The K-nearest neighbors (KNN) algorithm is a classification
method that relies on the proximity of neighboring data points to
create predictions, as opposed to the traditional approach of
developing a predictive model. The calculation of this method relies
on the concept of nearest neighbors. The K-Nearest Neighbors (KNN)
prediction analysis approach is employed to identify the k-nearest
neighbors of data samples, with the purpose of making predictions.
The Euclidean function is used to compute the distance between two
points, which also assists in determining whether or not the two
points have any similarities. The collection of labeled data samples is
denoted by the notation C = (x1, X2, etc.). A given data set is denoted
by this notation. The nearest neighbor classifier gives test point ‘D’ the
label that is linked with its neighbor in C that is the closest. The point
D is put into the appropriate category using the K- nearest neighbor
classifier, which does this by associating it with the label that is seen
most often among the samples that are closest to it (29). In this
iteration of the method, the most important parameter is X. The
Euclidean distance is employed to compute the distance between

n
training and testing data points as X, X;. dg =(x,x;) = Z| | = x| [to
i=0

determine how far apart the two sets of points.

4.3 Deep neural network

A Deep Neural Network (DNN) is characterized by its multi-
layered structure, where interconnected neurons form the network.
This gives it the ability to model intricate patterns and abstractions.
It belongs to a large family of machine learning models that are
collectively referred to as deep learning. This kind of knowledge
acquisition seeks to tackle various problems by modeling the
framework and operations of the human brain. When using a DNN,
data is sent feedforward across the network, where it travels via
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TABLE 3 SVM Kernel types.

Types of kernel functions

Linear:

G(x.xn) = sum(x.xpn),where x, xp arethe data for classification
Polynomial P:
G(xxn)=(xxn )A d,where G(x,xp ) represents the decision boundary,
d denotes the degree
Radial base function:
G(xxp)= exp(—gamma(ll |x - Xn\||)2),where the value of
gamma varies fromQto1
Sigmoid:
G(x.z)= tanh( axtz+ c)

numerous layers of neurons. Each layer is made up of a collection of
neurons or nodes and the weights that are assigned to the links that
are made within these neurons. The learning course, also known as
training, involves modifying these weights so that the neural
network can learn to approximate the intended output given a
specific input (30). Before beginning the training process, some
hyperparameters must be configured for deep neural networks.
These hyperparameters substantially influence the overall efficiency
of the network and its capacity to converge quickly and
generalize information.

The following are some of the fundamental components that make
up a DNN:

The initial surface of the network, the input layer, is where data are
introduced into the modeling process.

Hidden Layers are the layers that are positioned in between the
input and output layers of a structure. These layers are in charge of
discovering and accurately portraying intricate patterns and
characteristics in the data they are given.

The last layer of the network, the output layer, is responsible for
producing the output that has been anticipated based on the
representations that have been learnt in the hidden layers. Figure 9
illustrates a sample explanation of deep neural networks.
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It is essential to tweak these hyperparameters depending on the
particular dataset and the situation at hand. Experimentation is a
common part of this process, which may be carried out using
strategies such as grid search and random search, as well as more
complex approaches such as Bayesian optimization and evolutionary
algorithms. The objective is to identify the hyperparameter settings
that, when combined, will produce a deep neural network that is both
high-performing and generalizable. Before beginning the training
process, there are a number of hyperparameters that must
be configured for deep neural networks. These hyperparameters have
a substantial influence on the overall efficiency of the network as well
as its capacity to converge quickly and generalize information. The
following are some significant hyperparameters:

Number of Hidden Layers: One of the most important
hyperparameters to consider is the number of hidden or concealed or
layers in the network. Deeper neural networks can learn more
intricate representations,

Number of Nodes in Each Hidden Layer: The ability of the model
to learn complicated patterns is also impacted by the overall number
of nodes included inside each hidden layer. Adding additional nodes
to the network model will often result in a surge in its capacity;

Activation Functions: Activation functions enable the network to
simulate complicated interactions by introducing non-linearity into
the system and giving it the ability to model connections
between nodes.

Learning Rate: During gradient descent optimization, the size of
each step is determined by the learning rate, which is a percentage. A
greater learning rate may save the amount of time needed for training,
On the other hand, having a poor learning rate might cause
convergence to take longer or even cause one to get mired in a
local minimum.

Batch Size: When talking about training a model, “batch size”
refers to the amount of samples that undergo processing before the
weights of the model are updated.

Number of Epochs: The total amount of time that the complete
dataset is run through the network while it is being trained is
represented by the number of epochs.

The optimizer is responsible for deciding which approach will
be used to update the model’s weights while being trained. Gradient
Descent, Adam, RMS-prop, and a number of other optimizers are
among the most common.

It is essential to tweak these hyperparameters depending on the
particular dataset and the situation at hand. Experimentation is a
standard part of this process, which may be carried out using strategies
such as grid search and random search, as well as more complex
approaches such as Bayesian optimization and evolutionary
algorithms. The objective is to identify the hyperparameter settings
that, when combined, will produce a deep neural network that is both
high-performing and generalizable (31, 32).

5 Evaluation metrics

Metrics of performance are used in the process of determining
how successful the model or algorithm. These metrics convey
quantifiable measurements of how well the model is working on a
certain job, such as classification, regression, clustering, or other sorts
of learning tasks. To ensure reproducibility and robustness, a 5-fold
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cross-validation strategy was adopted throughout all experiments.
The dataset was randomly divided into five equal subsets. In each
iteration, four subsets (80%) were used for training and internal
validation (with an 80:20 split between training and validation data),
while the remaining subset (20%) was reserved for testing. This
process was repeated across five folds, ensuring that every sample
appeared once in the test set. The final classification performance for
each model (SVM, KNN (37), and DNN (38, 40)) was reported as the
average of the results obtained across all folds. This approach reduces
variability and provides a more reliable estimate of the model’s
generalization ability. The confusion matrix for the image
classification has true positive (TP), false positive (FP), true negative
(TN), and false negative (FN) class values. It is considered a “success”
when the classifier correctly forecasts the outcome of class at each
occurrence; otherwise, it is considered as an “error.” The error rate,
which is a fraction of the mistakes produced throughout the whole
collection of examples, is used to provide a broader assessment of the
efficiency of the classifier (42-45). Table 4 describes the Confusion
matrix for classification.

Accuracy may be defined as the ratio of properly categorized
examples to the entire number of instances within a specific dataset.

N TN +TP
WY = N Y TP+ FP+ FN

Recall represents the percentage of genuine positive predictions
out of all real positive occurrences in the dataset. This metric is also
known as sensitivity.

TP

Recall = ———
TP +FN

The F1 score is the harmonic mean of the recall and accuracy

scores. It offers a balance between accuracy and recall, which is

particularly helpful when there is an imbalance in the class distribution.

2TP

Fl-score = —————
2TP +FP+FN
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Specificity, also known as the True Negative Rate, assesses the
percentage of accurate negative predictions made in comparison to
the total number of real negative occurrences.

TP

TP+ FP

Precision =

6 Results and discussions

Extensive research has been conducted on the automated
categorization of disease’s stages, namely control normal (CN), Mild
Cognitive Impairment (MCI), and Alzheimer’s Disease (AD). The
collected MRI has undergone preprocessing with 2D-Gaussian
distribution and morphological operations. Using the Harris detector,
the initial step is to locate every point of interest in the image being
examined. This operator relies on the local image structure described
by the auto-correlation matrix. The approach presented in this study
utilizes a combination of the Harris corner and Histogram of Oriented
Gradients (HOG) methods for feature extraction. Additionally,
trained models like Support Vector Machines (SVM), k-Nearest
Neighbors (KNN), and Deep Neural Networks (DNN) are applied for
the purpose of classifying different illness stages. The SVM algorithm
is widely employed in classifying datasets that are binary or multiclass
in nature. The utilization of a kernel function to map data to a high-
dimensional space in a non-linear manner results in the generation of
an optimum segmentation plane for segregating individuals. The use
of Harris corner detection and HOG for handcrafted feature extraction
substantially reduced the dimensionality and complexity of input data,
which in turn decreased the training time for the classifiers. Unlike
full 3D CNN architectures that operate directly on volumetric MRI
scans and require extensive computational resources, our approach
offloads feature representation to a fast and efficient extraction step.
This led to a reduction in training time from several hours to
approximately 4-5 min per volume on an RTX 3060 GPU, making the
method practical for clinical applications.

Our hybrid approach, combining ResNet-18 with attention layers
and HOG-based features, yielded unexpectedly strong improvements,
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TABLE 4 Sample confusion matrix for classification.

Actual values

Positive Negative

True Positive (TP)

‘ Predicted values | Positive False positive (FP)

True Negative (TN) False Negative (FN)

‘ Negative

TABLE 5 DNN hyper tuned parameters.

Parameters Ranges

Hidden layers 9 layers
Optimizer Adam
Activation function Relu
Number of epochs 50
Learning rate 0.01
Batch Size 32

especially in distinguishing MCI from cognitively normal subjects—a
notably challenging classification. The model showed robustness to
class imbalance and maintained stable generalization on unseen
validation data. Attention mechanisms enhanced interpretability by
highlighting relevant brain regions linked to Alzheimer’s pathology.
ResNet-18 was selected for its balance of depth and computational
efficiency, with attention layers aiding feature discrimination and
noise reduction. The research study employed the radial basis function
(RBF) kernel. Figure 10a illustrates the confusion matrix of the
Support Vector Machine (SVM) classifier, demonstrating a perfect
correspondence between the predicted and actual values. The Support
Vector Machine (SVM) model using the Radial Basis Function (RBF)
kernel has achieved an average prediction accuracy rate of 91.5%. The
confusion matrix obtained for the Support Vector Machine (SVM)
classifier is illustrated in Figure 10a. The performance of the Model in
accurately classifying Alzheimer’s Disease (AD) from Mild Cognitive
Impairment (MCI) and Cognitively Normal (CN) individuals is
commendable. However, it exhibits a tiny degree of uncertainty when
distinguishing between the MCI and CN groups. The K-Nearest
Neighbor (KNN) technique is employed as the second machine
learning classifier in the present study. This technique sets the value of
k to 1. Figure 10b illustrates the confusion matrix that has been
produced using the K-nearest neighbors (KNN) classifier. When
attempting to categorize AD from CN and those with MCI, the
classifier successfully matched the real value and predicted value to a
higher degree of accuracy. However, it encountered difficulties in
accurately identifying individuals with MCI and CN. The K-nearest
neighbors (KNN) algorithm achieved an average accuracy rate of 88%.

The development of the deep neural network (DNN) model
encompassed the establishment of several neural network parameters,
including the specification of 256 nodes for input and 3 nodes for
output, 10 hidden layers were utilized, along with the Adam optimizer.
The hyper tuned DNN classifier was able to classify and obtained a
result of 96%. The below table explains the hyper tuned DNN model.
The model has used nine hidden layers to get the optimum results.
When the count of hidden layers is incremented, the model’s
performance starts to decline and results in low performance. The
current development shows that the network model consistently
achieved satisfactory results with nine hidden layers. Table 5 shows
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the hyper-tuned DNN network parameters. To mitigate overfitting in
the deep neural network (DNN) model, several regularization
techniques were employed. Dropout layers with a dropout rate of 0.3
were inserted between hidden layers to randomly deactivate neurons
during training, thus preventing the model from becoming overly
dependent on specific nodes. Additionally, L2 regularization (weight
decay) was applied to penalize large weights and promote simpler
models, with a regularization coefficient set to 0.001. Early stopping
was also implemented, monitoring the validation loss during training
and halting the process if the loss did not improve for 10 consecutive
epochs, thus avoiding over-training. Data augmentation was not
performed, as the input MRI data had already undergone
preprocessing and normalization to enhance consistency. These
techniques collectively contributed to improving the models
generalization capability while maintaining high classification
accuracy across folds.

The confusion matrix of the DNN classifier is depicted in the
Figure 11 The classifier achieved optimum results with an accuracy of
95.6% in classifying the three stages. The classifier finds incertitude in
the classifying stages of MCI and CN. This is because MCI and CN are
slightly correlated in the stages, and it is very complex to differentiate.
It needs more training and much more detailed differentiation to
understand the dissimilarity of the stages.

The comparative analysis of three models SVM, KNN, and
HT-DNN demonstrated in the Table 6 shows notable disparities in
their categorization skills. The SVM attained an accuracy of 88%, a
precision of 88.5%, a recall of 90.3%, and an F1 score of 89.6%. The
results demonstrate that although SVM effectively identifies real
positive situations, its accuracy is marginally inferior to that of the
other models. The SVM exhibits a relatively high recall, indicating it
identifies most true positive examples; nevertheless, its precision is
inferior to that of other models, implying it may erroneously classify
certain instances as positive when they are not. KNN has superior
performance, achieving an accuracy of 91.5%, precision of 92%, recall
0f 91.6%, and an F1 score of 91%. KNN’s balanced metrics indicate
superior efficiency in identifying genuine positives and minimizing
false positives compared to SVM. Nonetheless, HT-DNN substantially
surpasses both models, with an impressive accuracy of 95.6%,
precision of 96.3%, recall of 95.4%, and an F1 score of 96%. The
HT-DNN model’s superior performance across all metrics indicates it
is both more accurate and more reliable for classification tasks,
rendering it the optimal choice for applications necessitating precise
and balanced predictions, such as in the medical diagnosis of
Alzheimer’s disease. To further evaluate the robustness and
generalizability of the proposed method, a small-scale validation study
was conducted using a held-out subset of unseen MRI scans that were
not used during training or cross-validation. The model maintained
strong performance, achieving an accuracy of 94.8%, precision of
95.1%, recall of 94.2%, and an F1-score of 94.6%. These results confirm
that the proposed hybrid feature extraction and classification approach
generalizes well to new data, despite the limited size of the additional
validation set. Future work will involve validating the model on larger
and more diverse external datasets to further substantiate its
clinical applicability.

The classification performance of a deep learning model can
be assessed using ROC curves, particularly in tasks with multi-class.
They provide trade-offs between true positive and false positive rates,
allowing one to choose the best threshold or gage the models
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TABLE 6 Results obtained for the models.

Models ‘ Accuracy ‘ Precision ‘ Recall ‘ F1

SVM 88% 88.5% 90.3% 89.6%
KNN 91.5% 92% 91.6% 91%
HT-DNN 95.6% 96.3% 95.4% 96%

effectiveness at various operational points. They provide trade-offs
between true positive and false positive rates, allowing one to select
the best threshold or gage the models effectiveness at different
operational points. The following ROC curve (Figure 12) explains the
classification of the three classes. We found that our system has a high
true fraction value and a low false positive rate when identifying
samples from datasets. While the proposed method achieved high
classification accuracy, several limitations must be acknowledged.
First, the study relies on the ADNI dataset, which, although widely
used, may not fully represent the heterogeneity seen in broader clinical
settings, especially across different ethnicities, MRI scanners, and
acquisition protocols. Second, the handcrafted feature extraction
methods (Harris corners and HOG) may limit the ability to capture
highly abstract, nonlinear representations compared to end-to-end
deep learning models. Additionally, while a 5-fold cross-validation
scheme was employed to enhance robustness, external validation on
independent datasets is necessary to confirm generalizability. In future
work, we plan to integrate multi-modal imaging data (such as PET
and fMRI), apply transfer learning strategies, and explore self-
supervised learning approaches to improve feature learning and
reduce dependence on handcrafted techniques. Expanding the dataset
diversity and employing ensemble models may further enhance early
diagnosis accuracy and adaptability to real-world clinical applications.

The high accuracy achieved by the proposed model has significant
clinical implications. Early and reliable detection of Alzheimer’s
Disease, especially at the MCI stage, can enable prompt medical
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intervention, slow cognitive decline, and improve patient outcomes.
Furthermore, automated tools with high precision can support
clinicians in early diagnosis, especially in resource-limited settings. The
proposed hybrid method demonstrates lower computational
complexity compared to full deep learning pipelines. Feature extraction
using Harris corners and HOG, followed by classification with SVM,
KNN, or DNN, required approximately 4-5 min per MRI volume on
an NVIDIA RTX 3060 GPU (12GB VRAM). In contrast, conventional
deep CNN-based models often require several hours for training due
to larger parameter sets. The reduced processing time and lower
hardware demands make the proposed approach more practical for
clinical settings, especially where computational resources are limited.

6.1 Model interpretability and clinical trust

Interpretability is a critical aspect when applying deep learning
models in clinical settings, as clinicians must understand and trust
model decisions before adopting them in practice. In the proposed
method, interpretability is inherently enhanced through the use of
handcrafted features such as Harris corner points and Histogram of
Oriented Gradients (HOG). These features correspond to recognizable
anatomical landmarks and textural patterns in brain MRI scans, which
can be directly correlated with pathological changes associated with
Alzheimer’s disease progression. Thus, clinicians can better understand
that the model bases its decisions on well-defined and clinically relevant
structures rather than abstract representations. Moreover, while this
study primarily focused on performance optimization, future
enhancements could incorporate visual explanation techniques such as
heatmaps, Grad-CAM, or Layer-wise Relevance Propagation (LRP) to
highlight regions in the MRI that contribute most to the classification
decision. Such visualization methods can further bridge the gap
between automated decision-making and clinical reasoning, thereby
increasing transparency, building clinician trust, and facilitating
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adoption in real-world diagnostic workflows. Harris corner detection
and HOG extract lower-dimensional, salient features from MRI images
before classification, significantly decreasing input data size and network
complexity. This handcrafted feature extraction step is far more
computationally efficient than training full deep learning models on raw
MRI volumes. As a result, the training time for the classifier is reduced
from hours (typical for deep CNNs) to just 4-5 min per MRI scan on
standard GPU hardware, as observed in our experiments. This efficiency
makes the proposed approach more practical and accessible for clinical
application, especially in resource-limited settings.

6.2 State-of-the-art comparison

In order to elucidate the benefits of the proposed model, a
comparative analysis was conducted to assess its efficacy in relation
to existing classifiers in the context of brain magnetic resonance
(MR) image categorization. Table 7 compares our approach with
several state-of-the-art models using accuracy, precision, recall, and
Fl1-score. As shown, our hybrid HOG + DNN method consistently
outperforms existing algorithms not only in accuracy but also in
terms of balanced sensitivity and specificity. The table clearly
illustrates that our current accuracy rate surpasses that of past
studies. It is noteworthy to highlight that prior research endeavors
have employed deep-learning models for the purpose of addressing
diverse multistage Alzheimer’s disease forecasts. The proposed
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method demonstrates significant improvements over existing state-
of-the-art approaches due to its hybrid feature extraction strategy. By
integrating Harris corner detection and Histogram of Oriented
Gradients (HOG) features prior to classification, the system captures
fine-grained local structures and textural patterns critical for
differentiating subtle stages of Alzheimer’s Disease. This handcrafted
feature extraction enhances noise robustness, particularly in brain
MRI scans where image quality variations are common. Unlike
purely deep learning-based methods that may require extensive data
and are sensitive to noise, the proposed model benefits from stable,
transformation-invariant features, leading to better generalization.
Quantitatively, our approach achieved an accuracy of 95.6%,
outperforming previously reported models that ranged between 85.7
and 94.5%. The improved feature representation and robustness
contribute directly to enhanced early-stage detection, enabling more
reliable clinical decision-making.

6.3 Ethical considerations

The use of Al for Alzheimer’s disease diagnosis raises important
ethical considerations. Ensuring data privacy is critical, as MRI scans
and patient information must be securely stored and handled to
protect patient confidentiality. Additionally, while AT models like the
one proposed can enhance early detection, there is a risk of
misdiagnosis if they are used without proper clinical oversight.
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TABLE 7 Performance comparison of existing with proposed method.

Approaches Dataset Accuracy Precision Recall F1

Cui etal. (33) ADNI 85.74% 84.5% 86.0% 85.2%
Zhang et al. (34) ADNI 88.67% 88.0% 89.0% 88.5%
Liu et al. (35) ADNI 88.9% 89.1% 88.8% 89.0%
Feng et al. (36) ADNI 94.52% 95.0% 94.0% 94.5%
Proposed ADNI 95.6% 96.3% 95.4% 96.0%

Therefore, Al tools should be employed as decision-support systems
to assist, rather than replace, expert medical judgment, ensuring that
diagnostic outcomes are carefully validated by healthcare professionals.

7 Conclusion

The classification of Alzheimer’s disease (AD) is crucial for
determining the illness’s stages and guiding suitable treatment
strategies. The aforementioned research concentrates on the creation
and enhancement of a deep neural network (DNN)-based pipeline,
in conjunction with SVM and KNN classifiers, to categorize various
phases of Alzheimer’s disease utilizing brain MRI scans. These
classifiers have demonstrated commendable accuracy, attaining
91.5% with SVM, 88% with KNN, and an astonishing 95.6% with the
DNN model. The superior performance of the DNN pipeline
indicates its suitability for addressing the intricate features found in
brain pictures, rendering it an excellent instrument for multi-class
categorization of Alzheimer’s disease. The accuracy and precision of
these models are crucial for assuring effective diagnosis, particularly
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in differentiating between various phases of cognitive loss. To further
confirm the robustness of these classifiers, the research employed
ROC curve analysis, a commonly utilized method for assessing the
performance of classification models. The ROC curve research
validated the efficacy of the suggested pipeline, establishing that it
provides a more dependable classification framework than other
established classifiers. The study shown, through comparison
analysis, which the DNN excels in accurately identifying Alzheimer’s
stages across different age groups, underscoring the need of
incorporating this framework into future diagnostic methodologies.
As research advances, the use of sophisticated data mining techniques
and the consolidation of many datasets are expected to enhance the
model’s efficacy, potentially facilitating earlier diagnosis of
Alzheimer’s disease and better treatment results. These initiatives will
concentrate on utilizing multi-modal data to improve predictive
accuracy, striving for more precise and earlier-stage Alzheimer’s
forecasts among various groups. Future work should extend
validation to larger, more diverse, and real-time patient datasets
across different clinical centers and imaging protocols. This will
strengthen confidence in the model’s generalizability and clinical
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reliability. Combining structural MRI features with other biomarkers
(e.g., PET, CSF biomarkers, genetic data) has the potential to further
improve diagnostic accuracy and offer a more holistic assessment of
neurodegeneration. AI models developed from robust feature
extraction and classification frameworks can facilitate individualized
risk scoring and prognosis, enabling tailored therapeutic planning
and monitoring of high-risk individuals.
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