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Objective: Accurate anterior visual pathway (AVP) segmentation is vital for

clinical applications, but manual delineation is time-consuming and resource-

intensive. We aim to explore the feasibility of automatic AVP segmentation and

volume measurement in brain T1-weighted imaging (T1WI) using the 3D UX-Net

deep-learning model.

Methods: Clinical data and brain 3D T1WI from 119 adults were retrospectively

collected. Two radiologists annotated the AVP course in each participant’s

images. The dataset was randomly divided into training (n = 89), validation

(n = 15), and test sets (n = 15). A 3D UX-Net segmentation model was trained

on the training data, with hyperparameters optimized using the validation set.

Model accuracy was evaluated on the test set using Dice similarity coefficient

(DSC), 95% Hausdorff distance (HD95), and average symmetric surface distance

(ASSD). The 3D UX-Net’s performance was compared against 3D U-Net, Swin

UNEt TRansformers (UNETR), UNETR++, and Swin Soft Mixture Transformer

(Swin SMT). The AVP volume in the test set was calculated using the model’s

effective voxel volume, with volume difference (VD) assessing measurement

accuracy. The average AVP volume across all subjects was derived from 3D

UX-Net’s automatic segmentation.

Results: The 3D UX-Net achieved the highest DSC (0.893 ± 0.017), followed

by Swin SMT (0.888 ± 0.018), 3D U-Net (0.875 ± 0.019), Swin UNETR

(0.870 ± 0.017), and UNETR++ (0.861 ± 0.020). For surface distance metrics, 3D

UX-Net demonstrated the lowest median ASSD (0.234 mm [0.188–0.273]). The

VD of Swin SMT was significantly lower than that of 3D U-Net (p = 0.008), while

no statistically significant differences were observed among other groups. All

models exhibited identical HD95 (1 mm [1-1]). Automatic segmentation across all

subjects yielded a mean AVP volume of 1446.78± 245.62 mm3, closely matching

manual segmentations (VD = 0.068 ± 0.064). Significant sex-based volume

differences were identified (p < 0.001), but no age correlation was observed.
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Conclusion: We provide normative values for the automatic MRI measurement

of the AVP in adults. The 3D UX-Net model based on brain T1WI achieves high

accuracy in segmenting and measuring the volume of the AVP.

KEYWORDS

magnetic resonance imaging, optic nerve, deep learning, convolutional neural network,
medical image processing

1 Introduction

The anterior visual pathway (AVP), comprising the optic nerve,
optic chiasm, and optic tract, transmits visual stimuli from the
retina to the lateral geniculate nuclei (1). Various benign and
malignant diseases can affect the AVP, causing acute swelling,
chronic axonal loss, and atrophy (2). Accurate segmentation is
crucial for clinical applications such as disease diagnosis, treatment
planning, and monitoring disease progression. Successful image-
guided surgery requires precise delineation of key neuro-logical
and vascular structures during preoperative planning (3, 4).
Modeling structural changes in the AVP throughout disease
progression is important for characterizing neuropathic diseases
(5). However, accurate segmentation and measurement of AVP
are challenging due to their long pathway, the complexity of
neighboring anatomical structures, and the high precision required
for clinical use (6).

Manual delineation of AVP structures is time-consuming,
resource-intensive, and prone to subjectivity. Automated
quantification of AVP location and volumetrics would enable
larger, more robust studies and potentially improve assessment
accuracy compared to manual methods. Although significant
progress has been made in AVP segmentation, traditional atlas-
based methods vary in effectiveness for smaller structures like
the optic nerve and chiasm, with Dice similarity coefficients
(DSC) ranging from 0.39 to 0.78 (7, 8). Recently, convolutional
neural networks (CNNs) have achieved significant advancements
in MRI-based visual pathway segmentation. Mansoor et al. (6)
proposed a deep learning approach that combines prior shape
models with morphological features for AVP segmentation. Zhao
et al. (9) improved segmentation performance by integrating
a 3D fully convolutional network with a spatial probabilistic
distribution map, effectively addressing issues of low contrast and
blurred boundaries. Xie et al. (10) developed cranial nerves tract
segmentation (CNTSeg), a multimodal deep learning network that
accurately segments five major cranial nerve tracts—including CN
II (optic nerve), CN III (oculomotor nerve), CN V (trigeminal
nerve), and CN VII/VIII (facial and vestibulocochlear nerves)—by
fusing T1-weighted images, fractional anisotropy (FA) images, and
fiber orientation distribution function (fODF) peaks. However,
due to the complexity near the optic chiasm and artifacts caused
by magnetic susceptibility, AVP segmentation results remain
unsatisfactory. Pravatà et al. (11) manually segmented high-
resolution MRI data from 24 healthy subjects to obtain biometric
indicators such as volume, length, cross-sectional area, and
ellipticity of the AVP, establishing a foundation for standardized
analysis. Nevertheless, manual segmentation is time-consuming

and affects the reproducibility of results. The small sample size
lacks age- and gender-specific standard data, and the ellipticity
calculations may be overestimated. Further research is needed
to refine automated segmentation techniques and develop more
robust, standardized analysis methods for the AVP.

To enable broad application of the AVP segmentation
model in clinical practice (non-GPU cluster environments),
we selected the lightweight 3D UX-Net architecture (12)
for automatic segmentation of the AVP in brain 3D- T1-
weighted imaging (T1WI). As an optimized Swin Transformer
variant, this volumetric convolutional neural network achieves
computational efficiency through three key innovations: (a)
replacement of multilayer perceptron (MLP) blocks with pointwise
convolutions to reduce parameter count; (b) strategic minimization
of normalization and activation layers to streamline processing; (c)
implementation of large-kernel volumetric depthwise convolutions
that expand the global receptive field while maintaining memory
efficiency. These architectural modifications collectively enable
robust 3D medical image segmentation with 34% fewer trainable
parameters than standard Swin Transformer implementations
(12, 13). To evaluate the segmentation performance of the
3D UX-Net model, we compared it with the 3D U-Net,
Swin UNEt TRansformers (UNETR), UNETR++, and Swin
Soft Mixture Transformer (Swin SMT) models (14–17). This
comparative framework allows comprehensive evaluation of 3D
UX-Net’s performance across model efficiency, anatomical detail
preservation, and clinical applicability metrics. Our approach
outperforms state-of-the-art methods in accuracy and robustness.
Additionally, we report normative values for AVP volume in adult
MR imaging, providing objective measurements for radiologists
and ophthalmologists.

2 Materials and methods

2.1 Study population

This single-center study was approved by the institutional
review board, with a waiver of informed consent due to its
retrospective nature. Conducted in accordance with the latest
version of the Declaration of Helsinki, the study evaluated patients
with non-specific neurological symptoms reported between
January and December 2022 in our institution’s picture archiving
and communication system (PACS). Inclusion criteria were
patients aged 18 to 60 who underwent brain 3D-T1WI during
this period. Exclusion criteria included patients with intracranial
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or orbital tumors, craniocerebral or ocular trauma, deformity
or infection, spherical refractive errors worse than −6D (18), or
poor image quality.

The final cohort comprised 119 participants (61 females, 58
males; mean age 45.52 ± 12.18 years). Participants were randomly
divided into training (74.8%, n = 89), validation (12.6%, n = 15),
and test (12.6%, n = 15) cohorts.

2.2 MR examination

Images were acquired using a single 3.0T Siemens Skyra MRI
scanner (Erlangen, Germany) with a 32-channel head coil. Patients
were instructed to close their eyes and avoid eye movement during
scanning. The 3D-T1WI sequence parameters were: TR = 2,000 ms,
TE = 2.48 ms, flip angle = 8◦, layer thickness = 1 mm, no gap, voxel
size = 0.898× 0.898× 1 mm3, field of view = 20 cm× 20 cm, matrix
size = 256× 224, with a total of 192 layers.

2.3 Data annotations

We converted the Digital Imaging and Communications in
Medicine (DICOM) format T1-weighted images of the skull cross-
section to the Neuroimaging Informatics Technology Initiative
(NiFTI) format. To establish a reproducible, MRI-compatible
landmark, we defined the specific range of the AVP based on
prior anatomical knowledge (19, 20). This range extends from
the optic nerve head to the lateral geniculate body—excluding the
portion surrounded by cerebrospinal fluid—and encompasses the
entire area of the bilateral optic nerves, optic chiasm, and bilateral
optic tracts. Using ITK-SNAP 3.9.0 software,1 two neuroradiology
trainees (Y.H., Q.L.) labeled each AVP layer by layer on the 3D-
T1WI according to the defined anatomical landmarks, under the
constant supervision of an experienced neuroradiologist (C.Z.).
Accuracy was enhanced through iterative segmentation revisions
until consensus with the senior neuroradiologist was reached.
Figure 1 illustrates the overall scheme of the proposed method.

2.4 Segmentation model

We selected the 3D UX-Net as the segmentation network
model for AVP because long-distance dependencies are crucial
for accurately determining its absolute and relative positions. By
analyzing the entire image’s structure and morphology, the network
can swiftly identify and locate the AVP. Mainstream medical
segmentation models like 3D U-Net have limited receptive fields
and struggle to efficiently capture long-distance dependencies. In
contrast, the 3D UX-Net, a lightweight volumetric convolutional
network, expands the effective receptive field by using depth-
wise convolutions with large kernel (LK) sizes (7 × 7 × 7). This
approach enhances the network’s ability to capture long-distance
spatial dependencies, which is essential for accurately segmenting
structures rich in positional information that connect distant areas,

1 http://www.itksnap.org/pmwiki/pmwiki.php

such as nerve fibers. Additionally, the model’s performance is
improved with fewer normalization and activation layers, reducing
the number of parameters. Figure 2 provides an overview of
3D UX-Net, highlighting convolutional blocks as the encoder’s
backbone. At the same time, the structures of the 3D U-Net, Swin
UNETR, UNETR++, and Swin SMT models were constructed with
reference to previous studies (14–17).

2.5 Training of the segmentation model

We utilized an NVIDIA GeForce RTX 3090Ti 24GB GPU,
with software including Python 3.10, PyTorch 1.12.0, MONAI
1.0.0, OpenCV, NumPy, and SimpleITK. The AdamW optimizer
and DiceCELoss function were employed for training. Image
preprocessing parameters were set to a size of 16 × 448 × 256 (z,
y, x), with automatic window width and level adjustments. A total
of 119 datasets were randomly divided into training (n = 89),
validation (n = 15), and test (n = 15) sets in an 8:1:1 ratio. The T1WI
and the labeled files were input to segment the entire AVP. Training
parameters included a batch size of 1, a learning rate of 0.0001, and
60 epochs, with validation performed after each training epoch.

2.6 Model evaluation

Evaluate the segmentation effectiveness using manually
annotated labels as the benchmark for assessing the 3D UX-Net
model’s performance on AVP. Evaluation metrics include the
DSC, 95% Hausdorff distance (HD95), average symmetric surface
distance (ASSD), and volume difference (VD) (21–25) (Equations
1–4). The calculation formulas are as follows:

DSC
(
Vgt, Vseg

)
=

2
∣∣Vgt

⋂
Vseg

∣∣∣∣Vgt
∣∣+ ∣∣Vseg

∣∣ , (1)

Where Vgt represents the ground truth and Vseg represents the
automatic segmentation result.

HD95(A, B) =

percent95{max{supa∈Ainf b∈Bd(a, b), supb∈Binf a∈Ad(b, a)}}, (2)

Where the percent95 refers to the 95th percentile, A and B are
point sets where A is the predicted segmentation and B is the
ground truth segmentation. d

(
a, b

)
measures the distance between

point a and point b.

ASSD (A, B) =
1

|A| + |B|

(∑
a∈A

min
b∈B

d
(
a, b

)
+

∑
b∈B

min
a∈A

d
(
b, a

))
,

(3)
Where A and B are point sets representing the predicted
segmentation and the true segmentation, respectively, and
d
(
a, b

)
denotes the distance from point a to point b.

VD =

∣∣TPseg − TPgt
∣∣

TPgt
, (4)

Where TPseg is the true positive of the predicted segmentation
and TPgt is the true positive of the true segmentation.
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FIGURE 1

The proposed method encompasses data collection, preprocessing and labeling, deep learning predictions, result presentation, and volume
calculation.

FIGURE 2

3D UX-Net employs a convolutional encoder backbone where large-kernel convolutions generate patch embeddings, with each stage’s
downsampling block expanding channel-wise context.

TABLE 1 Segmentation performance comparison of 3D UX-Net, 3D U-Net, Swin UNETR, UNETR++, and Swin SMT on the test set.

Model architecture DSC
(Mean ± SD)

HD95 (mm)
(Median [IQR])

ASSD (mm)
(Median [IQR])

VD
(Median [IQR])

3D U-Net 0.875± 0.019 1 [1-1] 0.404 [0.265–0.463] 0.045 [0.010–0.072]

Swin UNETR 0.870± 0.017 1 [1-1] 0.307 [0.244–0.470] 0.066 [0.019–0.101]

UNETR++ 0.861± 0.020 1 [1-1] 0.338 [0.260–0.422] 0.072 [0.028–0.114]

Swin SMT 0.888± 0.018 1 [1-1] 0.248 [0.210–0.312] 0.047 [0.003–0.126]

3D UX-Net 0.893± 0.017 1 [1-1] 0.234 [0.188–0.273] 0.054 [0.034–0.076]

Data are presented as mean± SD or median [IQR]. SD, standard deviation; IQR, interquartile range; DSC, Dice similarity coefficient; HD95, Hausdorff distance 95%; ASSD, average symmetric
surface distance; VD, volume difference. Bold values indicate the best performance in segmentation metrics (DSC, ASSD, VD).

Data augmentation through geometric transformations
(flipping) and photometric adjustments (brightness/contrast/hue
variation) enhanced training diversity. We systematically evaluated
test-set AVP segmentation accuracy across five architectures:
3D UX-Net, 3D U-Net, Swin UNETR, UNETR++, and Swin
SMT. Computational complexity was quantitatively assessed via
parameter counts, FLOPs, and inference time for all models.
Furthermore, the AVP segmentation performance of the 3D
UX-Net model was benchmarked against state-of-the-art

segmentation outcomes documented in previous studies
(9, 10, 26–28).

2.7 Volume measurement

We calculated the overall voxel volume (number of
voxels × voxel size) from both the manually outlined and 3D
UX-Net automatically segmented labels as the AVP volume, and
then derived the average AVP volume for all participants based
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FIGURE 3

Comparative analysis of segmentation performance across 3D UX-Net, 3D U-Net, Swin UNETR, UNETR++, and Swin SMT on the test set, with
quantitative evaluations including (a) Dice similarity coefficient, (b) 95% Hausdorff distance, (c) average symmetric surface distance, and (d) volume
difference.

TABLE 2 Cross-model comparison of computational complexity.

Model
architecture

Parameters
(M)

FLOPs
(G)

Inference
time (s)

3D U-Net 85.43 2139.34 0.36± 0.39

Swin UNETR 92.96 1485.11 0.35± 0.39

UNETR++ 40.48 912.23 0.36± 0.31

Swin SMT 73.05 886.03 0.37± 0.71

3D UX-Net 52.39 1325.73 0.33± 0.58

Results were presented as mean ± SD. SD, standard deviation; FLOPs, floating point
operations per second. Bold values indicate the best performance in lightweight metrics
(Parameters, FLOPs, Inference Time).

on the results of the 3D UX-Net automatic segmentation. Model
comparison employed VD analysis, calculating absolute differences
between automated and manual measurements across the test set.

2.8 Statistical analysis

Statistical analyses were performed using SPSS (v26.0) and
Python (v3.10). A P-value less than 0.05 was considered statistically
significant. Normal distribution of all continuous variables was
examined using the Shapiro-Wilk test. Normally distributed
variables were presented as mean ± standard deviation (SD),
skewed distribution variables were described using median and
interquartile range (IQR). Use Levene’s test to check if different
groups have the same variance. If the data meets the criteria for
normal distribution and homogeneity of variance, conduct a one-
way ANOVA. If not, use the Kruskal-Wallis test. Post hoc tests were

conducted using the Dunn test, with Bonferroni correction applied
for multiple comparisons. The two-sided paired Wilcoxon signed-
rank test was employed to compare AVP volumes between 3D
UX-Net and manual segmentation predictions in the test cohort.
The mean and standard deviation of AVP volumes were calculated
to establish the 95% reference range for this population. When
grouped by gender, statistical analysis was conducted using a
two-sample t-test. For age groups differing by 10 years, the 95%
reference intervals of AVP volume were calculated for each group,
and trends were illustrated using a line chart.

3 Results

3.1 Segmentation results

The proposed 3D UX-Net achieved state-of-the-art DSC of
0.893 ± 0.017, outperforming the 3D U-Net (0.875 ± 0.019), Swin
UNETR (0.870 ± 0.017), UNETR++ (0.861 ± 0.020), and Swin
SMT (0.888± 0.017). Morphological analysis further confirmed its
advantages, demonstrating the lowest ASSD of 0.234 mm [0.188–
0.273], which significantly outperformed 3D U-Net (p = 0.003). All
models exhibited identical median HD95 values of 1 mm (IQR = 1–
1), indicating consistent control of extreme boundary errors
across architectures. For surface distance accuracy, the 3D UX-
Net achieved the lowest (0.234 mm [0.188–0.273]), significantly
outperforming the 3D U-Net (0.404 mm [0.265–0.463], p = 0.003)
and UNETR++ (0.338 mm [0.260–0.422], p = 0.021).

In terms of volume measurement, the Swin SMT exhibited the
lowest median VD (0.047 [0.003–0.126]); however, its wider IQR
suggested potential instability. No significant VD differences were
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FIGURE 4

Comparison of computational complexity across the five models, including (a) number of parameters, (b) FLOPs, (c) inference time, and (d)
accuracy.

TABLE 3 The 3D UX-Net model performance for AVP segmentation on the test subjects.

Subjects DSC HD95 (mm) ASSD (mm) VD Volume (mm3)

HC001 0.894 1.0 0.237 0.054 1414.44

HC002 0.886 1.0 0.273 0.076 1504.94

HC003 0.915 1.0 0.159 0.034 1417.05

HC004 0.917 1.0 0.176 0.007 1777.66

HC005 0.867 1.41 0.428 0.093 1566.76

HC006 0.906 1.0 0.183 0.037 1351.95

HC007 0.896 1.0 0.263 0.061 1877.91

HC084 0.899 1.0 0.204 0.020 1723.63

HC085 0.897 1.0 0.219 0.035 1505.58

HC086 0.880 1.0 0.229 0.054 1405.34

HC087 0.895 1.0 0.259 0.067 1594.11

HC088 0.897 1.0 0.235 0.045 1428.13

HC089 0.913 1.0 0.188 0.007 1438.54

HC132 0.860 1.0 0.346 0.241 1419.66

HC133 0.872 1.0 0.548 0.182 1292.73

Mean/median 0.893± 0.017 1 [1-1] 0.234 [0.188–0.273] 0.054 [0.034–0.076] 1514.56± 165.52

Within-group statistical data are shown in bold and presented as mean ± SD or median [IQR]. SD, standard deviation; IQR, interquartile range; DSC, Dice similarity coefficient; HD95,
Hausdorff distance 95%; ASSD, average symmetric surface distance; VD, volume difference; HC, healthy control.

observed between the 3D U-Net (0.045 [0.010–0.072]) and 3D UX-
Net (0.054 [0.034–0.076], p = 0.27) (Table 1; Figure 3).

The 3D UX-Net balances accuracy and efficiency with
52.39M parameters, a 38.6% reduction from 3D U-Net (85.43M),
while outperforming Transformer-based Swin UNETR (92.96M)
and Swin SMT (73.05M). Although UNETR++ has the fewest
parameters (40.48M), its accuracy remains subpar (Table 1). In
computational efficiency, 3D UX-Net (1325.73G FLOPs) reduces
computational load by 38% versus 3D U-Net and is 10.7% more

efficient than Swin UNETR. Swin SMT achieves the lowest FLOPs
(886.03G) but shows higher accuracy variability. All models show
comparable inference times, though 3D UX-Net and Swin SMT
exhibit greater latency fluctuations than UNETR++. Table 2 and
Figure 4 delineates the comparative analysis of computational
complexity parameters across the five architectures.

The 3D UX-Net model exhibited minimal volumetric
discrepancy in AVP predictions (1514.56 ± 165.52 mm3)
compared to ground truth annotations, with detailed per-subject
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FIGURE 5

Visual comparisons of AVP segmentation examples are shown. The predicted AVP contours are overlaid in green on a representative axial
T1-weighted MRI of the brain from one test subject, with manual annotations overlaid in magenta for reference. The inset provides a close-up
comparison of the predicted values.

TABLE 4 Comparison of our method with the AVP segmentation methods reported in the literature.

Methods Year No. of
subjects

MRI
sequence

Voxel size
(mm3)

DSC HD95
(mm)

ASSD (mm)

3D FCN + SPDM. (Zhao
et al.)

2019 93 T1w 1× 1× 1 0.85± 0.01 4.64± 1.41 0.37± 0.04

3D U-Net (Ai et al.) 2020 93 T1w 1× 1× 1 0.86± 0.01 3.56± 1.89 0.34± 0.05

TPSN (Li et al.) 2021 102 T1w + FA 1.25× 1.25× 1.25 0.85± 0.02 2.33 0.16

3D U-Net (van Elst et al.) 2022 40 T2w 0.25× 0.25× 0.7/
0.27× 0.27× 0.3

0.84 0.64 0.14

CNTSeg (Xie et al.) 2023 102 T1w + FA +
fODF peaks

1.25× 1.25× 1.25 0.82± 0.02 – –

3D UX-Net (ours) – 119 T1w 0.90× 0.90× 1 0.893± 0.017 1 [1-1] 0.234
[0.188–0.273]

Data are presented as mean± SD or median [IQR]. SD, standard deviation; IQR, interquartile range; DSC, Dice similarity coefficient; HD95, Hausdorff distance 95%; ASSD, average symmetric
surface distance; FCN, fully convolutional network; SPDM, spatial probabilistic distribution map; CNTSeg, cranial nerves tract segmentation; FA, fractional anisotropy; fODF, fiber orientation
distribution function; TPSN, two parallel stages network. Bold values indicate the best performance in AVP segmentation.

performance metrics documented in Table 3. As illustrated in
Figure 5, automated contours generated by 3D UX-Net showed
high anatomical concordance with manual delineations, achieving
submillimeter boundary accuracy (0.23 mm) that meets precision
requirements for image-guided surgical interventions.

Comparative analysis with prior studies addressing analogous
AVP segmentation tasks revealed that the 3D UX-Net architecture
achieves statistically significant improvements in segmentation
accuracy, as empirically demonstrated in Table 4.

3.2 Volume measurement results

In the test set, the detailed results of applying the 3D UX-
Net model to calculate individual AVP volumes are presented in
Table 3. The average volume of the 3D UX-Net automatically
segmented AVP across all subjects was 1446.78± 245.62 mm3, with
an average VD of 0.068± 0.064 compared to manual labeling. A 2-
tailed Wilcoxon signed-rank test showed no significant difference
(p = 0.616) in AVP volumes predicted by 3D UX-Net and manual
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FIGURE 6

Comparison of AVP volumes measured by 3D UX-Net and manual segmentation on the test set.

FIGURE 7

Comparison of AVP volumes across various gender and age groups using manual segmentation results for all subjects.

segmentation on the test cohort. The volumes measured by 3D
UX-Net and manual methods are visualized in Figure 6.

3.3 Volume comparison

We calculated the AVP volume for all subjects using the
automatic segmentation results from 3D UX-Net and compared

the volumes between different sex and age groups. Male subjects
exhibited significantly larger AVP volumes than females (Males:
1572.33 ± 242.90 mm3 vs. Females: 1327.41 ± 181.29 mm3;
p < 0.001), despite comparable age distributions between groups
(p = 0.63). No significant association emerged between age
and AVP volume across the studied cohort. The complete
statistical breakdown is visualized in Figure 7 and tabulated in
Table 5.

Frontiers in Medicine 08 frontiersin.org

https://doi.org/10.3389/fmed.2025.1530361
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-12-1530361 April 23, 2025 Time: 13:42 # 9

Han et al. 10.3389/fmed.2025.1530361

TABLE 5 Volume distribution of the anterior visual pathway across different age groups.

Age (years
old)

Gender Number Volume (mean ± SD
mm3)

95%IC (mm3) P-value

18-30 Male 10 1578.03± 278.51 (1378.80, 1777.26) 0.035*

Female 9 1344.80± 136.44 (1239.92, 1449.68)

Total 19 1467.55± 56.83 (1348.15, 1586.96)

30-40 Male 9 1505.87± 297.14 (1277.47, 1734.27) 0.079

Female 8 1287.03± 164.16 (1149.79, 1424.27)

Total 17 1402.89± 63.53 (1268.21, 1537.56)

40-50 Male 11 1637.36± 186.11 (1512.33, 1762.39) 0.001*

Female 17 1350.85± 189.35 (1248.87, 1452.83)

Total 28 1463.41± 44.90 (1371.28, 1555.54)

50-60 Male 28 1566.12± 237.63 (1473.97, 1658.26) 0.000*

Female 27 1318.82± 193.94 (1242.10, 1395.54)

Total 55 1444.71± 33.55 (1377.45, 1511.98)

*The differences are statistically significant.

4 Discussion

In this study, we developed and validated an automated
framework for AVP segmentation and volume measurement
in brain 3D T1WI. The 3D UX-Net accurately, robustly,
and quickly detects AVP contours and quantifies volumes,
demonstrating a higher mean DSC than the 0.82 reported in
Xie et al. (10). Compared to the 3D U-Net, Swin UNETR,
UNETR++, and Swin SMT, the 3D UX-Net emerged as the
most robust architecture, achieving state-of-the-art DSC and
ASSD while maintaining competitive volumetric consistency.
Despite comparable HD95 values across all models, 3D UX-Net’s
superior surface distance accuracy and stability suggest enhanced
capability for fine-grained anatomical segmentation. These results
highlight the importance of balancing spatial precision with
volumetric reliability in medical image analysis. Our method’s
reliability was confirmed in an independent cohort and was
compared to manual segmentation, which is labor-intensive
and impractical in busy clinical settings. Our approach offers
rapid predictions with accuracy comparable to manual results,
providing timely AVP contour and volume data for radiologists.
Additionally, we offer a reference range for adult AVP volume,
useful for diagnosing AVP-related diseases. We also analyzed AVP
volume variations across different age groups and genders using
manual segmentation.

Variability in AVP measurements is likely influenced by
factors such as MRI sequences, slice thickness, measurement
locations, and measurement methods. While some researchers
prefer T1-weighted images for visualizing the optic nerve
(29, 30), others advocate for standard or novel T2-weighted
sequences that may better distinguish the optic nerve from
cerebrospinal fluid (31, 32). We chose to segment high-
resolution T1WI due to their near isotropic voxel size,
avoiding image resolution degradation during multiplanar
reconstruction. Additionally, this sequence is included in our
institution’s standard radiological acquisition. We anticipate

no significant differences in AVP measurements using 3D-
T1WI sequences across centers employing MRI systems from
different manufacturers.

Previously, studies have segmented orbital structures in CT
images using semi-automatic or automatic methods for diagnostic
imaging and surgical planning. Pravatà et al. (11) proposed
a deep learning-guided partitioned shape model for anterior
visual pathway segmentation, initially utilizing a marginal space
deep-learning stacked autoencoder to locate the pathway, then
combining a novel partitioned shape model with an appearance
model to guide segmentation (6). Zhao et al. (9) introduced a
method for visual pathway segmentation in MRI based on a
3D FCN combined with a Spatial Probabilistic Distribution Map
(SPDM), which represents the probability that a voxel belongs
to a specific tissue by summing all manual labels in the training
dataset. Incorporating SPDM effectively overcomes issues of low
contrast and blurry boundaries, achieving improved segmentation
performance. Harrigan et al. (33) enhanced the multi-atlas
segmentation method by introducing a technique for quantitatively
measuring the optic nerve and cerebrospinal fluid sheath,
demonstrating its potential to differentiate patients with optic
nerve atrophy or hypertrophy from healthy individuals. Aghdasi
et al. (34) defined a volume of interest (VOI) encompassing the
desired structures using anatomical prior knowledge, employing
it for rapid localization and effective segmentation of orbital
structures—globes, optic nerves, and extraocular muscles—in CT
images. This method is precise, efficient, requires no training
data, and its intuitive pipeline enables adaptation to other
structures. In our study, we used the 3D UX-Net network
structure to train the segmentation model in two steps using
a coarse-to-fine method. Compared to previous studies on
similar AVP segmentation tasks, the 3D UX-Net architecture
significantly improves segmentation accuracy. Additionally, we
observed that all models had a median HD95 of 1 mm with
an IQR of [1-1], showing only a small number of outliers
around 1.4 mm. Possible explanations include: a. All subjects
were free of optic nerve-related disorders, and anatomical
variations in the AVP are smaller in healthy states compared
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to pathological conditions; b. While most AVP boundaries
are distinct due to high tissue contrast, partial volume effects
from adjacent structures in rare cases may contribute to
elevated HD95 values.

Comparative analysis of computational complexity among
the 3D U-Net, Swin UNETR, UNETR++, Swin SMT, and
3D UX-Net reveals that 3D UX-Net achieves the optimal
accuracy-efficiency balance in parameter efficiency and
computational precision, providing a viable solution for
deploying high-accuracy real-time segmentation systems in
clinical settings. However, its FLOPs still lag significantly behind
Swin SMT, revealing potential for further compression of
computational redundancy.

Several studies have shown that age and ethnicity influence
optic nerve size (35, 36). However, our findings revealed
no clear correlation between age and optic nerve volume,
possibly due to variations such as different examination
techniques and post-processing programs. Inglese et al.
(37) included controls with a mean age of 37 years old
from an Italian population, whereas our study’s controls
had an older mean age of 46 years old from an Asian
population. We believe these factors may also affect optic
nerve volume, which requires verification through an
expanded sample size.

Mncube and Goodier (38) showed that the transverse
diameter of the optic chiasm is the most reliable measure
of the AVP in adults because it is the largest structure and
easiest to measure. However, due to the irregular morphology
of the AVP, measurements of the optic chiasm may not
capture all its features. Our comprehensive volumetric assessment
addressed this limitation. In our test set, two subjects exhibited
lower segmentation accuracy and significantly greater volume
differences than others. This may be attributed to the tortuous
course of the optic nerve within the orbital segment of these
subjects, along with a longer segment parallel to the ophthalmic
artery (39).

This study has several limitations. Firstly, it relies on single-
center data, necessitating future validation in broader clinical
settings with larger datasets. Secondly, our training cohort
included only subjects with normal AVP images, excluding
related diseases such as congenital malformations, inflammation,
and tumors. We intend to apply this method for automated
segmentation and volume measurement of AVP and for differential
diagnosis of inflammatory demyelinating diseases. Lastly, we
only used the 3D-T1WI sequence to measure the AVP’s total
volume. Future research could include T2-FLAIR and DTI
sequences to improve accuracy and reliability. Additionally,
refining measurement metrics such as segmented volume, length,
and cross-sectional area could provide more comprehensive
evaluation data.

5 Conclusion

In this study, we introduced the 3D UX-Net for segmenting
AVP on brain 3D-T1WI, which outperformed the 3D U-Net,
Swin UNETR, UNETR++, and Swin SMT. Our convolutional
neural network, trained and validated on MRI scans from

119 healthy individuals, achieved an average DSC of 0.893
for AVP segmentation with a volume error under 1%.
Using the AVP volume from the normal study group as
a benchmark, we can quantitatively evaluate the volume
difference between a given MR image and the baseline,
automatically identifying abnormalities when differences
exceed the normal distribution. This comparison provides
radiologists with valuable information within a clinically
practical timeframe, aiding in the detection of subtle AVP
lesions. The approach’s high accuracy and computational
efficiency make it suitable for quantifying and distinguishing
optic nerve-related diseases.
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