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Introduction: Reintubation is an adverse postoperative complication in patients 
with Type A aortic dissection (AAD) that correlates to poor outcomes. This study 
aims to employ machine learning algorithms to establish a practical platform for 
the prediction of reintubation.

Methods: A total of 861 patients diagnosed with AAD and undergoing surgical 
procedures, 688 patients as training and testing cohort from a single center, 
and 173 patients as validation cohort from four centers were enrolled. The least 
absolute shrinkage and selection operator (LASSO) was used for screening risk 
variables associated with reintubation for subsequent model construction. 
Subsequently, seven machine-learning models were built. The model with 
the best discrimination and calibration performance was used to predict 
reintubation. Finally, the SHapley Additive exPlanation (SHAP) was employed to 
explain the prediction model.

Results: Reintubation was performed in 107 patients (12.43%). The LASSO 
analysis identified re-admission to the intensive care unit (ICU), continuous 
renal replacement therapy, length of stay in the ICU, and duration of invasive 
mechanical ventilation as significant risk factors for reintubation. The XGBoost 
model was selected as the final prediction model due to its better performance 
than other models, with the AUC, sensitivity, and specificity of 0.969, 0.8889, 
and 0.8611  in the testing cohort. SHAP values demonstrated the effects of 
individual features on the overall model. Finally, a web calculator was developed 
based on XGBoost model for the clinical use.

Conclusion: We have developed and validated a high-performing risk prediction 
model for postoperative reintubation in patients with AAD. It can provide 
valuable guidance to clinicians in predicting reintubation and in developing 
timely preventative measures.
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1 Introduction

Type A aortic dissection (AAD) is a devastating condition 
characterized by an entry tear in the aortic intima or hemorrhage in 
the aortic media, leading to the separation of the ascending aortic 
layers (1, 2). Due to the sudden onset and rapid progression of AAD, 
the mortality rate alarmingly increased by 1–2% per hour within the 
first 48 h after symptom onset, if not intervened promptly (3). Open 
surgery is a life-saving operation and remains the preferred treatment 
modality for patients with AAD (4). Advances in surgical treatments 
have substantially reduced the operative mortality from AAD, 
however, the postoperative in-hospital mortality rates remain 
relatively high, reported to be  up to 25% (5, 6). Postoperative 
complications, including respiratory failure, stroke, new-onset renal 
failure, and neurological impairment are the main contributors to 
these high mortality rates (7). Consequently, timely prediction, 
identification, and management of postoperative complications is a 
valuable and critical task for improving patient prognosis.

Reintubation is a common complication after cardiac surgery, 
with an incidence ranging from 2 to 13% (8). Postoperative 
reintubation can lead to adverse patient outcomes, including increased 
postoperative blood transfusion requirements, acute kidney injury, 
delirium, prolonged length of stay in the intensive care unit (ICU 
LOS), and increased mortality rates (9, 10). Therefore, predicting the 
risk of reintubation is crucial for maximizing patient benefits and 
minimizing harm. A retrospective study included postoperative 
patients undergoing a variety of cardiac procedures, including aortic 
surgery, and identified 10 risk factors associated with postoperative 
reintubation, including older age, previous cardiac surgery, congestive 
heart failure, emergency surgery, and longer duration of surgery (11). 
Another study focusing on pediatric cardiac surgery has delineated 
three risk factors for reintubation, including patient characteristics, 
high complexity of surgery, and patients undergoing surgery at 
low-volume centers (12). Given the significant differences in patient 
characteristics and disease conditions across different types of cardiac 
surgery, it is necessary to analyze postoperative reintubation risk 
factors separately for different diseases or surgeries to avoid the 
interference of confounding factors. Although the incidence of 
reintubation in patients with AAD is relatively high in cardiac surgery 
(13–15), there is currently no specific research on the risk prediction 
of reintubation for AAD patients. Addressing this gap in the literature 
will help implement effective preventive strategies, thereby reducing 
the incidence of reintubation in AAD patients postoperatively.

Over the past decades, machine-learning has emerged as a 
promising method for data mining and analysis, widely applied as a 
predictive tool in clinical practices (16, 17). The predictive accuracy 
of machine-learning has been shown to outperform traditional 
statistical methods (18). Machine-learning has the ability to analyze 
vast amounts of data, uncover subtle predictive risk factors, and to 
improve the predictive power to enhance clinical guidance (19, 20). In 
addition, most traditional studies are restricted by small sample sizes, 
the use of complex system variables that are not easily accessible, and 
a lack of external validation, severely hampering the clinical 
applicability of these models. Exploring risk factors through machine-
learning models based on multicenter data and constructing a feasible 
and efficient predictive model is expected to facilitate early 
identification and early intervention for postoperative reintubation in 
AAD patients, thereby improving patient prognosis.

Therefore, in the present study, we aim to develop and validate 
seven machine-learning models by incorporating diverse perioperative 
data, to predict reintubation in AAD postoperative patients based on 
multicenter data, and ultimately visualize the model with the best 
predictive to improve the usability of this predictive model.

2 Materials and methods

2.1 Study population and data partitioning

This is a multicenter, retrospective, observational cohort study. A 
total of 892 patients with AAD who underwent open surgery from five 
medical centers in China, including Wuhan Union Hospital, 
Xiangyang Central Hospital, Shiyan Taihe Hospital, Yichang Central 
Hospital, and Jingzhou Central Hospital, between January 2020 and 
October 2023 were enrolled. Inclusion criteria were as follows: (1) 
patients diagnosed with AAD admitted for open surgery; (2) aged 
18 years or older. Exclusion criteria included: patients deceased during 
or within 24 h after surgery. This study was approved by The Ethics 
Committee of Tongji Medical College of Huazhong University of 
Science and Technology (IORG No. IORG0000521) under the 
declaration of Helsinki.

We developed prediction models based on the patient cohort from 
Wuhan Union Hospital, which comprised 688 patients with AAD who 
underwent open surgery. They were randomly assigned to training 
and testing cohorts in a 7:3 ratio. To further assess the performance of 
the models, data from the other four hospitals were used for 
subsequent external validation, which comprised 173 patients with 
AAD who underwent open surgery.

2.2 Data collection

Characteristics such as general demographic characteristics, 
medical history, preoperative laboratory test, intraoperative 
information, and postoperative information and laboratory test were 
acquired through the hospital’s electronic medical recording 
management system. The requirement for patient approval or written 
informed consent was waived due to the retrospective nature of this 
study. Preoperative data included in the analyses were age, gender, 
weight, height, body mass index (BMI), smoking history, alcohol 
usage history, pulmonary complications, hypertension, diabetes 
mellitus, Marfan syndrome, brain complications, renal insufficiency, 
previous surgery, and laboratory data. Surgery-related information 
and postoperative blood gas analysis results were also obtained. For 
continuous variables, missing values were imputed using the mean if 
the data were normally distributed or the median if the data were 
skewed. For categorical variables, missing values were replaced with 
the most frequent category. If the proportion of missing values for a 
variable exceeded 30% of the total observations, the variable was 
excluded from further analysis to ensure data reliability.

Body mass index is calculated by dividing weight in kilograms by 
the square of height in meters. Hypertension and its classification were 
based on the 2018 Chinese Guidelines for Prevention and Treatment 
of Hypertension (21). Diabetes mellitus was defined based on a 
previous diagnosis, use of diabetes medications, or random blood 
glucose ≥11.1 mmol/L or fasting blood glucose ≥7.0 mmol/L. Renal 
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insufficiency was defined by a previous diagnosis or serum creatinine 
above 110 μmol/L. Brain complications encompassed cerebral 
infarction, stroke, cerebral hemorrhage, epilepsy, cerebral atrophy, 
Alzheimer’s disease, and cerebrovascular disease. Pulmonary 
complications included lung infections, atelectasis, tuberculosis, 
emphysema, pneumonia, pulmonary nodules, and lung cancer. ICU 
LOS refers to the duration of the initial ICU stay after surgery. The 
ICU discharge criteria included stable vital signs, adequate 
oxygenation, absence of active complications, normal or improved 
laboratory parameters, and a favorable multidisciplinary team 
assessment. Re-admission to ICU refers to re-admission to the ICU 
after the patient has been discharged to a normal ward or ambulatory 
care following the initial postoperative ICU stay. The postoperative 
information on pH, PaO₂, PaCO₂, K+, Na+, Ca2+, GLU, BE, Lac, Hb, 
and FiO₂ refers to the results of the first postoperative blood 
gas analysis.

2.3 Model endpoint definition

In this study, the endpoint was the occurrence of reintubation in 
patients with AAD undergoing surgical treatment.

2.4 Feature selection

The least absolute shrinkage and selection operator (LASSO) 
regression was employed to identify the most relevant features 
associated with reintubation risk. LASSO is a widely used machine-
learning approach that integrates feature selection and model 
regularization by applying an L1 penalty, which forces the coefficients 
of less important variables to shrink to zero. This embedded feature 
selection method effectively reduces model complexity while retaining 
the most predictive variables (22). Importantly, LASSO regression is 
particularly advantageous in mitigating the impact of multicollinearity 
by penalizing correlated predictors and selecting the most informative 
features. In this study, LASSO regression was applied to the primary 
dataset, which included demographic characteristics, laboratory 
results, and perioperative information. The optimal penalty parameter 
(λ) was determined through 10-fold cross-validation, ensuring a 
balance between model performance and overfitting prevention. The 
final subset of selected features was subsequently incorporated into 
seven machine-learning models for predictive modeling.

2.5 Machine-learning models

In this study, seven distinct machine-learning models were 
employed for training, testing, and validation cohort, namely, 
multivariable logistics regression (MLR), decision-tree modeling 
(DT), random forest (RF), XGBoost (XGB), Support Vector Machines 
(SVM), k-nearest neighbors (kNN), and LightGBM (LGBM).

2.6 Performance evaluation

The predictive performance of the models was evaluated 
through discrimination and calibration. Discrimination was 

assessed using the area under the receiver operating characteristic 
(ROC) curve (AUC). Accuracy, sensitivity, specificity, precision, 
recall, and the F1-score were calculated to measure the accuracy of 
the model. To evaluate the accuracy and reliability of a model’s 
predictive probabilities, calibration was measured by 
calibration plots.

2.7 Model interpretation

To enhance the interpretability of the complex machine-learning 
models, we employed SHapley Additive exPlanation (SHAP) analysis 
to quantify the contribution of each feature to reintubation risk 
prediction. SHAP values provide both global interpretability, 
illustrating overall feature importance, and local interpretability, 
explaining how individual variables influence specific predictions. 
This method enables a comprehensive assessment of each predictor’s 
relative impact on model outputs, thereby improving the transparency 
and clinical applicability of the predictive model.

2.8 Statistical analysis

For statistical analyses, R version 4.2.1, Shiny version 0.5.1, and 
SPSS version 25.0 were utilized. Categorical and count data were 
presented as frequencies and percentages, and group comparisons 
were made using the chi-squared (χ2) test. Measurements that 
conformed to a normal distribution were expressed as 
mean ± standard deviation (SD), and t-tests were used for group 
comparisons. Non-normally distributed measurements are described 
using medians and interquartile ranges and were compared using the 
Mann–Whitney U test.

3 Results

3.1 Patient characteristics

In accordance with the predefined inclusion and exclusion 
criteria, the study population underwent meticulous screening. 
Ultimately, a total of 861 patients were enrolled in this study (Figure 1), 
with 107 patients (12.43%) experiencing reintubation. The training, 
testing, and validation cohorts included 481, 207, and 173 patients 
with reintubation rates of 11.85, 13.04, and 13.29%, respectively. The 
mean (SD) age of the training, testing, and validation cohorts was 
52.00 [43.00; 59.00] years, 53.00 [43.00; 59.00] years, and 52.00 [44.00; 
58.00] years, respectively. The detailed characteristics are provided in 
Supplementary Table 1.

3.2 Influencing factors of reintubation

To ensure model accuracy and prevent overfitting, LASSO was 
utilized to select significant features associated with reintubation for 
subsequent modeling. The optimal parameters (lambda) in the 
LASSO model were chosen using 10-fold cross-validation 
(Figure  2). A vertical line is drawn at the values selected using 
10-fold cross-validation, identifying four features with non-zero 
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coefficients: re-admission to ICU, continuous renal replacement 
therapy (CRRT), ICU LOS, and duration of invasive mechanical 
ventilation (Table 1).

3.3 Development and assessment of risk 
prediction models

We employed seven machine learning algorithms to establish 
predictive models for reintubation and evaluated their predictive 
performance. Discrimination between the different models was 
quantified using the AUC of ROC (Figure 3). In the training group, 
the AUC values of different models ranged from 0.905 to 1.00, with 
the highest AUC achieved by the RF and kNN models (both 
AUC = 1.00) (Figure 3A). The AUC of all models in the testing group 
ranged between 0.897 and 0.974, followed by XGB and SVM (both 

AUC = 0.969) (Figure 3B). The kNN and XGB models exhibited the 
highest AUC in the validation group (AUC = 0.964) (Figure 3C).

Confusion matrices were generated for each model and compared 
using accuracy, precision, recall, and F1 score as metrics. The XGB 
model in the testing group achieved an accuracy of 0. 8,647, a 
precision of 0.4898, a recall of 0.8889, and an F1-score of 0.6316. The 
Accuracy, precision, recall, and F1-score of other models for the 
testing group are presented in Table 2. In addition, the XGB model 
achieved an accuracy of 0.9884, a precision of 0.9565, a recall of 
0.9565, and an F1-score of 0.9565 in the validation group. Accuracy, 
precision, recall, and F1 scores of other models for the validation 
group are presented in Table 3.

Given the low AUC value of LGBM in the validation group, 
we subsequently show only the calibration plots of the six models 
other than LGBM in the training and test groups 
(Supplementary Figure 1). A model with good consistency is indicated 

FIGURE 1

Flow chart of the study.
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by a curve that forms a 45° angle between the X-axis and the Y-axis. 
The calibration curve results showed that the XGB model exhibited 
good agreement between predicted and observed outcomes. Overall, 
the XGB model demonstrated good discrimination and calibration 
between the different groups.

3.4 Variable importance and variable 
interpretation

Given the above results, the XGB algorithm provided the 
fundamental framework for the ensemble learning models. 
We visualize the contribution of each feature to reintubation in the 
XGB model based on SHAP plots. Significant features were listed in 
descending order of their contribution to the model output in the 

SHAP summary plot. As shown in Figure 4A, the contributions were, 
from highest to lowest, re-admission to ICU, duration of invasive 
mechanical ventilation, ICU LOS, and CRRT. In addition, SHAP-
dependent plots were employed to visualize the impact of individual 
features on the prediction of the risk of reintubation. When the SHAP 
value for a particular feature surpassed the zero threshold, it indicated 
an elevated risk of reintubation occurring. Conversely, a value below 
the zero threshold indicates a decreased risk of intubation (Figure 4B). 
Furthermore, we employed the feature influence diagram to illustrate 
prediction outcomes at the individual patient level. This tool offers a 
comprehensive depiction of the decision pathways used to generate 
predictions for individual patients, thereby enhancing our 
understanding of the factors contributing to the prediction of 
reintubation in certain patients (Supplementary Figures 2A,B) while 
others (Supplementary Figures 2C,D) are not predicted to develop 
the condition.

3.5 Construction of web calculator

Based on the final machine learning model, we developed an easy-
to-use web-based calculator that implements the risk equations for 
reintubation prediction (Figure 5), and this calculator is accessible at 
https://predict-xgb123.shinyapps.io/20241024/. Clinicians can utilize 
the calculator in real-time, allowing for rapid prediction of 
reintubation risk based on patient data.

4 Discussion

Early recognition of reintubation is crucial for improving the 
prognosis of patients with AAD and for preventing multiple 
postoperative adverse events. In this multicenter study, we have made 
several important contributions to the field. Firstly, we identified key 
laboratory and perioperative features associated with postoperative 
reintubation in AAD patients. Secondly, leveraging these variables, 
we  developed and validated seven machine-learning models for 
predicting reintubation. Notably, the XGBoost (XGB) model 
demonstrated excellent performance in both the testing group and an 
external validation cohort, with strong discrimination and calibration 
abilities. To our knowledge, this is the first multicenter study to 
develop a predictive model for postoperative reintubation in AAD 
patients using machine-learning algorithms and multicenter data. 
These innovations allow for more accurate and timely detection of 
reintubation risk, enabling the development of personalized 
prevention strategies and enhancing early clinical decision-making. 
Our findings represent a significant step forward in leveraging 
advanced analytics to improve patient outcomes in AAD management.

Existing research on postoperative reintubation has prioritized 
risk factor identification while neglecting predictive validity 
assessments and clinical translation. Representative studies include a 
single-center retrospective analysis of 408 cardiac surgery patients 
linking arrhythmias and neurological dysfunction to reintubation risk 
(23), and an institutional analysis of 2,835 cases associating 
hemodynamic instability, dexmedetomidine dosing, and extubation 
timing with outcomes (9). A Chinese cohort of 492 AAD patients 
further developed a risk model incorporating age, smoking history, 
renal insufficiency, and intraoperative RBC transfusion (14). Despite 

FIGURE 2

Variables were selected by the least absolute shrinkage and selection 
operator logistic regression model. (A) The least absolute shrinkage 
and selection operator coefficient profile plot. (B) 10-fold cross 
validation plot for the penalty term.

TABLE 1 The least absolute shrinkage and selection operator regression 
results of significant variables related to reintubation.

Variables Coefficient Lambda.min

ICU LOS 0.032609493 0.01847423

Re-admission to ICU 3.348052379

Duration of invasive 

mechanical ventilation

0.007752884

CRRT 0.706128965

ICU, intensive care unit.
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these advances, two critical limitations persist—first, insufficient 
stratification by surgical type or pathology. Markedly heterogeneous 
reintubation rates across procedures (1.64% in CABG vs. 20.6% in 
thoracoabdominal aneurysm repair, with our AAD cohort at 12.43%) 
expose the inadequacy of generalized models for niche populations 
like AAD (14, 24, 25). Second, single-center datasets risk overfitting 
and geographical bias. Our study innovates by targeting the 
understudied high-risk AAD population, employing multicenter 
derivation/validation with robust sampling, and implementing 
interpretable machine learning (XGBoost with SHAP analysis) to 
quantify variable contributions. Comparative analysis with 

conventional scoring systems, including CARDOT score and SPORC 
score (26, 27), demonstrated our model’s superior predictive accuracy 
(higher AUC), validating its clinical utility for guiding AAD-specific 
extubation protocols and exemplifying the translational potential of 
machine learning in critical care workflows.

Our analysis identified ICU re-admission and prolonged initial 
ICU LOS as significant independent risk factors for postoperative 
reintubation in acute aortic dissection (AAD) patients. These 
parameters demonstrated particularly strong predictive value in our 
risk stratification model. This finding corroborates previous research 
by Ghali et al. (28), whose retrospective analysis of 610 ICU patients 

FIGURE 3

The area under the receiver operating characteristic curve of the prediction models in the training group (A), the testing group (B), and validation group 
(C).

TABLE 2 Evaluation metrics of seven models in the testing group.

Model Accuracy Sensitivity Specificity Precision Recall F1-score

MLR 0.9082 0.9630 0.9000 0.5909 0.9630 0.7324

DT 0.9227 0.9231 0.9227 0.4444 0.9231 0.6000

RF 0.9034 0.6296 0.9444 0.6296 0.6296 0.6296

XGB 0.8647 0.8889 0.8611 0.4898 0.8889 0.6316

SVM 0.0966 0.0370 0.1056 0.0062 0.0370 0.0106

kNN 0.8889 0.5556 0.9389 0.5556 0.5660 0.1304

LightGBM 0.8841 0.9259 0.8778 0.5319 0.9259 0.6757

MLR, multivariable logistics regression; DT, decision-tree modeling; RF, random forest; XGB, XGBoost; SVM, Support Vector Machines; kNN, k-nearest neighbors.

TABLE 3 Evaluation metrics of seven models in the validation group.

Model Accuracy Sensitivity Specificity Precision Recall F1-score

MLR 0.8960 1.0000 0.8800 0.5610 1.0000 0.7188

DT 0.9364 0.7143 0.9793 0.8696 0.7143 0.7843

RF 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

XGB 0.9884 0.9565 0.9933 0.9565 0.9565 0.9565

SVM 0.9306 0.9130 0.9333 0.6774 0.9130 0.7778

kNN 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

LightGBM 0.1329 1.0000 0.0000 0.1329 1.0000 0.2347

MLR, multivariable logistics regression; DT, decision-tree modeling; RF, random forest; XGB, XGBoost; SVM, Support Vector Machines; kNN, k-nearest neighbors.
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identified extended hospitalization duration as a critical risk factor for 
reintubation. The clinical implications of prolonged ICU LOS are 
substantial, as they are strongly associated with increased incidence of 
ICU-acquired complications including ventilator-associated 
pneumonia and bloodstream infections, which collectively elevate 
reintubation risk. Notably, our nomogram predictions align with 
existing literature reporting a 31% reintubation rate among ICU 
readmission cases (29). The pathophysiology underlying ICU 
readmission following cardiac surgery appears multifactorial, 
encompassing cardiopulmonary decompensation, deep sternal wound 
infections, critical limb ischemia, hemorrhagic complications, 
neurological sequelae, and systemic inflammatory responses (30, 31). 
Specific patient demographics – notably advanced age, end-stage renal 
disease, and chronic obstructive pulmonary disease – emerge as high-
risk cohorts for ICU readmission (32, 33). These populations were 
frequently present with a diminished physiological reserve and multi-
organ vulnerability, characteristics that synergistically amplify 
reintubation risk (8, 34, 35). While ICU readmission is a significant 
predictor of reintubation, its inclusion in the model may introduce 

circular reasoning. Future work should focus on identifying additional 
independent predictors and validating the model’s generalizability 
across diverse patient populations. Also, we recognize that this feature 
may not provide sufficient lead time for early intervention. To enhance 
the clinical utility of our model, future research should focus on the 
time dynamics between ICU readmission and reintubation. 
Specifically, we propose the development of a staged early warning 
mechanism to provide clinicians with a more nuanced understanding 
of the risk trajectory. Given the technical challenges and elevated 
complication rates associated with secondary intubation procedures 
(8), we emphasize the importance of vigilant respiratory monitoring 
and proactive pulmonary management in these vulnerable patients to 
mitigate reintubation necessity.

Our LASSO regression analysis identified CRRT as an 
independent predictor of postoperative reintubation in AAD patients. 
While direct evidence linking CRRT to reintubation remains limited, 
this association may be  mediated through renal dysfunction 
markers—including acute kidney injury, elevated blood urea nitrogen, 
and creatinine levels—which are well-established contributors to 

FIGURE 4

SHAP analyses of the XGB model for predicting reintubation. (A) Summary plot of SHAP values for each feature on the model output. The vertical axis 
ranks feature importance in descending order, with top features being most crucial to the model. The horizontal axis shows SHAP values, indicating if a 
feature increases or decreases the prediction. Yellow points mean higher observed values, while purple points mean lower ones. (B) SHAP dependence 
plot of the XGB model. Each panel shows how each feature impacts the Random XGB model’s predictions. The x-axis displays raw feature values, 
while the y-axis shows SHAP values. A SHAP value above zero for a feature suggests a higher risk of reintubation.
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respiratory complications (11, 36–38). Acheampong et  al. (38) 
corroborated this relationship in their analysis of 8,809 surgical 
patients, identifying acute renal failure/dialysis as an independent 
reintubation risk factor. Similarly, Mendes et al. (39) demonstrated a 
dose-dependent association between preoperative creatinine elevation 
and reintubation likelihood, suggesting renal reserve as a critical 
determinant of postoperative respiratory stability. The 
pathophysiological interplay between CRRT and reintubation risk 
may involve dual mechanisms: impaired clearance of sedatives and 
neuromuscular blockers in renal insufficiency, prolonging drug-
induced respiratory depression (40), and fluid overload secondary to 
oliguria/anuria, predisposing to pulmonary interstitial edema, 
reduced lung compliance, and airway obstruction (41). These 
mechanisms collectively heighten vulnerability to respiratory failure 
despite mechanical ventilation weaning. Given the clinical significance 
of this relationship, future large-scale prospective studies are 
warranted to delineate causal pathways and optimize perioperative 
management strategies in this high-risk cohort.

Our analysis identified prolonged invasive mechanical ventilation 
duration as a significant independent predictor of reintubation in 
AAD patients, consistent with prior research (42). While early 
extubation as part of fast-track anesthesia protocols has demonstrated 
safety without elevating reintubation risk (43), extended invasive 
mechanical ventilation duration correlates strongly with adverse 
outcomes. Protracted endotracheal intubation compromises 
respiratory mucosal integrity, impairs mucociliary clearance, and 
predisposes patients to ventilator-associated pneumonia and 
atelectasis, thereby amplifying reintubation likelihood (44, 45). 
Notably, delayed extubation may mask early neurological deficits, 
including stroke manifestations, by limiting clinical assessment of 
consciousness and motor function. This diagnostic obscuration can 
delay neuroprotective interventions, indirectly exacerbating 
respiratory compromise and necessitating reintubation (46). 
Therefore, it is suggested to remove endotracheal intubation and 

switch to spontaneous breathing as soon as conditions permit (42). 
Given these risks, meticulous respiratory monitoring and proactive 
extubation planning are imperative for AAD patients requiring 
prolonged invasive mechanical ventilation to mitigate secondary 
respiratory failure and its associated morbidity.

Machine learning has emerged as a valuable tool for clinical 
decision-making, capable of handling high-dimensional and complex 
datasets by integrating multiple data sources to build a statistical 
model that predicts a specific outcome (47, 48). The choice of different 
machine learning algorithms has a significant effect on the predictive 
accuracy of the model, thus the selection of the appropriate algorithm 
to build the predictive model is crucial. In this study, we compared 
XGB models with six other machine learning models to develop the 
most accurate predictive model for postoperative reintubation in 
patients with AAD. Furthermore, many models and statistical 
methods involve complex mathematical terms and formulas, which 
can be challenging for healthcare professionals to interpret. To use this 
model in daily scenarios and to deepen the understanding of the risk 
factors in the model, we employed SHAP to visualize the XGB model. 
SHAP stands out among the many visualization techniques for its 
ability to consider the effects of individual features and the potential 
synergistic effects of groups of variables on the overall model. To 
address this issue, in this study, the SHAP method was used to 
interpret the contribution of individual predictors to the predictive 
model, further deepening the understanding of reintubation risk 
factors. On the other hand, to promote the widespread application of 
our model, we  have developed a user-friendly online prediction 
platform for cardiac surgeons, enabling them to easily identify patients 
at high risk of reintubation. This platform can be seamlessly integrated 
into electronic medical record systems, which are increasingly used in 
clinical settings. With the integration of machine learning models, 
clinicians can benefit from automated reintubation risk assessments, 
eliminating the need for manual calculations. The system would 
capture key clinical features from the patient’s electronic medical 

FIGURE 5

A web-based calculator for predicting postoperative reintubation in patients with AAD.
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record, providing timely warnings to clinicians through computer or 
mobile devices. This would enable more proactive patient 
management, reducing the risk of adverse outcomes.

This study has several limitations that warrant consideration. 
First, as an observational and retrospective cohort study, our findings 
may be  subject to biases arising from unmeasured confounders. 
Specifically, the lack of detailed data on pulmonary and cerebral 
disease may limit the generalizability of our risk stratification model. 
Additionally, postoperative assessments were inconsistently 
documented across centers, which may have led to the omission of 
unrecognized risk factors. While these limitations cannot be  fully 
overcome due to the inherently absent data, we attempted to mitigate 
their impact by employing robust statistical methods based on 
multiple machine-learning algorithms. Second, our findings may not 
be generalizable beyond the participating centers, all of which are 
from a single country. Future studies should include more diverse 
cohorts. Finally, we acknowledge the potential for multicollinearity 
among predictors, which could affect model interpretability. Future 
work should explore methods to detect and address multicollinearity, 
such as variance inflation factors or principal component analysis, to 
further enhance model interpretability.

5 Conclusion

Taken together, our study identified a set of novel predictors and 
developed predictive models for postoperative reintubation in patients 
with AAD. We are confident that the refined risk prediction model 
will serve as a valuable tool for surgeons, aiding in the anticipation of 
reintubation risk and the formulation of preemptive, tailored 
intervention strategies. This advancement is expected to broaden the 
scope and applicability of risk prediction models within clinical 
practice, ultimately contributing to improved patient outcomes.
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