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Sepsis is a life-threatening condition characterized by organ dysfunction

resulting from a dysregulated host response to infection. The lungs are among

the first and most significantly affected organs in sepsis. Pulmonary infections

or systemic inflammatory cascades triggered by various pathogens can lead

to acute and diffuse pulmonary damage, often manifesting as persistent

hypoxemia. The COVID-19 pandemic has highlighted critical knowledge gaps

in SA-ARDS management, necessitating paradigm reevaluation under the

new global definition of ARDS. This paper analyzes the pathomechanisms

and subphenotype characteristics of SA-ARDS, reviews recent advances in

clinical management, such as fluid resuscitation, antimicrobial therapy, immune

modulation, respiratory support, microcirculatory improvement, and traditional

Chinese medicine (TCM) therapies, and addresses controversial issues and areas

requiring further investigation.

KEYWORDS
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1 Introduction

Sepsis is a prevalent complication associated with severe infections, major trauma
(burns), shock, and surgical procedures. As a syndrome characterized by high morbidity,
mortality, healthcare cost, and poor recovery outcomes, sepsis represents a significant
threat to human health (1). Statistics indicate that approximately 48.9 million new cases of
sepsis occur annually, with nearly 11 million sepsis-related deaths worldwide, accounting
for 19.7% of the deaths from various causes (2). The average median hospitalization cost
per patient throughout the course of life-saving treatment can reach $32,421, placing a
considerable burden on healthcare systems (3). Even among survivors discharged from
the hospital, 12.2% are at risk of unplanned rehospitalization within 30 days, 44.2% may
succumb within 1 year, and 16.7% experience long-term physical disability or cognitive
impairment, resulting in a prognosis worse than for other diseases (4–6). In recognition
of this crisis, the World Health Organization (WHO) officially identified “improving the
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prevention, diagnosis and clinical management of sepsis” as one of
the major tasks in 2017, urging governments worldwide to intensify
their efforts to address this urgent issue (7).

The lungs are among first and most significantly affected target
organs in sepsis. Respiratory infections or systemic inflammatory
responses triggered by various pathogens can result in acute,
diffuse, inflammatory lung injury, and acute respiratory failure.
The primary clinical manifestations are refractory hypoxemia
and bilateral diffuse opacities on imaging. It is estimated that
approximately 25–50% of sepsis patients develop acute respiratory
distress syndrome (ARDS). The occurrence of ARDS has been
independently correlated with increased mortality intensive care
unit (ICU), prolonged hospitalization, and reduced ventilator-free
days in sepsis patients (8–10). As the leading cause of ARDS,
sepsis is closely linked to an ICU mortality rate of 35–46% among
ARDS patients. In recent years, pandemics such as influenza and
COVID-19 have contributed to a marked rise in the incidence of
sepsis-associated acute respiratory distress syndrome (SA-ARDS),
further escalating the need for respiratory support and the risk of
mortality (11).

In 2021, the new global definition of ARDS established in
response to the COVID-19 pandemic, broadening the diagnostic
criteria to include partial acute hypoxic respiratory failure (AHRF)
outside the scope of the original Berlin definition (12). This
revision facilitated the more timely recognition and treatment
of SA-ARDS. However, controversy persists among researchers
regarding the most effective therapeutic approaches, leading
to a lack of consensus on a definitive treatment protocol or
standardized clinical procedures (1, 13). This paper aims to
summarize recent advances in the management of SA-ARDS,
focusing on anti-infection, anti-inflammatory, immune regulation,
respiratory support, and other therapies. Additionally, it explores
the heterogeneity in treatment response across different SA-ARDS
subphenotypes, with the goal of informing the development of
personalized, precision-based treatment strategies.

2 Pathomechanisms

The pathomechanism of SA-ARDS is multifactorial, involving
complex interactions between inflammatory injury, immune
dysregulation, coagulation disturbances, and their respective
signaling pathways. Pathogen invasion into the lungs (14, 15) or
a systemic inflammatory response resulting from extrapulmonary
infections (16) triggers antigen recognition, presentation, and
immune activation, thereby initiating inflammatory signaling
pathways (17). Large amounts of inflammatory mediators infiltrate
the lungs, including interleukin (IL)-1β, IL-6, tumor necrosis
factor (TNF)-α, chemokines, granulocyte macrophage colony-
stimulating factor (GM-CSF), and intercellular adhesion molecule
(ICAM)-1, which promote recruitment of immune cells in the
lungs and an uncontrolled inflammatory cascade (18). Activated
neutrophils and inflammatory factors can contribute to the necrosis
of alveolar epithelial and vascular endothelial cells, accompanied
by disruptions in alveolar surfactants. These events lead to
increased permeability of pulmonary epithelium and vascular
endothelium, resulting in leakage of proteins and cellular contents,
thereby causing alveolar and interstitial edema and amplifying

pro-inflammatory signals (9, 19–21). Concurrently, activated
alveolar macrophages and multinucleated leukocytes release a
large number of reactive oxygen species and oxidized molecules.
Oxidative stress results in lipid peroxidation of cell membranes
and the accumulation of oxidized proteins, further exacerbating the
apoptosis of alveolar cells and the disruption of lung epithelium (8,
22, 23).

Damage to and activation of vascular endothelial cells lead
to the exposure of coagulation factors on the endothelial surface.
At the same time, leukocytes (including neutrophils, monocytes,
and eosinophils) release microvesicles and neutrophils extracellular
traps (NETs), that activate procoagulant substances such as
tissue factors and platelet-activating factors, thereby initiating
the exogenous coagulation cascade. This process promotes the
activation, migration, and recruitment of platelets to the injured
site to form microvascular thrombosis. Increased pulmonary
vascular dead space (pulmonary microcirculation thrombosis) is
associated with a poor prognosis in SA-ARDS. The production and
activation of intravascular thrombin further amplify inflammatory
signaling pathways and promote the aggregation of inflammatory
cells through multiple mechanisms. This positive feedback loop
between coagulation and inflammation ultimately culminates in
disseminated intravascular coagulation (DIC) and septic shock
(24–28).

The aforementioned pathological processes can cause a
series of clinical manifestations. Alveola-capillary barrier injury
result in interstitial and alveolar edema, reduced lung volume,
increased lung elasticity, decreased compliance, and elevated
respiratory work (13). Inactivation or decreased production of
alveolar surfactants leads to reduced alveolar surface tension and
alveolar collapse, which is characterized by ventilation obstruction
and a good response to positive end-expiratory pressure (PEEP)
(29). Diffuse alveolar filling leads to a severe imbalance in the
ventilation/blood flow ratio, pulmonary diffusion dysfunction,
bilateral diffuse shadowing on imaging, and hypoxemia. Pulmonary
vascular endothelial injury and microvascular thrombosis
contribute to increased dead space ventilation and pulmonary
hypertension, with clinical manifestations of high minute
ventilation, hypercapnia, and right heart failure. The systemic
inflammatory response can induce multiple organ dysfunction,
potentially progressing to shock and death (9). Based on the
infection source, inflammatory response, and morphological
features, SA-ARDS has been classified into various subphenotypes.
There are differences between SA-ARDS caused by pulmonary
infections and that resulting from extrapulmonary infections, as
shown in Figure 1 (30–34). However, no obvious distinctions were
noted regarding the duration of mechanical ventilation (MV),
length of hospitalization, or 28-day mortality rate (35, 36).

3 Fluid management

Fluid management in SA-ARDS involves two opposing risks:
circulatory failure and fluid overload. Aggressive bundle therapy
is the cornerstone of effective sepsis treatment, with intravenous
infusion of crystalloids ≥ 30 mL/kg within the first 3 h is
often recommended (1, 37). However, studies have shown that
rehydration exceeding 5 L within 24 h of ICU admission may
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FIGURE 1

Extrapulmonary sepsis vs. pulmonary sepsis. VEC, vascular endothelial cell; AEC, alveolar epithelial cell.

increase mortality risk (38). This is mainly due to extensive
damage to the patients’ capillary barriers and the increase in
total circulating blood volume, leading to enhanced tissue leakage,
elevated pulmonary hydrostatic pressure, and the development
of pulmonary edema (39), which is independently correlated
with adverse outcomes (such as prolonged duration of MV,
extended ICU stay, and higher mortality) (40, 41). Ingelse et al.
explored a restrictive fluid strategy in the early stage of ARDS
but found it insufficient to limit pulmonary edema, while also
leading to increased use of vasoactive drugs without any direct
benefit to cardiopulmonary function (42). The FACTT study
revealed an interaction between SA-ARDS subphenotypes and fluid
management strategies. The hyperinflammatory subphenotype,
characterized by significantly elevated serum levels of IL-8, tumor
necrosis factor receptor-1 (TNFr1), etc., and decreased bicarbonate
levels, required more vasopressor support, and exhibited a lower
90-day mortality rate when randomly assigned to a fluid-
conservative strategy compared to the fluid-liberal group (40% vs.
50%) (43).

In the fluid management debate, the concepts of adequate initial
fluid resuscitation (AIFR) and conservative late fluid management
(CLFM) have been introduced. AIFR was defined as administering
an initial fluid bolus of ≥ 20 mL/kg before and achieving a central
venous pressure of≥ 8 mmHg within 6 h after the onset of therapy
with vasopressors. CLFM referred to maintaining even-to-negative
fluid balance, as measured over at least 2 consecutive days during
the first 7 days after septic shock onset. It was found that the in-
hospital mortality was significantly lower in patients receiving both

AIFR and CLFM compared to those with AIFR only, CLFM only,
or neither (18.3% vs. 41.9% vs. 56.6% vs. 77.1%, p < 0.01). This
suggests that a staged fluid management strategy can effectively
shorten the duration of ventilator use and ICU stay in SA-ARDS
patients. The combined approach of early fluid resuscitation and
late conservative fluid rehydration may represent a more optimal
strategy for SA-ARDS (44, 45). According to the four phases of
fluid management: resuscitation, optimization, stabilization, and
evacuation (46), the early resuscitation phase based on the principle
of 1 h bundle therapy, aiming to fully improve tissue perfusion
and avoid ischemia and necrosis of the important organs. The fluid
resuscitation volume is typically controlled to 2.5–5.0 L (47). In
the later optimization phases, hemodynamic monitoring is used
to assess each patient’s volume status and fluid reactivity, allowing
for dynamic and precise adjustments in the type and volume of
fluids to prevent overload, which could exacerbate heart failure and
pulmonary edema.

4 Timing of antimicrobial therapy

Infection during SA-ARDS comes from a wide range of
sources, with Gram-positive or Gram-negative bacterial infections
being the most common, followed by viral or fungal infections.
However, the incidence of viral sepsis has surged dramatically
during viral pandemics, such as those caused by SARS-CoV-2,
Alphainfluenzavirus, Betainfluenzavirus, Respiratory syncytial
viruses, and Noroviruses (48). Viral infections tend to overlap
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with bacterial infections due to physical barrier disruption, host
immunosuppression, invasive manipulation, and virus-bacteria
interactions (49). Mixed viral-bacterial infections can account
for 22.5–65.0% of sepsis cases, and are strongly associated with
pathogen resistance and increased mortality risk (50–53). The
rate of infections with these pathogens increases during acute
viral infection, as reported during the COVID-19 pandemic
(54), community-acquired infections are most common with
Staphylococcus aureus, Streptococcus pneumoniae, and Klebsiella
pneumoniae (50, 51). Hospital secondary infections more
frequently involve Pseudomonas aeruginosa, Klebsiella genus,
Enterobacteriaceae genus, methicillin-resistant Staphylococcus
aureus, and Enterococcus genus (51, 52, 54). Given the critical
nature of SA-ARDS, the initiation of broad-spectrum antibiotics
is recommended at the earliest possible stage, even when clear
pathogenetic evidence of bacterial infection is absent, especially
in patients with prolonged prehospital delays, coexisting immune
disorders, invasive interventions, and ongoing corticosteroid
therapy. Serum procalcitonin (PCT) and C-reactive protein (CRP)
may aid in bacterial diagnosis, with PCT demonstrating negative
predictive values ranging from approximately 91.1–94.0%. When
PCT levels exceed 0.05 µg/L, it is difficult to exclude the possibility
of mixed infection (55, 56).

Although both delayed recognition and delayed administration
of antibiotics significantly increase in-hospital mortality (57),
the optimal duration of administration remains uncertain.
A systematic review of 35 clinical studies found that two-thirds
of the studies reported an association between the duration of
antibiotic use and mortality. However, the time-to-administration
measures varied widely across studies, with the first dose ranging
from 1 to 6 h. Some studies suggested no significant survival
benefit for sepsis patients who received antibiotics early. Since
most of the studies analyzed suspected sepsis and septic shock
in a mixed cohort, researchers have proposed that the risk trade-
off for delaying treatment primarily involves the progression to
shock (58). Subgroup stratification based on the timing of antibiotic
initiation in SA-ARDS patients is necessary. After adjusting for
factors such as disease severity and maximum time-to-antibiotics,
it was found that each 1-h delay in treatment was significantly
associated with an increase in septic shock mortality. However,
only delays greater than 6 h were associated with higher mortality
in patients with non-shock sepsis (59). In a real-world study
involving 166,559 patients, individuals were grouped based on
probable/possible sepsis and shock/no shock using a 2∗2 table.
The results showed that in the probable sepsis group, the median
time to antibiotic administration was 2.7 h in the shock subgroup
and 3.2 h in the non-shock subgroup. In the possible group, the
median time was 6.9 h in the shock subgroup and 5.5 h in the non-
shock subgroup. Hospitalization mortality was significantly lower
in patients without shock compared to those with shock (2–3%
vs. 12–17%) (60). Therefore, strict time-orientation of 1 or 3 h in
suspected sepsis patients without shock may lead to misdiagnosis
and unnecessary antibiotic use. Refining the classification of SA-
ARDS may provide more flexibility in timing the first dose
of antibiotics in suspected sepsis patients, allowing for time to
gather evidence.

Antibiotic use should be promptly adjusted and adequately
evaluated for de-escalation once pathogen identification and drug
sensitivity results are available. Prolonged antibiotic treatment

may increase the risk of drug resistance, Clostridium difficile
infection, antibiotic-related toxicity, and healthcare costs. In a
study by Chastre et al., patients were treated with antibiotics for
either 8 or 15 days. They found that, aside from patients with
non-fermentative Gram-negative bacterial infections (including
Pseudomonas aeruginosa), there was no significant difference in
recurrence rate of pulmonary infection, MV duration, organ failure
days, ICU stays, or mortality between the 8-day treatment and the
15-day treatment group. Furthermore, the occurrence of multi-
drug resistant organisms (MDRO) was lower in the 8-day group
(61). These findings led to the development of the "shorter is better"
approach to anti-infective therapy. However, Busch et al. noted
that most current studies on antibiotic duration are non-inferiority
tests, and nearly 80% of sepsis patients may have hidden lesions
due to immunosuppression, making it challenging to fully apply
this approach in the complex and dynamic management of sepsis
patients (62).

Research have found that serum PCT levels correlated
positively with infection severity, and appropriate antibiotic
treatment can reduce PCT levels (63). Guiding the initiation,
continuation, discontinuation, and replacement of antibiotics
based on PCT levels has been shown to improve survival
and shorten treatment duration (64). In the PROGRESS trial,
Discontinuation was defined as a reduction in PCT levels by≥ 80%
from baseline or a PCT concentration ≤ 0.5 µg/L by day 5.
The results demonstrated that, compared to the standard care,
the PCT-guided discontinuation group not only reduced the
median duration of antibiotic treatment from 10 to 5 days, but
also decreased 28-day mortality and hospitalization costs. More
importantly, it significantly reduced the incidence of infective
adverse events at 180 days (new case of MDRO infection, new case
of Clostridium difficile infection, and death associated with MDROs
or Clostridium difficile baseline infections), and positively affected
both short- and long-term outcomes in sepsis patients (65).

5 Anti-inflammatory

5.1 Corticosteroids

The inflammatory response is a key link in the onset and
progression of SA-ARDS, and anti-inflammatory drugs play
a moderately important role in improving lung physiology
and mitigating poor prognosis. Among these, corticosteroids
such as methylprednisolone, hydrocortisone, dexamethasone, and
fludrocortisone are commonly used due to their extensive anti-
inflammatory and immunomodulatory effects (66). Compared to
conventional treatments, patients combined with dexamethasone
treatment exhibit significantly shorter duration of MV, improved
sequential organ failure assessment (SOFA) scores, and substantial
reductions in the levels of inflammatory factors such as IL-6 in
the blood and lungs (67, 68). However, a synthesis of several
clinical trials has shown that while corticosteroids are important
for reducing organ dysfunction and reversing shock in patients
with septic shock requiring vasoactive agents, there is no definitive
recommendation for their use in non-shock sepsis or SA-ARDS (1,
69). In a double-blind randomized controlled trial, it was found
that patients received 50 mg of hydrocortisone every 6 h showed
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improvements in lung physiology compared with the placebo
group, but there were no significant differences in acute physiology
and chronic health evaluation (APACHE) II scores or 28-day
mortality. It suggested that significant physiological improvement
with corticosteroids in SA-ARDS does not necessarily translate into
an overall survival benefit (70). In contrast, a study on sepsis due to
community-acquired pneumonia (CAP) in which 648 patients had
comorbid ARDS, showed that hydrocortisone plus fludrocortisone
treatment significantly reduced mortality compared with placebo
(71). Despite the lack of support from clinical studies, some
researchers have suggested that patients with SA-ARDS resulting
from respiratory system infections may derive more benefit from
corticosteroid treatment (72). Multiple steroid administration
strategies should be tailored to the clinical context, and if necessary,
the heterogeneity of corticosteroids effects in ARDS, depending
on phenotypes and genotypes, should be explored by integrating
precision medicine approaches (66, 73).

5.2 Statins

Statins, as inhibitors of 3-hydroxy-3-methylglutaryl-CoA
reductase (HMGCR), can exert beneficial effects in severe
infections through mechanisms such as anti-inflammatory,
antioxidant, and anticoagulant actions. However, low cholesterol
levels may impair immunity function, alter hormone levels, and
reduce membrane receptor sensitivity, potentially increasing
mortality in critical diseases. This has led to controversy
surrounding the clinical application of statins in sepsis and
ARDS (74–76). Although previous studies have concluded that
statin use does not prevent onset of new organ failure or reduce
30-day all-cause mortality in SA-ARDS patients (77, 78), the effects
of different statins vary. Specifically, simvastatin and atorvastatin
have been shown to significantly improve the 30-day survival rate
in sepsis patients, while rosuvastatin did not demonstrate a similar
benefit (79). Recent secondary analyses of randomized controlled
clinical trials (RCT), including the HARP-2 trial for simvastatin and
the SAILS trial for rosuvastatin, found that the mortality of ARDS
patients with high inflammatory subphenotypes was significantly
improved and showed survival benefits at 28 days after simvastatin
treatment. In contrast, no benefits were observed with rosuvastatin,
especially in patients with low inflammatory subphenotypes. This
differential response may be attributed to simvastatin’s ability to
reduce the secretion and activation of inflammasomes, such as
IL-18 and IL-1β (80–82). Statins like rosuvastatin are hydrophilic,
while simvastatin and atorvastatin are lipophilic. Whether statins
improve the outcome of sepsis and ARDS may depend on their
hydrophilic or lipophilic properties. In support of this, Wang
et al. confirmed that lipophilic statins, such as simvastatin and
mevastatin, can inhibit the activation of inflammasome (83).
Genome-wide association studies (GWAS) also revealed that the
expression of HMGCR is closely related to elevated circulating
inflammatory factors, such as IL-18 and C-C motif chemokine
ligand 2 (CCL2). Statins may mitigate the excessive inflammatory
response in SA-ARDS by targeting HMGCR (84). Therefore, future
clinical studies evaluating the safety and efficacy of statin therapy
for SA-ARDS should consider the inflammatory subphenotype and
pharmacochemical properties of the drugs.

6 Immune regulation

In the acute phase of SA-ARDS, systemic inflammatory
response syndrome (SIRS) driven by a cytokine storm is the
predominant manifestation. Overactivated immune cells and
pro-inflammatory factors not only fail to effectively eradicate
pathogens, but also contribute to severe cell death, tissue damage
and organ dysfunction (85). Therefore, early identification and
timely, targeted intervention to block or eliminate the excessive
inflammatory response are crucial. Inhibiting pro-inflammatory
cytokine activity is a fundamental strategy to prevent uncontrolled
inflammation. For instance, in SA-ARDS patients with elevated
levels of CRP and IL-6, the application of tocilizumab (a humanized
monoclonal antibody targeting the IL-6 receptor) has been shown
to effectively reduce the probability of intubation and decrease
mortality risk in ARDS patients (86, 87). Complement activation
was reported to play a key role in driving the inflammatory response
in patients suffering from ARDS associated with acute SARS-CoV-
2 infection. Targeting complement dysregulation has proven to be
an effective strategy for mitigating these effects (88, 89). Clinical
trials evaluating complement inhibitors such as Narsoplimab
and Eculizumab have demonstrated significant reductions in
inflammatory markers and improved clinical outcomes in these
patients (90, 91).

Due to cytokine consumption and inflammation damage, most
patients with SA-ARDS rapidly progress to an immunosuppressed
state, often leading to secondary infections that contribute to 70%
approximately of sepsis-related death. Consequently, the research
focus has shifted in the current clinical paradigm toward “immune
stimulation therapy” aimed at countering immunosuppression
(85, 92). Direct supplementation of inflammatory cytokines or
cytokines with immune-stimulatory properties represents a potent
strategy to enhance host immunity. For example, studies have
shown that administration of CYT107 (a glycosylated recombinant
human IL-7) via intramuscular injection significantly increases
the absolute lymphocyte count, as well as circulating CD4 + and
CD8 + T cells, by 3–4 times, with these effects sustained for
several weeks. This intervention effectively reverses sepsis-induced
depletion of immune effector cells and reduces the need of organ
support (93, 94). Additionally, interferon (IFN)-β has been shown
to promote the resolution of pulmonary inflammation and reduce
pulmonary vascular leakage by blocking TNF-α/IL-10-mediated
alveolar macrophage injury and enhancing alveolar neutrophil
recruitment (95–97).

Immune checkpoint blockers (ICBs) represent a promising
strategy for promoting the restoration of immune homeostasis.
By blocking the negative co-stimulation pathways mediated
by classical immune checkpoint receptors expressed on
T-lymphocytes [including Programmed death-1 (PD1), cytotoxic
T lymphocyte-associated protein 4 (CTLA-4), B and T lymphocyte
attenuator (BTLA)], ICBs can reverse lymphocyte apoptosis and
monocyte dysfunction, thus improving the risk of secondary
infections and enhancing survival (98–101). Treatment with
BMS-936559 (anti-PD-L1 antibody) and nivolumab (anti-PD-1
antibody) has been shown to significantly increase absolute
lymphocyte counts and monocyte human leukocyte antigen
(HLA)-DR over time, restoring immune function without
triggering a cytokine storm. These findings provide strong evidence
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supporting the clinical safety, tolerability, and pharmacokinetics
of ICBs (102–104). Additionally, mathematical models have
suggested that when antibiotics alone are insufficient and the
initial pathogen load is not excessively high, early combination
therapy with 6 mg/kg of nivolumab with meropenem may help
clear pathogens, reverse immunosuppression, and improve sepsis
prognosis (105, 106).

7 Respiratory support

Non-invasive respiratory support including high-flow nasal
cannula (HFNC) and non-invasive ventilation (NIV), is commonly
employed as the first-line treatment in the management of SA-
ARDS. These interventions help improve oxygenation, maintain
physiologic airway protection, prevent diaphragmatic dysfunction,
and reduce the risk of sedation and analgesia, airway opening, and
respiratory muscle strain (1, 107).

When compared to various modes of respiratory support before
intubation, the continuous positive airway pressure (CPAP)/NIV
group demonstrated a significantly lower requirement for tracheal
intubation and a reduced 30-day mortality rate compared to
the conventional oxygen therapy (COT) group (108). While the
likelihood of requiring tracheal intubation in the HFNC group
was significantly lower than in the COT group, no significant
difference was observed in 28-day mortality between the two
groups. This indicated that non-invasive respiratory support offers
distinct advantages over COT in reducing the risk of intubation,
while further research is needed to address its impact on mortality
(109–111). Although HFNC is currently the most widely used
non-invasive ventilation modality (112), it is indistinguishable
from NIV in terms of ventilation duration, escalation rate of
respiratory support, or in-hospital mortality (113–115). This may
be attributed to the interaction between oxygenation index (partial
pressure arterial oxygen/faction of inspiration O2, PaO2/FiO2) and
tidal volume. Due to PEEP and additional pressure-supporting
effect, SA-ARDS patients with lower PaO2/FiO2 ratios are more
likely to suffer from ventilate-induced lung injury (VILI) during
NIV treatment, primarily related to high tidal volumes driven by
respiratory effort (116). Therefore, patients with lower PaO2/FiO2
ratios may benefit more from HFNC in clinical practice, and HFNC
is better tolerated and more comfortable. NIV is currently preferred
in SA-ARDS patients with mixed respiratory failure or hypercapnia
(117, 118).

When the condition is severe, non-invasive respiratory support
may struggle to balance the benefits of avoiding sedation and
intubation with the risks of patient self-inflicted lung injury
(PSILI) and delayed intubation. In such cases, invasive mechanical
ventilation (IMV) should be promptly considered. The respiratory
oxygenation index [ROX, calculated as peripheral capillary
oxygen saturation (SpO2)/FiO2/respiratory rate (RR)] and mROX
(calculated as PaO2/FiO2/RR) can be used to predict the outcomes
of HFNC. When the ROX is below 5.33 (2–6 h after HFNO
initiation), 3.69 (6–12 h), and 6.07 (12–24 h), it is necessary to
actively prepare for IMV (119, 120). In addition, who transition
from CPAP to IMV exhibit higher respiratory rates, minute
ventilation, tidal pleural pressures, mechanical power ratios, and
lower alveolar-to-inhaled partial pressure (121). Numerous studies

have demonstrated that SOFA score, simplified acute Physiological
score II (SAPS II), SpO2, respiratory effort signals, and imaging
manifestations of lung injury may more accurately predict the
timing of IMV conversion compared to the ROX index. This may
be related to silent hypoxia and oxygen flow settings (122, 123).
Therefore, further research is needed to identify indicators for
the success of non-invasive respiratory support. Currently, clinical
monitoring remains essential, with comprehensive judgment based
on a combination of respiratory mechanical indicators and overall
systemic status.

8 Lung protective ventilation
strategy

In SA-ARDS patients, the lung tissues typically exhibit normal
areas, collapse regions, consolidation, inflammatory infiltration,
and other pathological changes, with only a small part of the
lung maintaining respiratory function. During positive pressure
ventilation, collapsed alveoli may undergo repeated cycles of
opening and closing, normal alveoli may become overexpanded,
infiltrated lung regions may experience impaired ventilation, and
consolidated areas may fail to recruit. VILI results from excessive
alveolar deformation and cyclic opening and collapse. The lung
protective ventilation strategy aims to minimize the risk of VILI
while optimizing lung inflation by promoting more uniform
ventilation across the lung (124).

Low tidal volume (4–8 mL/kg of predicted body weight)
and lower inspiratory pressures (plateau pressure <30 cmH2O)
are generally accepted in clinical practice to prevent excessive
lung stretch and reduce inflammatory mediators release (1, 13,
125). However, there is ongoing debate regarding the optimal
level of PEEP. Adequate PEEP can help open collapsed lung
tissue to ensure oxygenation, but over-inflation may lead to lung
damage and circulatory compromise. Data from the ALVEOLI,
LOVS, and EXPRESS trials indicate no significant difference in
mortality between the high-PEEP group (PEEP > 15 cmH2O
or the maximum PEEP during lung recruitment) and the low-
PEEP group, with similar incidences of pneumothorax and rates
of vasopressors use. Nonetheless, high PEEP may improve lung
function, shorten the duration of MV, prevent life-threatening
hypoxemia, and reduce the need for rescue treatment (126–
129). Subgroup analyses revealed heterogeneity in the therapeutic
response of different ARDS subphenotypes to PEEP strategies. The
hypoinflammatory subphenotype is more susceptible to alveolar
injury at higher PEEP levels, which can increase mortality risk,
whereas the hyperinflammatory subphenotype appears to derive
greater benefit from higher PEEP (130, 131). Guidelines also
emphasize the uncertainty surrounding the role of PEEP in SA-
ARDS management (13). As a result, the optimal PEEP is often
individualized, and needs to take full account of lung expansibility
(the proportion of lung tissue restored by ventilation when airway
pressure increases). In patients with low lung expansibility, high
PEEP may only increase the inflation of the already open lung
region, thus increasing the pressure and strain on the lungs,
potentially leading to VILI, rather doing more harm than good
(132). Computed tomography (CT) have shown that patients with
low P/F ratios, multiple atelectatic areas, and poor lung compliance
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exhibit higher lung recruitability. In these cases, increasing PEEP
from 5 to 15 cmH2O can significantly improve lung ventilation
and PaO2 (133). Esophageal pressure monitoring, CT image, lung
and diaphragm ultrasound, and electrical impedance tomography
are commonly used to assess lung reperfusion and optimize PEEP
settings in patients with SA-ARDS (134–138).

Prone position ventilation (PPV), which facilitates more even
expansion of collapsed dorsal lung tissue, has gained attention
during the COVID-19 pandemic, and promoted the widespread use
of awake prone position (139). Early application of PPV has been
shown to significantly enhance pulmonary recruitment in ARDS
patients, reduce alveolar instability and hyperinflation observed
under high PEEP, improve the overall ventilation/perfusion ratio,
and decrease 28- and 90-day mortality (140, 141). However,
when assessed using PPV responsiveness criteria (defined as a
P/F ratio increase ≥ 20% after PPV indicating a good response),
some investigators have found that not all ARDS patients
can be adapted to PPV, with an overall non-response rate of
approximately 32.6%. The effectiveness of PPV is independently
correlated with the severity of lung injury, cardiac insufficiency, and
hemoglobin concentration (142). Additionally, different lung lesion
morphologies show variable responses to PPV. In SA-ARDS with

predominantly subpulmonary solid lesions (focal subphenotype),
which is characterized by significantly reduced dorsal ventilation
and ventral alveolar hyperinflation, PPV can redistribute gravity-
dependent zones, alleviate localized compression, reopen collapsed
alveoli, and improve pulmonary ventilation and oxygenation.
In contrast, patients with diffuse ventilation loss (non-focal
subphenotype), where PPV action is limited due to extensive and
uneven alveolar injury, tend to respond better to PEEP, which
promotes alveolar reopening through more uniform pressure
transfer (9).

9 Anti-microvascular thrombosis

In SA-ARDS, a “vicious cycle” is formed between coagulation
and inflammation. Coagulation factor activation and platelet
aggregation not only lead to fibrin deposition and microvascular
thrombosis, but also trigger a pro-inflammatory response (27). As
a result, platelet activation, migration and accumulation in the
alveoli are the main features of SA-ARDS (28). Heparin, the most
commonly used drug for managing coagulation disorders in the
ICU, possesses anticoagulant, anti-inflammatory, anti-complement

TABLE 1 TCM clinical trials.

Treatment Prescription Patient Instructions Outcomes

Chinese Medicine
Monotherapy

Dahuang
(Rhubarb)

Sepsis (158) � UT (200,000U, iv, qd)
� Rhubarb granules (12 g, po/ig, qd)
� For 5 days

After treatment, PCT ↓↓.

ARDS (159) � Rhubarb leachate (10 g, ig, tid)
� For 7 days

On the 5th and 7th, EVLW ↓↓, PVPI
↓↓, P/F ↑↑.

Chinese Medicine
Compound

Xuanbai Chengqi
decoction
(XCD)

ARDS (160) � XCD (400 mL, pr, q12h)
� For 3∼ 5 days

At 48 and 72 h, Cdyn↑↑, Cst↑↑; at
72 h, PEEP ↓↓; duration of parenteral
nutrition ↓↓; complications ↓↓;
28-day mortality ↓↓.

Chinese Medicine
Injection

XueBiJing injection
(XBJ)

SCAP (161) � XBJ (100 mL, iv, q12h)
� For 5 to 7 days

On the 8th, PSI improvement rate ↑↑;
28-day mortality ↓↓; duration of MV
↓↓; ICU stay ↓↓.

Sepsis (162) � XBJ (100 mL, iv, q12h)
� For 5 days

28-day mortality ↓↓; ICU mortality
↓↓; in-hospital mortality ↓↓; ICU
stay ↓↓; on the 28th, duration of MV
↓↓; on the 6th, SOFA ↓↓.

Shenfu injection
(SFI)

Septic shock with MV
(163)

� SFI (50 mL, iv, q12h)
� Until discharged or died

28-day mortality ↓↓; duration of IMV
↓↓; duration of vasopressor therapy
↓↓, ICU stay ↓↓; days without organ
failure ↓↓; ICU cost ↓↓; hospital cost
↓↓.

Tanreqing injection
(TRQ)

ICU patients with MV
(164)

� TRQ (iv, at least once)
� During ICU.

Duration of IMV ↓↓; ICU mortality
↓↓.

Acupuncture Zusanli (ST36) and
Guanyuan (RN4)

Sepsis (165) � ST36 and RN4 (EA, 30 min/time, bid)
� For 7 days.

On the 3rd and 7th, APACHE II ↓↓;
on the 7th, CD3 + ↑↑, CD4 + ↑↑,
CD8 + ↓↓, CD4 + /CD8 + ↑↑,
HLA-DR ↑↑

Qigong The sitting Baduanjin
(SBE)

Sepsis
with NIV (166)

� SBE (15∼20 min/time, bid)
� Until discharged

On the day of transfer out of ICU,
muscle strength ↑↑, ADL ↑↑;
duration of NIV ↓↓; length of total
stay ↓↓; hospital cost ↓↓.

↓↓, significantly reduce; ↑↑, significantly increase; UT, Ulinastatin; SCAP, Critical ill patients with severe community-acquired pneumonia; EVLW, Extravascular lung water; PVPI, pulmonary
vascular permeability index; Cdyn, Dynamic Lung Compliance; Cst, Static Lung Compliance; PSI, Pneumonia severity index; EA, Electroacupuncture; HLA-DR, human leukocyte antigen-DR;
ADL, activities of daily living.
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activities, and protease-modulating properties. Early prophylactic
administration of heparin (subcutaneous injection within 48 h
of ICU admission) improves Murray lung injury score, reduces
the need for tracheotomy, and increases survival in patients with
SA-ARDS. Its mechanism of action is related to the inhibition
of inflammation-induced microvascular occlusion and hyaline
membrane formation in the alveoli (143, 144).

Aspirin is thought to modulate the progression of sepsis and
ARDS by inhibiting cyclooxygenase and nuclear factor kappa-
B (NF-κB), while promoting the production of nitric oxide and
lipoxins (28). In a lipopolysaccharide (LPS)-induced human model
of SA-ARDS, any dose of aspirin was found to suppress pulmonary
neutrophilic inflammation (145). Although several observational
studies have indicated that pre-hospital, in-hospital, or long-
term aspirin administration reduces mortality in patients with
sepsis or ARDS, the results have shown considerable heterogeneity
(146, 147). However, recent large-scale prospective randomized
controlled trials (e.g., ANTISEPSIS trial and LIPS-A trial) failed to
provide evidence the use of early aspirin prophylaxis in improving
sepsis survival, ARDS progression, or reducing the duration of
MV (148, 149). The potential of aspirin as a primary prevention
strategy for mitigating the risk of sepsis or ARDS needs further
investigation. In the LIPS-A trial, Redaelli et al. conducted a
latent class analysis and hypothesized that hyperinflammatory and
non-hyperinflammatory subphenotypes may precede the onset of
ARDS and remain recognizable over time. Patients in the high-
inflammatory subgroup were found to have a higher likelihood of
developing ARDS, a greater need for respiratory support, longer
hospitalization, and an increased risk of poor prognosis (150). This
highlights the importance of individualized antiplatelet therapy
based on subphenotype in SA-ARDS. Myelosuppression and
coagulation depletion have made thrombocytopenia a common
complication of SA-ARDS (151), and future research will how to
rationally apply anticoagulants and antiplatelet agents according to
platelet dynamics.

10 TCM treatment

The growing emphasis on subphenotypes and personalized
treatment in sepsis and ARDS coincides with the TCM theory
of “treatment based on syndrome differentiation.” TCM has
been widely utilized in the clinical diagnosis and treatment
of SA-ARDS through multi-pathway, multi-link and multi-
target regulation (152–157), as illustrated in Table 1 (158–
166). However, it is regrettable that published clinical studies
have not effectively characterized the findings of four diagnostic
method nor demonstrated the TCM syndrome patterns with SA-
ARDS. Moreover, these studies have not succeeded in correlating
physicochemical information with TCM subphenotypes or linking
them to specific TCM treatments.

11 Conclusion and future directions

The treatment of SA-ARDS traditionally focuses on
resuscitation, anti-infection, and organ support. However, the
heterogeneity in response to identical treatments has highlighted

the critical importance of subphenotype identification and
personalized treatment in the management of SA-ARDS. For
example, SA-ARDS can be classified based on their infection
origin, such as pulmonary sepsis and extrapulmonary sepsis;
according to the causative pathogen, including viral infections,
MDRO infections, and mixed viral-bacterial infections; or by the
route of infection, there are community-acquired versus hospital-
acquired. Immune response states define the hyperinflammatory
subphenotype and hypoinflammatory subphenotype. Imaging
patterns distinguish the focal lesion subgroup, which typically
presents with local consolidation, from the diffuse lesion subgroup,
which mainly shows ground-glass opacity. The presence of
shock can also help gauge the severity of the disease. There
are also subgroups that specifically target biomarkers. These
subphenotypes can overlap with each other. Real-time adjustments
to therapeutic regimens can be made by dynamically monitoring
clinical phenotypes and host-microecological interactions.
For example, the hyperinflammatory subphenotype, which is
characterized by elevated IL-6 and other inflammatory markers,
may benefit more from fluid-restrictive strategies, glucocorticoid
and statin anti-inflammatory therapies, high PEEP reperfusion, and
tolizumab-targeted therapy. Rapidly matching subphenotypes with
more effective treatments enhances the precision and efficiency of
the bundle campaign, so as to improve the prognosis of SA-ARDS.

The clinical management of SA-ARDS should progressively
move from traditional organ support to precision medicine
based on biomarkers and pathomechanisms. In recent years,
the combination of multi-omics technologies and artificial
intelligence has facilitated the construction of predictive models
for identifying high-risk patients, optimizing the treatment plan,
and allocating resources. The establishment of an integrated
model of “typing-warning-intervention” for SA-ARDS will
help to realize the paradigm shift from population-based
to individualized.

12 Search strategy and selection
criteria

We conducted a comprehensive search of the PubMed database
from its inception until Oct 30, 2024, using the following search
terms: “acute respiratory distress syndrome,” “ARDS,” “acute lung
injury,” “ALI,” “sepsis,” “septic-associated acute respiratory distress
syndrome,” “sepsis-associated acute lung injury,” “COVID-19,”
“SARS-CoV-2.” In addition, we consulted relevant reviews, WHO
news reports, and select historically significant articles. Relevant
studies were manually screened by reviewing the abstracts and,
when necessary, accessing the full articles for further evaluation.
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