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Background: Chronic kidney disease (CKD) due to type 2 diabetes mellitus 
(T2DM) has emerged as a significant global health burden, with rising incidence 
and prevalence rates observed over the past decades.

Methods: We utilized the latest data from the Global Burden of Disease Study 
(GBD) 2021. Firstly, we reported the number of incidence, prevalence, deaths, 
and Disability-Adjusted Life Years (DALYs) attributed to CKD due to T2DM, 
accompanied by their respective Age-Standardized Rates (ASRs), for the year 
2021. This analysis encompassed a global perspective and was further stratified 
by various subtypes. Moreover, we examined trends globally and within specified 
sub-types to investigate the temporal dynamics of the ASRs. We estimated the 
percentage change in ASRs, providing a quantitative measure of the rate of 
change in the burden over the study period. Moreover, we utilized the Bayesian 
age-period-cohort (BAPC) model to forecast the future burden.

Results: Globally, the ASRs of CKD due to T2DM all have witnessed a notable 
rise except for age-standardized prevalence rate (ASPR). The trends observed 
in both sexes and nearly all age groups were found to be congruent with those 
of the overall population. The increase in disease burden being greatest in the 
middle and lower SDI regions. The predicted results showed that the ASRs 
would still increase from 2022 to 2036.

Conclusion: This study highlights the critical importance of addressing the 
growing burden of T2DM-related CKD on global health. Effective prevention 
and management strategies, including improvements in diabetes care, renal 
health promotion, and access to healthcare services, are urgently needed to 
mitigate the future impact of T2DM-related CKD.
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1 Introduction

Chronic kidney disease (CKD) due to type 2 diabetes mellitus 
(T2DM) represents a significant global health burden, affecting 
millions of individuals worldwide and contributing substantially to 
morbidity and mortality (1). The escalating prevalence of T2DM, 
coupled with its complex interplay with various risk factors, has led to 
a surge in CKD cases attributed to this metabolic disorder (2, 3). 
Understanding the global, regional, and national patterns of this 
burden, as well as projecting future trends, is crucial for the 
formulation of effective public health strategies and resource allocation.

Over the past few decades, the global landscape of T2DM and its 
complications has undergone substantial transformations. The rapid 
urbanization, sedentary lifestyles, and unhealthy dietary habits have 
contributed to the dramatic rise in T2DM incidence (4, 5). 
Consequently, the number of individuals developing CKD as a 
complication of T2DM has also soared. CKD due to T2DM is 
characterized by progressive renal function decline, often leading to 
end-stage renal disease (ESRD) requiring renal replacement therapy, 
such as dialysis or kidney transplantation (6, 7). This transition not 
only impacts individual quality of life but also places considerable 
economic strain on healthcare systems globally (8, 9).

Previous studies have documented the regional variations in the 
burden of CKD due to T2DM. For instance, high-income countries with 
aging populations and a longer history of diabetes management have 
observed a shift towards more complex diabetes-related complications, 
including CKD (10). Conversely, middle-and low-income countries are 
experiencing a double burden, with both an increasing incidence of 
T2DM and a high prevalence of communicable diseases (11, 12). These 
disparities highlight the need for tailored interventions that address the 
unique challenges faced by different regions.

The GBD Study has been a pivotal platform for quantifying the 
health burden attributable to various diseases and injuries worldwide. 
Providing an extensive analysis of global health loss. It offers up-to-date 
data on the distribution and burden of diseases and injuries, taking into 
account temporal changes, age, sex, geographical location, and 
sociodemographic factors (13). Previous iterations of the GBD Study 
have provided valuable insights into the burden of CKD in general, but 
there is a scarcity of comprehensive data specifically focusing on CKD 
due to T2DM (14, 15). This gap in knowledge necessitates a dedicated 
analysis to dissect the intricate relationship between T2DM and CKD, 
allowing for a more nuanced understanding of the disease dynamics.

In this study, we leverage the robust methodology of the GBD 
Study to estimate the incidence, prevalence, mortality, and disability-
adjusted life years (DALYs) lost due to CKD caused by T2DM across 
different geographical regions and countries. By employing a 
systematic approach to data collection, analysis, and projection, 
we aim to fill the existing knowledge gap and inform policymakers 
and healthcare providers about the evolving burden of this condition.

Our analysis builds upon previous literature by incorporating the 
latest available data, applying advanced statistical models for 
estimation and projection, and adopting a consistent framework for 
comparing findings across different time points and geographical 
areas. This approach ensures that our results are both comprehensive 
and comparable, allowing for accurate benchmarking and the 
identification of trends over time (16–18).

Furthermore, we extend our analysis beyond the current burden 
to provide projections until 2036. These projections, based on 

demographic and epidemiological trends, are essential for planning 
and preparing healthcare systems to meet the anticipated demand for 
CKD care due to T2DM (19, 20). By anticipating future needs, we can 
facilitate the timely allocation of resources and the development of 
targeted interventions that aim to reduce the incidence and 
progression of CKD in T2DM patients.

2 Materials and methods

2.1 Study design and data sources

The Global Burden of Disease (GBD) 20211 study provides 
comprehensive global health data, covering 371 diseases and injuries 
across 204 countries and territories, with age-sex-location-year 
specific estimates for 88 risk factors at global, regional, and national 
levels from 1990 through 2021 (13, 15). This systematic analysis was 
conducted as part of the GBD Study 2021, aiming to estimate the 
global, regional, and national burden of CKD due to T2DM from 1990 
to 2021, with projections to 2036. Data sources of GBD database 
included published literature, vital registration systems, ESRD 
registries, and household surveys (21, 22). The GBD study framework 
was utilized to ensure the standardization and comparability of 
estimates across different populations and time points (23, 24).

2.2 Definition and classification of CKD

In GBD 2021, CKD is defined as a permanent loss of kidney 
function as indicated by estimated glomerular filtration rate (eGFR) 
and urinary albumin to creatinine ratio (ACR) (25). T2DM is defined 
as a metabolic disorder in which the body does not respond normally 
to insulin, causing chronic high blood sugar (glucose) levels, which 
over time leads to serious damage to the heart, blood vessels, eyes, 
kidneys, and nerves (26). Collaborator-provided sources that were 
either shared directly with us or were identified through searching the 
Global Health Data Exchange (GHDx) were reviewed for inclusion. 
For this study, CKD attributable to T2DM was identified based on a 
combination of ICD codes, keywords in text, and additional criteria 
specified in the GBD study methodology (12).

2.3 Statistical analysis

We reported the number of incidence, prevalence, deaths, and 
DALYs attributed to CKD due to T2DM. The age-standardized incidence 
rate (ASIR), age-standardized prevalence rate (ASPR), age-standardized 
deaths rate (ASDR) and age-standardized DALYs rate (ASDAR) were 
utilized as indicators of the disease burden for CKD due to T2DM. This 
analysis encompassed a global perspective and was further stratified by 
various subtypes, encompassing age groups, sex, Socio-demographic 
Index (SDI) regions, GBD regions, and individual countries. Moreover, 
we examined trends globally and within specified sub-types to investigate 
the temporal dynamics of the age-standardized rates (ASRs). 

1 https://vizhub.healthdata.org/gbd-results/
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We estimated the percentage change in ASRs, providing a quantitative 
measure of the rate of change in the burden over the study period.

The Bayesian age-period-cohort (BAPC) model was utilized to 
forecast the future burden of CKD due to T2DM. Bayesian inference 
treats uncertain parameters as random variables with specified prior 
distributions, assuming temporal effects exhibit similarity. To model 
this, a second-order random walk (RW2) is commonly employed, 
smoothing age, period, and cohort effects under the assumption that 
the second differences of all time effects follow independent, mean-
zero normal distributions (27). The BAPC model utilizes an integrated 
nested Laplacian approximation to estimate the marginal posterior 
distribution, addressing issues related to mixing and convergence that 
are typically encountered with the Markov chain Monte Carlo 
sampling method used in traditional Bayesian approaches (28). This 
model effectively handles age-stratified cancer incidence and mortality 
rates, making it particularly valuable for projecting future trends 
amidst substantial demographic changes (29).

Throughout the analysis, statistical significance was determined 
at a p-value threshold of <0.05. For all computations and analyses, 
we leveraged the R software (version 4.2.3) to perform the database 
construction, collation, and rigorous statistical analysis.

3 Results

3.1 The disease burden of CKD due to 
T2DM in 2021

In 2021, the number of incidence cases of CKD due to diabetes 
mellitus type was 477273.1 (95% uncertainty intervals (UI): 401541.1, 
565951.0) globally. The corresponding ASIR was 5.7 (95% UI: 4.8, 6.8) 
per 100,000 population. The number of prevalence cases was 
107559954.8 (95% UI: 99170797.2, 115994731.7) globally. The 
corresponding age-standardized prevalence rate (ASPR) was 1259.6 
(95% UI: 1,162, 1359.9) per 100,000 population. The number of deaths 
cases was 2012024.5 (95% UI: 1,857,800, 2154287.7) globally. The 
corresponding ASDR was 23.1 (95% UI: 21.4, 24.7) per 100,000 
population. Moreover, the number of DALYs was 11,278,935 (95% UI: 
9682785.2, 13103870.8) globally in 2021. The corresponding ASDAR 
was 131.1 (95% UI: 112.8, 152.5) per 100,000 population (Table 1).

Gender-specific analysis revealed that in 2021, the number of 
incidence, prevalence, deaths, and DALYs counts, were higher in 
males in younger adults, but higher in females in older adults. As 
for their respective ASRs, it was still higher in males 
(Supplementary Figures S1–S4).

An age-stratified analysis of incidence, prevalence, deaths, and 
DALYs in 2021 is presented in Supplementary Figures S1–S4. For the 
number of cases, there was an initial increase with age, peaking in 
around older years old, followed by a decrease. For ASIR and ASPR, 
the disease burden also showed the “N” trend, but the ASDR and 
ASDAR still increase with age (Supplementary Figures S1–S4).

At the SDI region level, the middle SDI region had the highest 
number of incidence cases, prevalence cases, deaths cases, DALYs 
cases, ASIR, ASDR, and ASDAR. For the ASPR, the disease burden 
was highest in the Low-middle SDI regions (Table 1).

Across the 21 GBD regions, Andean Latin America ranked the top 
one in ASIR at 14.9 (95% UI: 11.5, 19.2), Southeast Asia ranked the top 
one in ASPR at 1739.3 (95% UI: 1595.7, 1883.9), East Asia ranked the 

top one in ASDR at 373610.9 (95% UI: 340685.9, 402345.5), and Oceania 
ranked the top one in ASDAR at 309.8 (95% UI: 257.3, 383.9). For the 
number of cases, the top GBD region was South Asia for incidence at 
70319.9 (95% UI: 54707.1, 89923.7) and DALYs at 1,976,809 (95% UI: 
1609612.2, 2453203.1). The top GBD region for number of prevalence 
cases was North Africa and Middle East at 8039618.4 (95% UI: 
7267275.6, 8805017.9). And the top GBD region for number of deaths 
cases was East Asia at 373610.9 (95% UI: 340685.9, 402345.5) (Table 1).

The disease burden of CKD osteoarthritis knee varied 
considerably across the world, as detailed in Figures 1–4.

3.2 Temporal trend for CKD due to 
T2DM-related disease burden from 1990 to 
2021

Globally, the ASRs of CKD due to T2DM all have witnessed a 
notable rise except for the ASPR. The percentage change in ASRs was 
37.8 (95% confidence interval (CI): 19.2, 49.6) for ASIR, was 21 (95% 
CI: 15, 27.5) for ASDR, and was 24 (95% CI: 9.3, 33) for ASDAR from 
1990 to 2021. However, for ASPR, the percentage change was −5.1 
(95% CI: −7.5, −3), showed a decreasing trend (Table 1).

In our analysis at the regional level of the SDI, a discernible pattern 
emerges in the temporal trends of CKD due to T2DM indicators. 
Regarding the ASRs of incidence and deaths, all SDI regions consistently 
demonstrate an upward trend. For the ASPR, all SDI regions showed the 
decreasing trend. However, for ASDAR, all SDI regions showed the 
increasing trend except for Low SDI regions (Table 1). From 1990 to 
2021, the deaths and DALYs of CKD due to T2DM both for males and 
females in high SDI region were lowest in 1990 compared to other SDI 
regions, which increased significantly to the extent that, around 2010, 
exceeded those in the high-middle SDI regions. Notably, the deaths and 
DALYs of CKD due to T2DM both for males and females presented a 
downward trend in low SDI region during 2000 to 2010. Detailed 
information is depicted in Supplementary Figure S13. Between 1990 and 
2021, the ASIR of CKD due to T2DM increased steadily among both 
men and women across all SDI regions. In contrast, the ASPR of CKD 
due to T2DM decreased consistently for both genders in all SDI regions 
during the same period. See Supplementary Figure S14 for details.

We further elucidate the variability in CKD due to T2DM burden 
across GBD regions, the results were presented in Table 1. The most 
pronounced increase in ASIR, ASPR, and ASDAR from 1990 to 2021 
was observed in High-income North America (ASIR: percentage 
change = 259.9, 95% CI: 210.8, 316.3; ASPR: percentage change = 4.9, 
95% CI: 3.5, 6.4; ASDAR: percentage change = 168.4, 95% CI: 142.9, 
199.9), and the most pronounced increase was observed in Andean 
Latin America for ASDR (percentage change = 85.9, 95% CI: 70.3, 
103.6) (Table 1).

3.3 The regular pattern of different SDI 
levels and CKD due to T2DM-related 
disease burden

The regular pattern of different SDI levels and the ASDAR was 
stable across countries and territories. From Figures 5, 6, the ASRs for 
DALYs showed a negative correlation with SDI, indicating that higher 
SDI indicates lower disease burden (Figures 5, 6).
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TABLE 1 The trends of the chronic kidney disease due to diabetes mellitus type 2-related age-standardized incidence, prevalence, deaths, and DALYs rate in 2021 and from 1990 to 2021 globally.

Deaths Prevalence Incidence DALYs

Location Counts 
2021 (95% 

UI)

Age 
standardized 

rate 2021 (95% 
UI)

Percentage 
change in 
ASRs from 

1990 to 2021

Counts 
2021 (95% 

UI)

Age 
standardized 

rate 2021 
(95% UI)

Percentage 
change in 
ASRs from 

1990 to 2021

Counts 2021 
(95% UI)

Age 
standardized 

rate 2021 
(95% UI)

Percentage 
change in 
ASRs from 

1990 to 
2021

Counts 2021 
(95% UI)

Age 
standardized 

rate 2021 
(95% UI)

Percentage 
change in 
ASRs from 

1990 to 2021

Global

477273.1 

(401541.1, 

565,951)

5.7 (4.8, 6.8) 37.8 (19.2, 49.6)

107559954.8 

(99170797.2, 

115994731.7)

1259.6 (1,162, 

1359.9)
−5.1 (−7.5, −3)

2012024.5 

(1,857,800, 

2154287.7)

23.1 (21.4, 24.7) 21 (15, 27.5)

11,278,935 

(9682785.2, 

13103870.8)

131.1 (112.8, 152.5) 24 (9.3, 33)

Low SDI

29491.3 

(23284.4, 

37040.8)

7.4 (5.9, 9.3) 2.8 (−10.1, 15.9)

8155173.7 

(7,427,183, 

9026802.9)

1269.4 (1,167, 

1378.8)
−6.3 (−8.7, −4.4)

77,298 (69537.2, 

84888.8)
15.1 (13.6, 16.6) 26.8 (20, 34.4)

761198.2 

(622327.6, 

942049.5)

160.9 (131.7, 199.6) −3.3 (−13.7, 8)

Low-middle 

SDI

82399.1 

(66442.9, 

102844.3)

6.4 (5.2, 8) 31.2 (4.7, 51.6)

23752428.1 

(21773064.6, 

25995903.5)

1474.6 (1357.9, 

1606.5)
−7.1 (−9.4, −4.9)

298098.8 

(270253.9, 

326985.4)

20.2 (18.3, 22.1) 33.6 (27.6, 40)

2202183.6 

(1821393.4, 

2694852.3)

155.3 (128.6, 189.4) 24.2 (3.4, 41)

Middle SDI

182159.5 

(151834.7, 

216847.2)

7.5 (6.2, 9) 11 (−9.4, 23.6)

36412910.7 

(33,598,848, 

39348242.6)

1331.6 (1232.1, 

1433.5)
−7 (−9.5, −4.8)

635310.5 

(582063.2, 

685432.6)

23 (21.1, 24.6) 34 (25.1, 43.9)

4424358.6 

(3759638.1, 

5160625.7)

167.1 (141.3, 193.9) 5.8 (−10.7, 16.4)

High-middle 

SDI

71227.1 

(57909.3, 

86608.8)

3.7 (3, 4.4) 21.5 (0.6, 39.9)

21060240.7 

(19314069.1, 

22837224.8)

1,157 (1062.1, 

1,253)
−9 (−11.9, −6.6)

404153.8 

(369299.5, 

435463.9)

20.1 (18.4, 21.6) 27.8 (20.7, 36.3)

1678678.7 

(1404999.2, 

2018747.1)

84.7 (71.1, 102.2) 8.3 (−7.3, 21.9)

High SDI

111564.7 

(93260.1, 

132403.9)

4.6 (3.9, 5.4) 95.4 (79.5, 113.5)

18097945.9 

(16763917.4, 

19359375.7)

997.1 (918.7, 

1066.3)
−3.9 (−5.6, −2.2)

595270.9 

(547942.9, 

636879.1)

28.3 (26.2, 30.3) 10.8 (4.8, 17.4)

2202413.4 

(1928997.7, 

2486233.2)

102.6 (90, 114.5) 64.3 (53.9, 74.8)

Oceania
795.9 (636.2, 

1,004)
13.6 (11.2, 17.3) 27.3 (−10.2, 80.5)

127251.7 

(111037.3, 

142276.6)

1337.2 (1193.9, 

1478.5)
−4.3 (−7.6, −1.3)

1223.5 (1066.5, 

1377.5)
15.5 (13.8, 17.2) 27.9 (16.6, 39.2)

22599.4 (18308.5, 

27917.9)
309.8 (257.3, 383.9) 23.8 (−10.4, 71.1)

Central 

Europe

2761.1 (2138.6, 

3486.9)
1.1 (0.9, 1.4) 5.4 (−4.8, 16.6)

1685179.9 

(1564182.8, 

1814448.7)

855.7 (792.6, 922.2) −8.8 (−12.5, −6.3)
49402.8 (44902.9, 

54054.3)
22.1 (20.2, 23.9) 68.2 (57.5, 81.2)

75975.3 (62114.3, 

92514.6)
33.5 (27.3, 40.6) −2 (−9, 5.6)

High-income 

Asia Pacific

23596.8 

(17306.6, 

30380.1)

3.6 (2.8, 4.5) −18.3 (−25.2, −13)

4607840.5 

(4243578.2, 

4946981.8)

1275.4 (1168.2, 

1377.4)
−11.8 (−13.6, −10)

133311.7 

(121632.4, 

145016.1)

29.3 (26.9, 31.7) 1.2 (−3.2, 6.7)

394459.4 

(318657.4, 

468493.2)

75.2 (62.2, 87.2)
−18.9 (−23.2, 

−15.1)

Eastern 

Europe

2797.6 (2151.7, 

3595.9)
0.8 (0.6, 1) 142.7 (115.2, 168.5)

4315524.3 

(3951875.5, 

4696855.2)

1390.3 (1277.4, 

1520.4)
−9.6 (−13.9, −6.5)

52339.2 (47044.3, 

58222.3)
15.3 (13.8, 16.8) 76.7 (65.9, 86.3)

95,788 (76259.4, 

118768.3)
26.7 (21.4, 33) 25.7 (13.4, 40)

Southeast 

Asia

58970.4 

(48619.2, 

70561.1)

10.4 (8.6, 12.5) 31.4 (5.6, 52.1)

12333536.2 

(11263092.3, 

13439668.8)

1739.3 (1595.7, 

1883.9)
−3 (−5.5, −0.7)

152649.9 

(138455.5, 

167650.1)

22.3 (20.3, 24.3) 50.3 (40.5, 61.1)

1535393.1 

(1287456.3, 

1818898.3)

237.7 (199.8, 276.1) 23.5 (2.9, 40.5)

Central Asia
1,289 (978.6, 

1669.6)
1.8 (1.3, 2.3) 177.9 (122.1, 241.4)

1315604.5 

(1205400.2, 

1431740.6)

1,494 (1381.4, 

1617.5)
−4.5 (−7.8, −1.7)

14528.3 (12630.8, 

16383.7)
16.4 (14.6, 18.2) 77.1 (67.2, 88.6)

54913.9 (43760.1, 

67,787)
67.5 (54.1, 82.9) 52.9 (35.6, 72.5)

(Continued)
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TABLE 1 (Continued)

Deaths Prevalence Incidence DALYs

Location Counts 
2021 (95% 

UI)

Age 
standardized 

rate 2021 (95% 
UI)

Percentage 
change in 
ASRs from 

1990 to 2021

Counts 
2021 (95% 

UI)

Age 
standardized 

rate 2021 
(95% UI)

Percentage 
change in 
ASRs from 

1990 to 2021

Counts 2021 
(95% UI)

Age 
standardized 

rate 2021 
(95% UI)

Percentage 
change in 
ASRs from 

1990 to 
2021

Counts 2021 
(95% UI)

Age 
standardized 

rate 2021 
(95% UI)

Percentage 
change in 
ASRs from 

1990 to 2021

East Asia

115063.7 

(91638.3, 

141544.9)

5.8 (4.7, 7.2) −16.6 (−35.7, 1.5)

21662039.1 

(19882229.6, 

23414195.4)

1054.1 (972.3, 

1140.1)

−13.1 (−15.7, 

−10.9)

373610.9 

(340685.9, 

402345.5)

16.6 (15.3, 17.8) 8.3 (0.5, 17.9)

2697277.8 

(2197710.8, 

3240412.2)

125.6 (103.4, 149.7) −20.9 (−35.6, −5.9)

Australasia
506.1 (367.1, 

689.5)
0.8 (0.6, 1.1) 62.5 (42.3, 85.2)

378015.1 

(344562.5, 

414093.6)

768.6 (695, 843.2) −7.1 (−12.3, −3.6)
16772.4 (14864.1, 

18,754)
30.3 (27, 33.9) 13.7 (4.7, 22.2)

12981.3 (10124.5, 

16242.5)
23.6 (18.3, 29.5) 29 (15.6, 44.9)

Southern 

Latin America

4602.8 (3602.9, 

5792.2)
5 (3.9, 6.3) −2.8 (−10.5, 4.9)

753904.9 

(680382.9, 

837547.9)

911.8 (819.8, 

1021.1)
3 (−1, 6.6)

25927.7 (23175.9, 

28694.4)
29.2 (26.2, 32.3) 33 (20.1, 47.7)

88523.5 (71127.9, 

108330.9)
99.6 (80.2, 121.6) −8.3 (−13.9, −2.3)

Western 

Europe

22783.9 

(16631.6, 30,904)
1.8 (1.4, 2.4) 30.6 (16.1, 44.3)

5879101.2 

(5438217.2, 

6289341.4)

737.4 (683, 790.1) −10.7 (−14.4, −8)

228491.5 

(212548.2, 

245901.5)

23.9 (22.2, 25.7) 6.2 (−0.6, 13.7)

428631.8 

(343313.7, 

532188.1)

40.9 (32.9, 49.7) 5.6 (−1.4, 12.7)

Andean Latin 

America

8378.1 (6459.8, 

10828.8)
14.9 (11.5, 19.2) 42.8 (15.1, 76.5)

597138.7 

(538460.7, 

662178.6)

957.2 (862.9, 

1056.2)
−2.7 (−5.8, 0.3)

18007.8 (16150.5, 

20130.5)
30.5 (27.4, 34.1) 85.9 (70.3, 103.6)

165500.1 

(127469.3, 

211085.3)

286.1 (220.7, 365.1) 36.4 (11.6, 68.7)

Central Latin 

America

24359.4 

(19319.3, 

30465.4)

10.1 (8, 12.5) 49.9 (37, 64.6)

3407649.4 

(3135739.8, 

3,667,865)

1327.6 (1,225, 

1427.2)
−5.7 (−8.3, −3.3)

106519 (98854.9, 

114,268)
41.3 (38.4, 44.3) 45.1 (32.8, 59.5)

582669.3 

(462738.3, 

718465.8)

232.6 (185.5, 287.1) 56.6 (41.8, 72)

Caribbean
6,205 (5201.2, 

7490.7)
11.4 (9.5, 13.7) 43 (24, 61.8)

563202.6 

(515384.1, 

614522.4)

1069.9 (978.5, 

1169.7)

−4.1 (−6.9, −1.4) 14678.6 (13310.5, 

16052.2)

27.2 (24.7, 29.8) 62.8 (51.6, 75) 131435.5 

(108776.6, 

159205.2)

242.9 (200.8, 294.5) 40.1 (21.4, 59)

Tropical Latin 

America

17882.6 

(15002.2, 

21195.2)

7.2 (6, 8.6) 16.4 (10.2, 21.5) 2960767.5 

(2714465.1, 

3207228.6)

1145.8 (1053.3, 

1238.7)

−9.5 (−11.9, −7.5) 66,483 (60784.2, 

72039)

25.5 (23.3, 27.6) 32.8 (23.1, 45.4) 397813.6 

(335704.9, 

457742.6)

155.9 (131.5, 178.9) 8.6 (3.6, 13)

High-income 

North 

America

57161.5 (49,314, 

64516.7)

8.1 (7, 9.1) 259.9 (210.8, 316.3) 6203134.3 

(5758563.3, 

6652331.6)

1056.5 (979.6, 

1135.3)

4.9 (3.5, 6.4) 216863.7 

(198070.3, 

236861.5)

32.4 (29.7, 35.2) 7.9 (0.6, 16.5) 1153656 

(1037947.2, 

1260922.9)

174 (157, 190.9) 168.4 (142.9, 199.9)

Central 

Sub-Saharan 

Africa

3564.2 (2464.6, 

4978.1)

9 (6.1, 12.9) 4.8 (−22.4, 36.5) 976815.1 

(874265.7, 

1085754.1)

1377.5 (1262.9, 

1506.7)

−6.9 (−9.8, −4.1) 6880.6 (5958.1, 

7821.2)

12.6 (11.1, 14.2) 36.4 (26.6, 47.3) 97641.6 (69611.5, 

134131.5)

196.1 (139.9, 268.7) 2.4 (−20.6, 31.3)

North Africa 

and Middle 

East

30956.2 (23,711, 

39766.7)

8.2 (6.3, 10.5) 28.9 (−18.2, 60.8) 8039618.4 

(7267275.6, 

8805017.9)

1505.9 (1369, 

1642.9)

−4 (−6.4, −1.7) 199623.4 

(182526.9, 

218247.3)

42.8 (39.2, 46.5) 63.4 (54.5, 74) 739708.3 

(577376.5, 

932697.8)

170.2 (133.9, 214.5) 22.3 (−18.8, 49.4)

South Asia 70319.9 

(54707.1, 

89923.7)

5.3 (4.1, 6.6) 28.5 (−0.7, 55.5) 25462948.6 

(23248463.8, 

27987293.9)

1547.3 (1418.4, 

1687.6)

−9.7 (−12, −7.5) 267934.4 

(239653.9, 

294287.9)

17.6 (15.8, 19.4) 20.8 (14.7, 27.3) 1,976,809 

(1609612.2, 

2453203.1)

134.4 (110.5, 166) 22.1 (−0.6, 43.7)

(Continued)
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3.4 The predicted results from 2022 to 
2036

The projections by the BAPC model indicate an upward trajectory 
in the ASRs for over the period spanning from 2022 to 2036. Notably, 
the ASIR, ASDR, and ASDAR for both genders were increasing, 
however, for the ASDAR, it showed a decreasing trend 
(Supplementary Figures S5–S12).

4 Discussion

As far as we know, this was the latest study to comprehensively 
assess and quantify CKD due to T2DM-related disease burden 
globally. From 1990 to 2021, there was an increasing trend for the 
disease burden globally and for sub-types including sexes and across 
ages, SDI regions, GBD regions, and countries. Furthermore, our 
predicted results showed that the ASRs would still increase in the next 
15 years.

In 2021, the disease burden of CKD due to T2DM emerged as a 
significant global health challenge. Our findings align with previous 
research indicating a rising trend in T2DM-related CKD incidence, 
prevalence, and mortality (8, 30). Notably, the age-standardized 
incidence and prevalence rates reported here underscore the 
substantial and growing impact of this comorbidity, surpassing 
estimates from earlier studies that highlighted a growing burden but 
at lower magnitudes (12, 31). The mortality rate and DALYs associated 
with T2DM-CKD further emphasize the dire need for effective 
interventions and management strategies. Comparisons with data 
from the Global Burden of Disease Study demonstrate consistency in 
the direction of these trends but suggest potential regional variations 
that warrant detailed investigation (32). Addressing modifiable risk 
factors such as glycemic control, blood pressure management, and 
lifestyle modifications could significantly mitigate this burden, as 
echoed in contemporary literature (33, 34). Continued surveillance 
and targeted public health initiatives are crucial to curb the escalating 
disease burden of T2DM-CKD globally.

Our findings reveal a compelling temporal trend in the disease 
burden of CKD due to T2DM globally from 1990 to 2021. The notable 
rise in ASIR, ASDR, and ASDAR aligns with previous studies 
indicating an increasing prevalence and severity of T2DM-related 
complications (35, 36). However, the decrease in ASPR observed in 
our study contrasts with some earlier reports, which may be attributed 
to improvements in early detection, management, and survival rates 
among CKD patients (12, 31). This trend suggests a complex interplay 
between disease incidence, progression, and mortality. The rising 
ASIR and ASDR underscore the urgent need for effective interventions 
to mitigate the growing burden of T2DM-CKD, while the decreasing 
ASPR may reflect advancements in healthcare delivery and patient 
care. Future research should focus on understanding these trends 
further and identifying strategies to reduce the overall disease 
burden globally.

The gender-specific analysis unveils intriguing patterns in the 
disease burden of the studied condition across different age 
groups. The finding that in 2021, incidence, prevalence, deaths, 
and DALYs were higher in males among younger adults aligns 
with prior research suggesting that males in this demographic may 
face greater exposure to risk factors such as unhealthy lifestyles T
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FIGURE 1

Age-standardized rates of chronic kidney disease due to diabetes mellitus type 2-related incidence across countries and territories in 2021.

FIGURE 2

Age-standardized rates of chronic kidney disease due to diabetes mellitus type 2-related prevalence across countries and territories in 2021.
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and occupational hazards (37). Conversely, the shift towards 
higher burden in females among older adults could be attributed 
to biological factors, including hormonal changes and differences 
in immune responses, as well as socio-cultural practices that may 
affect healthcare access and utilization (38, 39). Despite these 
age-specific gender disparities, the consistently higher ASRs in 
males across various metrics emphasize the need for tailored 
interventions that account for gender-specific vulnerabilities and 
risk profiles. Further research is required to elucidate the 
underlying mechanisms driving these gender-and age-related 
differences and to develop comprehensive strategies to reduce the 
overall disease burden in both males and females.

The age-stratified analysis of incidence, prevalence, deaths, and 
DALYs in our study reveals intriguing patterns that align with and 
extend the findings of previous research (40, 41). The initial rise in 
case numbers with age, followed by a decline in older age groups, may 
reflect complex interplay between exposure risk, immune response, 
and survival factors. This trend is consistent with observations in 
other chronic conditions, where elderly populations often exhibit 
higher incidence but may be under-represented in case counts due to 
higher mortality rates (42). Notably, the ASIR and ASPR exhibit an 
“N”-shaped trend, suggesting a peak incidence and prevalence in 
middle to older age groups, followed by a decline. This pattern 
contrasts with the continuous increase in ASDR and ASDAR with 
advancing age, highlighting the increasing severity and burden of 
disease in older populations (43). These findings underscore the 
importance of age-specific interventions and highlight the need for 

tailored healthcare strategies that address the unique needs of 
different age groups. Our results contribute to the growing body of 
evidence emphasizing the critical role of age in determining disease 
burden and outcomes. Future research should continue to explore the 
underlying biological and sociodemographic factors driving these 
age-related trends to inform more effective public health policies and 
interventions (44, 45).

The findings reveal notable disparities in the burden of CKD 
due to T2DM across different SDI regions. The middle SDI 
regions exhibited the highest burden in terms of incidence, 
prevalence (except for low-middle SDI regions which had the 
highest ASPR), deaths, DALYs, ASIR, ASDR, and ASDAR. These 
observations align with previous studies indicating that middle-
income countries often face a double burden of communicable 
and non-communicable diseases, including diabetes-related 
complications (46, 47). The upward trend in incidence and death 
rates across all SDI regions underscores the global surge in 
diabetes-related CKD, possibly due to urbanization, sedentary 
lifestyles, and unhealthy diets (4). The decreasing ASPR in all 
regions, except for the increasing ASDAR in middle and high SDI 
regions (excluding Low SDI), suggests improvements in case 
management and survival but highlights persistent morbidity and 
mortality risks, particularly among older and more vulnerable 
populations (12, 48). These findings emphasize the need for 
tailored interventions targeting high-risk populations and 
strengthening healthcare systems to manage the growing burden 
of diabetes-related CKD effectively.

FIGURE 3

Age-standardized rates of chronic kidney disease due to diabetes mellitus type 2-related deaths across countries and territories in 2021.
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FIGURE 4

Age-standardized rates of chronic kidney disease due to diabetes mellitus type 2-related DALYs across countries and territories in 2021. DALYs, 
disability-adjusted life years.

FIGURE 5

Age-standardized rates of DALYs attributable to chronic kidney disease due to diabetes mellitus type 2 across regions by socio-demographic index for 
both sexes, 1990–2019. The black line was an adaptive association fitted with adaptive LOESS regression based on all data points. DALYs, disability-
adjusted-life-years.
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The findings of our study reveal striking regional disparities in 
the burden of CKD due to T2DM across the 21 GBD regions. Notably, 
Andean Latin America exhibited the highest ASIR, aligning with 
previous observations that highlighted the rising prevalence of 
diabetes and its complications in this region (49). Southeast Asia 
topped the list for ASPR, potentially linked to high-risk behaviors 
and limited access to healthcare services, as reported in existing 
literature (50). East Asia displayed the highest ASDR and number of 
deaths, reflecting the aging population and the increasing incidence 
of diabetes-related complications (51). Oceania showed the highest 
ASDAR, suggesting a substantial impact on health outcomes and 
quality of life (12). South Asia led in terms of incidence cases and 
DALYs, possibly due to a combination of high population density, 
lifestyle changes, and inadequate healthcare infrastructure (52). 
North Africa and the Middle East reported the highest prevalence 
cases, consistent with studies highlighting the regional burden of 
CKD and its association with diabetes (31). Furthermore, our analysis 
revealed High-income North America experienced the most 
significant increase in ASIR, ASPR, and ASDAR from 1990 to 2021, 
indicating a growing public health challenge despite advanced 
healthcare systems (53). Andean Latin America showed the largest 
increase in ASDR, emphasizing the urgent need for interventions to 
mitigate the diabetes epidemic in this region (49). These findings 
underscore the necessity for tailored public health strategies to 
address the regional variations in the CKD burden due to T2DM.

The observed regular pattern of different SDI levels and the 
ASDAR associated with CKD due to T2DM reveals a consistent 

trend across various countries and territories. Our findings align 
with previous studies suggesting that higher SDI levels are 
inversely related to the disease burden, indicating better healthcare 
access and management in higher-SDI countries (54, 55). This 
negative correlation between SDI and the ASDAR underscores the 
role of socioeconomic factors in influencing disease outcomes. 
Furthermore, the stability of this pattern across diverse regions 
suggests that global health policies aimed at mitigating the T2DM-
related kidney disease burden should consider socioeconomic 
disparities (4, 31). Future interventions should prioritize resource 
allocation and healthcare infrastructure development in lower-SDI 
settings to reduce health inequalities.

The projected upward trajectory in ASIR, ASDR, and overall 
disease burden, as indicated by our BAPC model for the period 
2022 to 2036, aligns with existing literature suggesting a growing 
global health burden related to chronic conditions (8, 14). This 
increasing trend in ASIR and ASDR is particularly concerning, 
as it highlights the need for intensified preventive measures and 
improved management strategies. However, crucially, the early 
detection and management of diabetes, hypertension, and 
chronic kidney disease (CKD) can be achieved through the use 
of widely accessible and often low-cost interventions. These 
measures have the potential to enhance renal and cardiovascular 
outcomes, as well as to delay or prevent the progression to 
end-stage kidney disease (ESKD) (12). The decrease observed in 
ASDAR suggests potential improvements in disease management 
and quality of life for those affected, healthcare system gradually 

FIGURE 6

Age-standardized rates of DALYs attributable to chronic kidney disease due to diabetes mellitus type 2 across countries and territories by socio-
demographic index for both sexes, 1990-2021.
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paid more attention to early stages of CKD rather than the 
treatment for ESKD, which indicating advancements in healthcare 
and treatment options (12), eventually resulted in the decrease of 
ASDAR. Furthermore, given the substantial burden of CKD in 
middle-and low-income countries, on the one hand, building a 
tiered healthcare system is key to addressing the challenges posed 
by CKD. By strengthening primary healthcare services, CKD can 
be  detected early and intervened in a timely manner, thereby 
reducing the reliance of severe patients on high-end medical 
resources in the later stages. On the other hand, Policy-making 
bodies can alleviate the disease burden of CKD by strengthening 
public health education and awareness (56), including raising 
public awareness of the early symptoms of CKD, encouraging 
regular screenings and early diagnoses, and promoting the 
expansion of social security coverage, which is especially 
important in low SDI regions where primary care health systems 
are less equipped to adequately prevent and treat chronic diseases 
(57). These mixed trends underscore the complexity of the 
disease burden and the importance of multifaceted approaches to 
address both incidence and mortality while enhancing patient 
outcomes. Future research should focus on identifying the drivers 
of these trends and developing targeted interventions to mitigate 
the projected increase in disease burden.

As we know, in clinical practice, a multimodal intervention 
strategy using all available tools to target a major pathogenic 
factor in the progression of CKD such as proteinuria seems a 
rational approach to maximizing renoprotection in CKD 
patients, including lifestyle modifications such as sodium and 
protein intake restriction, smoking cessation, body weight loss, 
optimal BP (target systolic/diastolic, 130/80 mmHg) and 
metabolic control (target hemoglobin A1C, 7.5%) in patients 
with diabetes, correction of metabolic acidosis and 
hyperphosphatemia, use of statins and dual renin-angiotensin 
system (RAS) blockade with maximum tolerated doses of 
angiotensin converting enzyme (ACE) inhibitors and angiotensin 
II receptor blockers (ARBs), probably the mainstay of proteinuria 
management in this setting (58). A balanced diet and healthy 
lifestyle habits can directly prevent or alleviate the symptoms of 
CKD. Additionally, they can indirectly reduce the disease burden 
of CKD through their mediating effect on lowering the incidence 
of T2DM.

While our study features a comprehensive framework for data 
collection and analysis, it is crucial to acknowledge several 
inherent limitations. Firstly, Variations in the availability and 
quality of data across different countries and regions may 
introduce biases into our estimates (59). GBD relies on statistical 
methods and predictive covariate values to estimate the CKD 
burden in regions with unavailable data on CKD incidence or 
prevalence. Sources of non-fatal CKD data vary in terms of 
sampling, laboratory techniques, and the equations used to 
calculate estimated glomerular filtration rate (eGFR), leading to 
systematic discrepancies in CKD prevalence estimates due to the 
use of different equations (60, 61). Additionally, the evolution of 
diagnostic criteria and advancements in treatment technologies 
over time could potentially compromise the accuracy of historical 
comparisons (62). Lastly, it is inherent to projections that they 
entail a degree of uncertainty, and therefore, they should 
be interpreted with caution (63).

5 Conclusion

In conclusion, CKD due to T2DM poses a considerable global 
health burden, particularly in regions characterized by middle and 
lower economic development, underscoring its wide-ranging 
implications. Furthermore, our projections indicate a persistent 
upward trend in the ASRs from 2022 to 2036 except for the 
prevalence, emphasizing the continued significance of CKD due to 
T2DM as a pressing public health challenge that necessitates 
urgent attention.
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